ON G/A – SZEGED INDEX OF STANDARD GRAPHS

K. V. S. Sarma^{1*} & I. V. N. Uma²

¹Associate Professor, Regency Institute of Technology, Yanam, India ²Senior Faculty, Devi Academy, Chennai, India

(Received on: 23-01-13; Revised & Accepted on: 20-02-13)

ABSTRACT

 \boldsymbol{A} modern graph invariant is Szeged Index and it has considerable applications in molecular chemistry. A recently introduced graph invariant is G/A – Szeged Index and it has a numerable applications in chemistry. In this paper, the G/A – Szeged indices of standard graphs are calculated. A modified G/A – Szeged Index of a graph is also introduced in which all the vertices of the graph are taken into consideration, thereby the variations in these indices of standard graphs are identified.

Keywords: Szeged Index, G/A – Szeged Index, modified G/A – Szeged Index.

1. INTRODUCTION

The useful concepts related to a molecular graph associated with alkanes are mainly Wiener index (See[5]) and Szeged index (see[3]). A recently introduced concept (see [2]) is GA_2 Index and we coined it as G/A- Szeged Index (Geometric mean by Arthimetic mean – Szeged Index). As usual, no standard formula is available to find out this index as well, for any connected graph. In §2, we calculate the G/A – Szeged indices of standard graphs and in §3, we introduce modified G/A – Szeged index and observe the variation of these indices for the standard graphs.

Throughout this paper, we consider only non-empty, simple, finite and connected graph to avoid trivialities.

For the standard notation and results we refer Bondy & Murthy [1].

For ready reference, we give the following:

Definition 1.1 [3]: G is a (non-empty, simple, finite and connected) graph with vertex set V(G) and edge set E(G). Then the Szeged index of G, denoted by Sz(G), is defined to be $\sum_{e \in E(G)} n_1(e).n_2(e)$, where e = uv, $N_1(e|G) = \{w \in E(G) : e \in E(G) : e$

 $V(G):d(w,\,u) < d(w,\,v)\}, \ \ N_2(e|G) = \{\,w \in V(G): \, d(w,\,v) < d(w,\,u) \} \\ \text{and} \ \ n_1(e|G) = |\,N_1(e|G|,\,n_2(e|G) = |\,N_2(e|G)|. \\ \text{('d' denotes the distance function and '||' , the cardinality function)}.$

When there is only one graph G, under consideration, we write 'e' only instead of 'e|G'.

Observations 1.2 [4]:

- a) For the graph K_n $(n \ge 2)$, $Sz(K_n) = n(n-1)/2$.
- b) For the complete graph $K_{m,n}$ $(m, n \ge 1)$, $Sz(K_{m,n}) = (mn)^2$.
- c) For the cycle C_k ($k \ge 3$), $Sz(C_k) = k \left[\frac{k}{2}\right]^2$ ([] denotes integral part).
- d) For the path P_n $(n \ge 2)$, $Sz(P_n) = n (n^2 1)/6$.
- e) For the wheel $(K_1 \vee C_n)$ $(n \ge 3)$, $Sz(K_1 \vee C_n) = n \left\{ (n-2) + \left[\frac{n}{2} \right]^2 \right\}$.

2. G/A - SZEGED INDEX OF STANDARD GRAPHS

For convenience, we recollect the following:

Definition 2.1 [2]: G is a graph (i.e non- empty, simple, finite and connected graph). Let 'e' be any edge of G. Then the

G/A – Szeged index of G is defined to be
$$\sum_{e \in E(G)} \frac{\sqrt{n_1(e)n_2(e)}}{\left[n_1(e) + n_2(e)\right]/2}$$

Theorem 2.2: For the complete graph K_n $(n \ge 2)$, $G/A - Sz(K_n) = n(n-1)/2$.

Proof: For any $e \in E(K_n)$, by Th.2.3 in [4], $n_1(e) = n_2(e) = 1$.

So G/A - Sz(K_n) =
$$\sum_{e \in E(K_n)} 2 \frac{\sqrt{(1)(1)}}{(1+1)}$$

= $|E(K_n)|$
= $\frac{n(n-1)}{2}$.

Theorem 2.3: For the complete bipartite graph $K_{m, n}$ $(m, n \ge 1)$,

$$G/A - Sz(K_{m, n}) = \frac{2(mn)^{3/2}}{m+n}$$
.

Proof: For $e \in E(K_{m,n})$, by Th.(2.5) in [4], $n_1(e) = n$ and $n_2(e) = m$, further $|E(K_{m,n})| = mn$.

So G/A - Sz(K_{m,n}) =
$$\sum_{e \in E(K_{m,n})} 2 \frac{\sqrt{(n)(m)}}{(n+m)}$$

= $2 \frac{\sqrt{(m)(n)}}{(m+n)} |E(K_{m,n})|$
= $\frac{2(mn)^{3/2}}{m+n}$.

Theorem 2.4: For the cycle C_k ($k \ge 3$), $G/A - Sz(C_k) = k$.

Proof: Clearly $|E(C_k)| = k$.

We divide this into two cases.

Case (i): k is even and say k = 2n ($n \ge 2$).

For any $e \in E(C_{2n})$, by Th. (2.6) in [4], $n_1(e) = n_2(e) = n$.

So G/A - Sz(C_{2n}) =
$$\sum_{e \in E(C_{2n})} \frac{2\sqrt{(n)(n)}}{n+n}$$

= $|E(C_{2n})| = 2n$.

Case (ii): k is odd and any say k = 2n-1 $(n \ge 2)$. For any $e \in E(C_{2n-1})$, by Th. 2.6 in [4], $n_1(e) = n_2(e) = n-1$.

So G/A – Sz(C_{2n-1}) =
$$\sum_{e \in E(C_{2n})} \frac{2\sqrt{(n-1)(n-1)}}{(n-1) + (n-1)}$$
$$= |E(C_{2n-1})|$$

= 2n - 1. Hence follows the result.

Theorem 2.5: For the path P_n $(n \ge 2)$, $G/A - Sz(P_n) = \frac{2}{n} \sum_{i=1}^{n-1} \sqrt{i(n-i)}$.

Proof: Let $V(P_n) = \{v_1, v_2, ..., v_n\}$. Any edge of P_n is of the form $e_i = v_i v_{i+1}$ for i = 1... (n-1). For any $e_i \in E(P_n)$, by Th.2.2 in [4], $n_1(e_i) = i$ and $n_2(e_i) = (n-i)$.

K. V. S. Sarma^{1*} & I. V. N. Uma²/ ON G/A – SZEGED INDEX OF STANDARD GRAPHS/IJMA- 4(2), Feb.-2013.

So, G/A - Sz(P_n) =
$$\sum_{i=1}^{n-1} 2 \frac{\sqrt{i(n-i)}}{(i+n-i)} = \frac{2}{n} \sum_{i=1}^{n-1} \sqrt{i(n-i)}$$
.

Corollary 2.6:

a)
$$G/A - Sz(P_{2m}) = \begin{cases} 1 \text{ if } m = 1 \\ \frac{4}{2m} \left(\sum_{i=1}^{m-1} \sqrt{i(2m-i)} + \frac{m}{2} \right) \text{ for } m \ge 2. \end{cases}$$

Observe that, with the convention $\sum_{i=r}^{s} ... = 0$ if s < r, we get the index of P₂ from the later formula by taking m = 1).

b)
$$G/A - S_{\mathcal{Z}}(P_{2m+1}) = \frac{4}{2m+1} \left\{ \left(\sum_{i=1}^{m-1} \sqrt{i(2m-i)} \right) \text{ for } m \ge 1. \right\}$$

Proof: By taking n = 2 in Theorem (2.5), we get that $G/A - Sz(P_2) = \frac{2}{2} \sqrt{(1)(1)} = 1$.

Let $n \ge 4$ and be even. We can write n = 2m ($m \ge 2$).

So, G/A – Sz(P_{2m}) =
$$\frac{2}{2m} \left(\sum_{i=1}^{2m-1} \sqrt{i(2m-i)} \right)$$

= $\frac{2}{2m} \left(\sum_{i=1}^{m-1} \sqrt{i(2m-i)} + \sqrt{m(2m-m)} + \sum_{i=m+1}^{2m-1} i(2m-i) \right)$ (2.6.1)

Replacing i by (2m - i) in the third sum of (2.6.1), we observe that

$$\sum_{i=m+1}^{2m-1} i(2m-i) = \sum_{i=1}^{m-1} (2m-i^1)(i^1) = \sum_{i=1}^{m-1} \sqrt{i(2m-i)}.$$

Hence, from (2.6.1) we have

$$G/A - Sz(P_{2m}) = \frac{2}{2m} \left[2 \sum_{i=1}^{m-1} \sqrt{i(2m-i)} + m \right]$$
$$= \frac{4}{2m} \left[\sum_{i=1}^{m-1} \sqrt{i(2m-i)} + \frac{m}{2} \right].$$

This proves (a).

Let $n = 2m + 1 \ (m \ge 1)$

Now G/A - Sz(P_{2m+1}) =
$$\frac{2}{2m+1} \left[\sum_{i=1}^{2m} \sqrt{i(2m+1-i)} \right]$$

= $\frac{2}{2m+1} \left[\sum_{i=1}^{m} \sqrt{i(2m+1-i)} + \sum_{i=m+1}^{2m} \sqrt{i(2m+1-i)} \right]$

Replacing 'i' by (2m+1-i') in the second sum, as in the previous case, we observe that this sum is same as the first one.

So, G/A – Sz(P_{2m+1}) =
$$\frac{4}{2m+1} \left[\sum_{i=1}^{m} \sqrt{i(2m+1-i)} \right]$$
.

This proves (b) and thus the proof of the theorem is complete.

Theorem 2.7: For the wheel

$$K_1 \vee C_n (n \ge 3), G / A - Sz(K_1 \vee C_n) = n \left(1 + \frac{2\sqrt{n-2}}{n-1}\right).$$

Proof: Let $V(K_1 \vee C_n) = \{ u_0, v_1, v_2, ..., v_n \}$ where u_0 is the centre (hub) of the wheel.

Now, $E(K_1 \ v \ C_n) = \{u_0 v_i : i = 1, 2, ..., n\} \ U \ \{v_i v_{i+1} : i = 1, 2, ..., n\}$ (with the convention $v_{n+1} = v_1$).

Denote $e_i = u_0 v_i$ and $f_i = v_i v_{i+1}$ (i = 1, 2, n). Now, from Th. 2.7 in [4], for any $e \in E(K_1 \ v \ C_n)$, $n_1(e) = n - 2$, $n_2(e) = 1$ and observe that the f_i 's constitute C_n .

So, G/A - Sz(K₁ v C_n) =
$$\sum_{i=1}^{n} \frac{2\sqrt{n_1(e_i)n_2(e_i)}}{n_1(e_i) + n_2(e_i)} + G/A - Sz(Cn)$$
=
$$2\sum_{i=1}^{n} \frac{\sqrt{(n-2)(1)}}{(n-2)+1} + n \text{ (by virtue of Th.(2.4))}$$
=
$$\frac{2n}{n-1}\sqrt{(n-2)} + (n)$$
=
$$n\left(1 + \frac{2\sqrt{n-2}}{n-1}\right).$$

3. MODIFIED G/A - SZEGED INDEX OF STANDARD GRAPHS

In the calculations of G/A – Szeged indices of K_n ($n \ge 2$), C_{2n-1} ($n \ge 2$) and K_1 v C_n ($n \ge 3$) the contribution of all the vertices of the corresponding graphs are not there. To avoid this, we propose the following modified index that involves all the vertices.

Definition 3.1: Let G be a graph and $e = uv \in E(G)$.

Denote
$$N_1^*$$
 (e/G) = {w \in V(G) : d(w, u) \leq d(w, v)},
$$N_2^*$$
 (e/G) = {w \in V(G) : d(w, v) $<$ d(w, u)} and

 $n_1^*(e/G) = |N_1^*(e/G)| \& n_2^*(e/G) = |N_2^*(e/G)|.$

The refined G/A – Szeged Index of G, denoted by G/A – Sz*(G) is defined as,

$$\sum_{e \in E(G)} \left\{ 2 \frac{\sqrt{n_1^*(e/G).n_2^*(e/G)}}{n_1^*(e/G) + n_2^*(e/G)} \right\}$$

(Another way of defining this modified index is to keep < as it is in $N_1^*(e/G)$ and changing < into \leq in $N_2^*(e/G)$.

Observation 3.2: For the graphs, $P_n(n \ge 2)$, $K_{m,n}$ $(m, n \ge 1)$, C_{2n} $(n \ge 2)$, we observe that this modified index is same as the previous one, since there are no leftout vertices.

Theorem 3.3: For $n \ge 2$, $G/A - Sz^*(K_n) = (n-1)^{3/2}$.

Proof: For any $e \in E(K_n)$, by Th. 3.3 in [4], $n_1^*(\underline{e}) = \underline{n}$ -1 and $n_2^*(e) = 1$.

So, G/A - Sz(K₁
$$\vee$$
 C_n) = $\sum_{e \in E(K_n)} \frac{2\sqrt{(n-1)(1)}}{n-1+1}$
= $\frac{2}{n}\sqrt{n-1}\left(\frac{n(n-1)}{2}\right)$
= $(n-1)^{3/2}$.

K. V. S. Sarma^{1*} & I. V. N. Uma²/ ON G/A – SZEGED INDEX OF STANDARD GRAPHS/IJMA- 4(2), Feb.-2013.

Theorem 3.4: For
$$n \ge 2$$
, $G/A - Sz^*(C_{2n-1}) = 2\sqrt{n(n-1)}$ $(\le 2n-1)$

Proof: For any $e \in E(C_{2n-1})$, by Th. (3.4) in [4], $n_1^*(e_i) = n$ and $n_2^*(e_i) = n - 1$.

So, G/A - Sz*(
$$C_{2n-1}$$
) = $\sum_{e \in E(C_{2n-1})} \frac{2\sqrt{n(n-1)}}{(n+n-1)}$
= $\frac{2}{2n-1} \sqrt{n(n-1)} |E(C_{2n-1})|$
= $\frac{2}{2n-1} \sqrt{n(n-1)} (2n-1)$
= $2\sqrt{n(n-1)} (4n-1)$
= $2\sqrt{n(n-1)} (4n-1)$ (since G.M. $4n-1$)

Observation 3.5: In the other way of defining the modified index, we get the same indices for K_n and C_{2n-1} since $n_1^*(e)$ and $n_2^*(e)$ are interchanged in the corresponding calculations.

Theorem 3.6: For the wheel $K_1 \vee C_n \ (n \ge 3)$,

$$G/A - Sz^*(K_1 \vee C_n) = \begin{cases} \frac{2n}{n+1} \left[\sqrt{n} + \sqrt{\frac{n}{2}(\frac{n}{2}+1)} \right] & \text{if n is even,} \\ \frac{n}{n+1} \left[2\sqrt{n} + \sqrt{n^2 + 2n - 3} \right] & \text{if n is odd.} \end{cases}$$

Proof: With the same notation of Th 2.7, $n_1^*(e_i) = n - 2 + 2 = n$ and $n_2^*(e_i) = 1$.

So,

$$\sum_{i=1}^{n} \frac{2\sqrt{n_{1}^{*}(e_{i})n_{2}^{*}(e_{i})}}{n_{1}^{*}(e_{i}) + n_{2}^{*}(e_{i})} = \frac{2n}{n+1}\sqrt{n}$$
(3.6.1)

Case (i): Suppose n is even.

By Th. 3.6.1 in [4], we have

$$n_1^*(f_i) = n/2 + 1$$
 and $n_2^*(f_i) = n/2$

So

$$\sum_{i=1}^{n} \frac{2\sqrt{n_1^*(f_i)n_2^*(f_i)}}{n_1^*(f_i) + n_2^*(f_i)} = \frac{2}{n+1} n \sqrt{\frac{n}{2}(\frac{n}{2} + 1)}$$
(3.6.2)

By (3.6.1) and (3.6.2)

G/A - Sz*(K₁ v C_n) =
$$\frac{2n}{n+1} \left[\sqrt{n} + \sqrt{\frac{n}{2}(\frac{n}{2}+1)} \right]$$

Case (ii): Suppose n is odd.

By Th.3.6.2 in [4],

$$n_1^*(f_i) = \frac{n-1}{2} + 2 = \frac{n+3}{2}$$
 and $n_1^*(f_i) = \frac{n-1}{2}$.

So,
$$\sum_{i=1}^{n} 2 \frac{\sqrt{n_1^*(f_i)n_2^*(f_i)}}{n_1^*(f_i) + n_2^*(f_i)} = \frac{2n}{n+1} \sqrt{\left(\frac{n+3}{2}\right) \left(\frac{n-1}{2}\right)}$$
$$= \frac{n}{n+1} \sqrt{n^2 + 2n - 3}$$
(3.6.3)

By (3.6.1) and (3.6.3)

G/A -
$$Sz^*(K_1 \vee C_n) = \frac{n}{n+1} \left[2\sqrt{n} + \sqrt{n^2 + 2n - 3} \right]$$

This completes the proof of the theorem.

Observation 3.7: In the otherway of defining the modified Index, we get that $(n_i^*(e_i) = (n-2))$ and $(n_2^*(e_i) = 3)$ and the other relations remain the same. So,

$$\begin{split} \sum_{i=1}^{n} \frac{2\sqrt{n_{1}^{*}(e_{i})n_{2}^{*}(e_{i})}}{n_{1}^{*}(e_{i}) + n_{2}^{*}(e_{i})} &= \frac{2n}{n+1} \bigg[\sqrt{3(n-2)} \, \bigg] \\ \text{Hence, G/A} - Sz^{*}(K_{1} \vee C_{n}) &= \begin{cases} \frac{2n}{n+1} \bigg[\sqrt{3(n-2)} + \sqrt{\frac{n}{2}(\frac{n}{2}+1)} \, \bigg] & \text{if n is even,} \\ \frac{n}{n+1} \bigg[2\sqrt{3(n-2)} + \sqrt{n^{2}+2n-3} \, \bigg] & \text{if n is odd.} \end{cases} \end{split}$$

ACKNOWLEDGEMENTS

We are very thankful to Prof. I. H. Nagaraja Rao for his continuous support and encouragement in preparing this paper.

REFERENCES

- [1] Bondy J.A. and Murthy U.S.R., Graph Theory with Applications, North Holand, New York, 1976.
- [2] G. H. Fath-Tabar, B. Fortula and I.Gutman, A new geometricarithmetic index, J. Math. Chem., (2009) DOI: 10.1007/s10910-009-9584-7.
- [3] KlavZar S., Rajapakse A. and Gutman I., The Szeged and the Wiener Index of Graphs, Appl. Math. Lett., 9, (1996), 45-49.
- [4] K.V.S. Sarma and I.V.N. Uma, On Szeged Index of Standard Graphs, International Journal of Mathematical Archive 3(8), 2012, 2874-2880.
- [5] Wiener, H., Structural determination of Paraffin Boiling points, Jour. Amer. Chemi. Soc., 69, 17-20 (1947).

Source of support: Nil, Conflict of interest: None Declared