On supra N-closed and supra sN-closed set in supra Topological spaces

L. Vidyarani* & M. Vigneshwaran

Department of Mathematics Kongunadu Arts and Science College, Coimbatore, (T.N.) India

(Received on: 04-01-13; Revised & Accepted on: 13-02-13)

ABSTRACT

In this paper, we introduce new class of sets called supra N-closed sets and supra sN-closed sets. We obtain the basic properties and their relation- ships with other classes of sets in supra topological spaces.

Keywords: supra N-closed, supra sN-closed, supra N-continuity, supra sN-continuity.

1. INTRODUCTION

In 1983, A. S. Mashhour *et al.* [6] introduced the supra topological spaces and studied, continuous functions and s* continuous functions. T. Noiri and O. R. Syed[5] introduced Ω closed sets. $\pi\Omega$ and $\pi\Omega$ s closed sets in supra topological space was introduced by Arokiarani and M. Trinita Pricilla[1].

In this paper, we introduce the concept of supra N-closed sets and supra sN- closed sets and studied its basic properties. Also we introduce the concept of supra N and supra sN continuous functions and investigated their relationship with other classes of functions in supra topological spaces.

2. PRELIMINARIES

Definition: 2.1[6] A subfamily μ of X is said to be supra topology on X, if

i) $X, \phi \in \mu$

ii) If $A_i \in \mu \ \forall i \in J \ then \ \cup A_i \in \mu$

 (X, μ) is called supra topological space.

The element of μ are called supra open sets in (X,μ) and the complement of supra open set is called supra closed sets and it is denoted by μ^C

Definition: 2.2[6] The supra closure of a set A is denoted by $cl^{\mu}(A)$, and is defined as supra $cl(A) = \cap \{B: B \text{ is supra closed and } A \subseteq B\}$.

The supra interior of a set A is denoted by int^{μ} (A), and is defined as supra $int(A) = \bigcup \{B: B \text{ is supra open and } A \supseteq B\}.$

Definition: 2.3[6] Let (X, τ) be a topological space and μ be a supra topology on X. We call μ a supra topology associated with τ , if $\tau \subseteq \mu$.

Definition: 2.4[4] Let (X, μ) be a supra topological space. A set A of X is called supra semi-open set, if $A \subseteq cl^{\mu}(int^{\mu}(A))$. The complement of supra semi-open set is supra semi-closed set.

Definition: 2.5[7] Let (X, μ) be a supra topological space. A set A of X is called supra α -open set, if $A \subseteq \operatorname{int}^{\mu}(\operatorname{cl}^{\mu}(\operatorname{int}^{\mu}(A)))$. The complement of supra α -open set is supra α -closed set.

Definition: 2.6 [5] Let (X, μ) be a supra topological space. A set A of X is called supra Ω closed set, if $scl^{\mu}(A) \subseteq int^{\mu}(U)$, whenever $A \subseteq U$, U is supra open set. The complement of the supra Ω closed set is supra Ω open set.

Definition: 2.7 [5] Let (X, μ) be a supra topological space. A set A of X is called supra Ω s closed set, if $scl^{\mu}(A) \subseteq int^{\mu}cl^{\mu}(U)$, whenever $A \subseteq U$, U is supra open set. The complement of the supra Ω s closed set is supra Ω s open set.

Definition: 2.8 [5] The supra Ω closure of a set A is denoted by $\Omega cl^{\mu}(A)$, and defined as $\Omega cl^{\mu}(A) = \bigcap \{B: B \text{ is supra } \Omega \text{ closed and } A \subseteq B \}$.

The supra Ω semi closure of a set A is denoted by $\Omega scl^{\mu}(A)$, and defined as $\Omega scl^{\mu}(A) = \cap \{B : B \text{ is supra } \Omega \text{ semi closed and } A \subseteq B \}$.

3. Supra N-closed set and Supra sN-closed set

Definition: 3.1 Let (X, μ) be a supra topological space. A set A of X is called supra N-closed set if $\Omega cl^{\mu}(A) \subseteq U$, whenever $A \subseteq U$, U is supra α open set. The complement of supra N-closed set is supra N-open set.

Definition: 3.2 Let (X, μ) be a supra topological space. A set A of X is called supra sN-closed set if Ωscl^{μ} (A) \subseteq U, whenever $A \subseteq U$, U is supra α open set. The complement of supra sN-closed set is supra sN-open set.

Theorem: 3.3 Every supra closed set is supra N-closed.

Proof: Let $A \subseteq U$, U is α^{μ} open set, since A is supra closed set then $cl^{\mu}(A) = A \subseteq U$. We know that $\Omega cl^{\mu}(A) \subseteq cl^{\mu}(A) \subseteq U$, implies $\Omega cl^{\mu}(A) \subseteq U$. Therefore A is supra N-closed.

The converse of the above theorem need not be true as shown by the following example.

Example: 3.4 Let (X, μ) be a supra topological space, where $X = \{a, b, c\}$ and $\mu = \{X, \phi, \{a\}\}$. Here $\{a, b\}$ is supra N-closed set but it is not supra closed set.

Theorem: 3.5 Every supra semi closed set is supra N-closed set.

Proof: Let $A \subseteq U$, U is α^{μ} open set, since A is supra semi closed set then $scl^{\mu}(A) = A \subseteq U$. We know that $\Omega cl^{\mu}(A) \subseteq scl^{\mu}(A) \subseteq U$, implies $\Omega cl^{\mu}(A) \subseteq U$. Therefore A is supra N-closed.

The converse of the above theorem need not be true as shown by the following example.

Example: 3.6 Let (X, μ) be a supra topological space, where $X = \{a, b, c\}$ and $\mu = \{X, \phi, \{a\}\}$. Here $\{a, b\}$ is supra N-closed set but it is not supra semi closed set.

Theorem: 3.7 Every supra Ω closed set is supra N-closed set.

Proof: Let $A \subseteq U$, U is α^{μ} open set, since A is supra Ω closed set then $\Omega cl^{\mu}(A) = A \subseteq U$. Therefore A is supra N-closed.

The converse of the above theorem need not be true as shown by the following example.

Example: 3.8 Let (X, μ) be a supra topological space, where $X = \{a, b, c\}$ and $\mu = \{X, \phi, \{a\}\}$. Here $\{a\}$ is supra N-closed set but it is not supra Ω closed set.

Theorem: 3.9 Every supra N-closed set is supra sN-closed set.

Proof: Let $A \subseteq U$, U is α^{μ} open set, since A is supra N closed set we have $\Omega cl^{\mu}(A) \subseteq U$. We know that every Ω closed set is Ω semi closed, implies $\Omega scl^{\mu}(A) \subseteq \Omega cl^{\mu}(A) \subseteq U$, Therefore A is supra sN-closed.

The converse of the above theorem need not be true as shown by the following example.

Example: 3.10 Let (X, μ) be a supra topological space, where $X = \{a, b, c\}$ and $\mu = \{X, \phi, \{a, b\}, \{b, c\}\}$. Here $\{b\}$ is supra sN-closed set but it is not supra N-closed set.

From the above theorem and examples we have the following diagram:

$$\begin{matrix} \text{Supra closed} \\ \downarrow \\ \text{supra } \Omega \text{ closed} & \rightarrow \text{supra N-closed} & \leftarrow \text{supra semi closed} \\ \downarrow \\ \text{supra } \Omega \text{s-closed} & \rightarrow \text{supra sN-closed} \end{matrix}$$

4. Supra N-continuous, supra N-irresolute, supra sN-continuous and supra sN-irresolute functions

Definition: 4.1 Let (X, τ) and (Y, σ) be two topological spaces and μ be an associated supra topology with τ . A function $f:(X, \tau) \to (Y, \sigma)$ is called supra N-continuous function if $f^{-1}(V)$ is supra N-closed in (X, τ) for every supra closed set V of (Y, σ) .

Definition: 4.2 Let (X, τ) and (Y, σ) be two topological spaces and μ be an associated supra topology with τ . A function $f:(X, \tau) \to (Y, \sigma)$ is called supra sN-continuous function if $f^{-1}(V)$ is supra sN-closed in (X, τ) for every supra closed set V of (Y, σ) .

Definition: 4.3 Let (X, τ) and (Y, σ) be two topological spaces and μ be an associated supra topology with τ . A function $f:(X, \tau) \to (Y, \sigma)$ is called supra N-irresolute if $f^{-1}(V)$ is supra N-closed in (X, τ) for every supra N-closed set V of (Y, σ) .

Definition: 4.4 Let (X, τ) and (Y, σ) be two topological spaces and μ be an associated supra topology with τ . A function $f:(X, \tau) \to (Y, \sigma)$ is called supra sN-irresolute if $f^{-1}(V)$ is supra sN-closed in (X, τ) for every supra sN-closed set V of (Y, σ) .

Theorem: 4.5 Every supra continuous function is supra N-continuous.

Proof: Let $f:(X, \tau) \to (Y, \sigma)$ be a supra continuous function. Le V be a supra closed set in Y. Since f is supra continuous, $f^{-1}(V)$ is supra closed set in X. We know that every supra closed set is supra N-closed, then $f^{-1}(V)$ is supra N-closed in X. Therefore f is supra N-continuous.

The converse of the above theorem need not be true. It is shown by the example given below.

Example: 4.6 Let $X=Y=\{a, b, c\}$ and $\tau=\{X, \phi, \{a\}, \{b, c\}\}, \sigma=\{Y, \phi, \{a\}\}\}$. $f:(X, \tau) \to (Y, \sigma)$ be the function defined by f(a)=b, f(b)=c, f(c)=a. Here f is supra N- continuous but it is not supra continuous, since $V=\{b, c\}$ is closed in Y but $f^{-1}(\{b, c\})=\{a, b\}$ is not a closed set in X.

Theorem: 4.7 Every supra Ω -continuous function is supra N-continuous.

Proof: Let $f:(X, \tau) \to (Y, \sigma)$ be a supra Ω -continuous function. Let V be a closed set in Y. Since f is supra Ω -continuous, $f^{-1}(V)$ is supra Ω -closed set in X. We know that every supra Ω -closed set is supra N-closed, then $f^{-1}(V)$ is supra N-closed in X. Therefore f is supra N-continuous.

The converse of the above theorem need not be true.

Example: 4.8 Let $X=Y=\{a, b, c\}$ and $\tau=\{X, \phi, \{a\}\}$, $\sigma=\{Y, \phi, \{a\}, \{b, c\}\}$. $f:(X, \tau) \to (Y, \sigma)$ be the function defined by f(a)=a, f(b)=c, f(c)=b. Here f is supra N- continuous but not supra Ω -continuous, since $V=\{a\}$ is closed in Y but $f^{-1}(\{a\})=\{a\}$ is not a Ω -closed set in X.

Theorem: 4.9 Every supra N-continuous function is supra sN-continuous.

Proof: Let $f:(X, \tau) \to (Y, \sigma)$ be a supra N-continuous function. Let V be a closed set in Y. Since f is supra N-continuous, $f^{-1}(V)$ is supra N-closed set in X. We know that every supra N-closed set is supra sN-closed, then $f^{-1}(V)$ is supra sN-closed in X. Therefore f is supra sN-continuous.

The converse of the above theorem need not be true.

Example: 4.10 Let $X=Y=\{a,b,c\}$ and $\tau=\{X,\phi,\{a\},\{b\},\{a,b\},\{b,c\}\},\sigma=\{Y,\phi,\{a,b\},\{b,c\}\}.$

 $f:(X, \tau) \to (Y, \sigma)$ be the function defined by f(a)=b, f(b)=c, f(c)=a. Here f is supra sN-continuous but not supra N-continuous, since $V=\{c\}$ is closed in Y but $f^{-1}(\{c\})=\{b\}$ is not a N-closed set in X.

Theorem: 4.11 Every supra N-irresolute is supra N-continuous.

Proof: Let $f:(X, \tau) \to (Y, \sigma)$ be a supra N-irresolute. Let V be any supra closed set in Y, then V is supra N-closed set. since f is supra N-irresolute, $f^{-1}(V)$ is a supra N-closed set in X. Therefore f is supra N-continuous.

The converse of the above theorem need not be true.

Example: 4.12 Let $X=Y=\{a,b,c\}$ and $\tau=\{X,\phi,\{a,b\}\{b,c\}\}, \sigma=\{Y,\phi,\{a\}\}\}$. $f:(X,\tau)\to (Y,\sigma)$ be the function defined by f(a)=b, f(b)=a, f(c)=c. Here f is supra N- continuous but not supra N-irresolute, since $V=\{a,b\}$ is N-closed in Y but $f^{-1}(\{a,b\})=\{a,b\}$ is not an N-closed set in X.

Theorem: 4.13 Every supra N-irresolute is supra sN-continuous.

Proof: Let $f:(X, \tau) \to (Y, \sigma)$ be a supra N-irresolute function. Let V be a closed set in Y. We know that every closed set is N-closed, therefore V is N-closed, since f is supra N-irresolute, $f^{-1}(V)$ is a supra N-closed set in X, we know that every supra N-closed set is sN-closed. Therefore f is supra sN-continuous./

The converse of the above theorem need not be true.

Example: 4.14 Let $X=Y=\{a,b,c\}$ and $\tau=\{X,\phi,\{a,b\}\}$, $\sigma=\{Y,\phi,\{a\}\}$. $f:(X,\tau)\to (Y,\sigma)$ be the function defined by f(a)=b, f(b)=a, f(c)=c. Here f is supra sN-continuous but not supra N-irresolute, since $V=\{a,b\}$ is N-closed in Y but $f^{-1}(\{a,b\})=\{a,b\}$ is not an N-closed set in X.

Theorem: 4.15 Every supra N-irresolute is supra sN-irresolute.

Proof: Let $f:(X, \tau) \to (Y, \sigma)$ be a supra N-irresolute function. Let V be N-closed set in Y. since f is supra N-irresolute, $f^{-1}(V)$ is a supra N-closed set in X. we know that every supra N-closed set is sN-closed. Therefore f is supra sN-irresolute.

The converse of the above theorem need not be true.

Example: 4.16 Let $X=\{a, b, c\}$ and $\tau=\{X, \phi, \{a, b\} \{b, c\}\}$, $\sigma=\{X, \phi, \{a\}\}$. $f:(X, \tau) \to (Y, \sigma)$ be the function defined by f(a)=b, f(b)=c, f(c)=a. Here f is supra sN- irresolute but not supra N-irresolute, since $V=\{b, c\}$ is N-closed in Y but $\mathbf{f}^{-1}(\{b, c\})=\{a, b\}$ is not an N-closed set in X.

From the above theorem and examples we have the following diagram:

Supra continuous Supra N-irresolute \rightarrow supra sN-irresolute \downarrow \downarrow supra Ω continuous \rightarrow supra N-continuous \leftarrow supra semi continuous \downarrow supra Ω s-continuous \rightarrow supra sN-continuous

REFERENCES

- [1] I. Arokiarani and M. Trinita pricilla, $\pi\Omega$ closed set in supra topological spaces, Int. J. comp. Sci. Emerging Tech., 2011(534-538)
- [2] K. Balachandran, P. Sundaram and H. Maki, On Generalized continuous maps in topological spaces, Mem, Fac. Sci. Kochi Univ. Ser. A, Math. (1991), 5-13.
- [3] P. Bhattacharya and B. K. Lahiri, Semigeneralized closed sets in topology, Indian J. Math, 29(1987),372-382.
- [4] N. Levine, Semi-open sets and Semi-continuity in topological spaces, Amer. Math., 12(1991), 5-13.
- [5] T. Noiri and O. R. Sayed, On Ω closed sets and Ω s closed sets in topological spaces, Acta Math,4(2005), 307-318.
- [6] A. S. Mashhour, A. A. Allam, F. S. Mahmoud and F. H. Khedr, On supra topological spaces, Indian J. Pure and Appl.Math.,14(A)(1983), 502-510.
- [7] R. Devi, S. Sampathkumar and M. Caldas, On supra α open sets and s α -continuous maps, General Mathematics, 16(2) (2008), 77-84.

Source of support: Nil, Conflict of interest: None Declared