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ABSTRACT 
Fuzzy metric space have introduced in many ways. We find some fixed point theorem in complete fuzzy metric space 
through rational expression. Our paper is generalization form of Binayak S. Choudhary and Krishnapada Das [1] for 
Fuzzy metric space motivated by Sushil Sharma [10]. 
 
 
1. INTRODUCTION  
Fuzzy metric space has been introduced in many ways amongst specially to mention, fuzzy metric spaces were 
introduced by Kramosil and Michalek [7].  In this paper we use the concept of fuzzy metric space introduced by 
Kramosil and Michalek [7] and modified by George and Veeramani [5] to obtain Hausdorff topology for this kind of 
fuzzy metric space. Recently, Gregori and Sepena [6] extended Banach fixed point theorem to Fuzzy contraction 
mappings on complete fuzzy metric space in the sense of George and Veermani [5]. 
 
Our work demonstrates the fact that other types of contractions are possible in Fuzzy metric space. 
 
2. PRELIMINARIES 
Definition 2.: (Kramosil and Michalek 1975) A binary operation ∗ : [0,1] × [0,1] → [0,1] is a t-norm if it satisfies the 
following conditions :  
(i) ∗(1,a) = a , ∗(0,0) = 0 
(ii) ∗(a, b)  = ∗(b, a)   
(iii) ∗(c, d)  ≥ ∗(a, b)  whenever c ≥ a and d ≥ b 
(iv) ∗(∗(a, b) ,c)  = ∗(a, ∗(b, c) )  where  a, b, c, d ∈ [0,1] 

 
Definition 2.2: (Kramosil and Michalek 1975) The 3-tuple (X,M, ∗)  is said to be a fuzzy metric space if X is an 
arbitrary set ∗  is a continuous t-norm and M is a fuzzy set on X2 × [0,∞) satisfying the following conditions:  
(i) M(x,y,0) = 0 
(ii) M(x, y, t) = 1 for all t > 0 iff x = y, 
(iii) M(x, y, t) = M(y, x, t), 
(iv) M(x, y, t) ∗ M(y, z, s) ≤ M(x, z, t + s), 
(v) M(x, y, .) : [0,∞[→[0,1] is left-continuous, 

 
where x, y, z ∈ X and t, s > 0. 
 
In order to introduce a Hausdroff topology on the fuzzy metric space, in (Kramosil and Michalek 1975) the following 
definition was introduced. 
 
Definition 2.3 : (George and Veermani 1994) The 3-tuple (X, M, * ) is said to be a fuzzy metric space if X is an 
arbitrary set, * is a continuous t-norm and M is a fuzzy set on X2 ×[0, ∞] satisfying the following  conditions : 
(i) M(x, y, t) > 0 
(ii) M(x, y, t) = 1  iff x = y, 
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(iii) M(x, y, t) = M(y, x, t), 
(iv) M(x, y, t) ∗ M(y, z, s) ≤ M(x, z, t + s), 
(v) M(x, y, .) : [0,∞]→[0,1] is continuous, 

 
where x, y, z ∈ X and t, s > 0. 
 
Definition 2.4: (George and Veermani 1994) In a metric space (X, d) the 3-tuple (X, Md,*) where Md(x, y, t) = t / (t + 
d(x, y)) and a*b = ab is a fuzzy metric space. This Md is called the standard fuzzy metric space induced by d. 
 
Remark: Definitions and prepositions from Gregori and Sepena 2002 [6], Kumar and Chugh 2001 [8] are also used to 
prove our theorem. 
 
MAIN RESULT  
 
Theorem : Let (X,M, * ) be a complete fuzzy metric space in which fuzzy contractive sequences are Cauchy and T, R 
and S be mappings from (X, M ,* ) into itself satisfying the following conditions: 
 
                     T(X) ⊆ R(X) and T(X) ⊆  S(X) 
 
                     1

𝑀𝑀(𝑇𝑇(𝑥𝑥),𝑇𝑇(𝑦𝑦),𝑡𝑡)
  - 1≤ k� 1

𝐿𝐿(𝑥𝑥 ,𝑦𝑦 ,𝑡𝑡)
−  1� 

 
with 0 < k < 1 and 

                      L(x, y, t) = min�

𝑀𝑀(𝑅𝑅𝑥𝑥, 𝑆𝑆𝑦𝑦, 𝑡𝑡),𝑀𝑀(𝑆𝑆𝑥𝑥,𝑅𝑅𝑦𝑦, 𝑡𝑡),𝑀𝑀(𝑅𝑅𝑥𝑥,𝑇𝑇𝑥𝑥, 𝑡𝑡),
𝑀𝑀(𝑅𝑅𝑦𝑦,𝑇𝑇𝑦𝑦, 𝑡𝑡),𝑀𝑀(𝑆𝑆𝑥𝑥,𝑇𝑇𝑥𝑥, 𝑡𝑡),𝑀𝑀(𝑆𝑆𝑦𝑦,𝑇𝑇𝑦𝑦, 𝑡𝑡),
𝑀𝑀(𝑆𝑆𝑥𝑥 ,𝑅𝑅𝑦𝑦 ,𝑡𝑡)𝑀𝑀(𝑅𝑅𝑥𝑥 ,𝑇𝑇𝑥𝑥 ,𝑡𝑡)

𝑀𝑀(𝑅𝑅𝑥𝑥 ,𝑆𝑆𝑦𝑦 ,𝑡𝑡)
, 𝑀𝑀(𝑆𝑆𝑥𝑥 ,𝑇𝑇𝑥𝑥 ,𝑡𝑡)𝑀𝑀(𝑆𝑆𝑦𝑦 ,𝑇𝑇𝑦𝑦 ,𝑡𝑡)

𝑀𝑀(𝑅𝑅𝑦𝑦 ,𝑇𝑇𝑦𝑦 ,𝑡𝑡)

� 

 
The pairs T, S and T, R are compatible. R, T and S are w-continuous.  
 
Then R, T and S have a unique common fixed point. 
 
Proof:  Let x0 ∈ X be an arbitrary point of X. Since T(X) ⊆ R(X) and T(X) ⊆  S(X), we can construct a sequence {xn} 
in X such that  
 
                                 T𝑥𝑥𝑛𝑛−1 = R𝑥𝑥𝑛𝑛  = S𝑥𝑥𝑛𝑛  
 
Now, 

L(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1, 𝑡𝑡) = min

⎩
⎨

⎧
𝑀𝑀(𝑅𝑅𝑥𝑥𝑛𝑛 , 𝑆𝑆𝑥𝑥𝑛𝑛+1, 𝑡𝑡),𝑀𝑀(𝑆𝑆𝑥𝑥𝑛𝑛 ,𝑅𝑅𝑥𝑥𝑛𝑛+1, 𝑡𝑡),𝑀𝑀(𝑅𝑅𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛 , 𝑡𝑡),

𝑀𝑀(𝑅𝑅𝑥𝑥𝑛𝑛+1,𝑇𝑇𝑥𝑥𝑛𝑛+1, 𝑡𝑡),𝑀𝑀(𝑆𝑆𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛 , 𝑡𝑡),𝑀𝑀(𝑆𝑆𝑥𝑥𝑛𝑛+1,𝑇𝑇𝑥𝑥𝑛𝑛+1, 𝑡𝑡),
𝑀𝑀(𝑆𝑆𝑥𝑥𝑛𝑛 ,𝑅𝑅𝑥𝑥𝑛𝑛+1,𝑡𝑡)𝑀𝑀(𝑅𝑅𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑡𝑡)

𝑀𝑀(𝑅𝑅𝑥𝑥𝑛𝑛 ,𝑆𝑆𝑥𝑥𝑛𝑛+1,𝑡𝑡)
, 𝑀𝑀(𝑆𝑆𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑡𝑡)𝑀𝑀(𝑆𝑆𝑥𝑥𝑛𝑛+1,𝑇𝑇𝑥𝑥𝑛𝑛+1,𝑡𝑡)

𝑀𝑀(𝑅𝑅𝑥𝑥𝑛𝑛+1,𝑇𝑇𝑥𝑥𝑛𝑛+1,𝑡𝑡)
                                                                ⎭

⎬

⎫
 

                            

                      = min�

𝑀𝑀(𝑇𝑇𝑥𝑥𝑛𝑛−1,𝑇𝑇𝑥𝑥𝑛𝑛 , 𝑡𝑡),𝑀𝑀(𝑇𝑇𝑥𝑥𝑛𝑛−1,𝑇𝑇𝑥𝑥𝑛𝑛 , 𝑡𝑡),𝑀𝑀(𝑇𝑇𝑥𝑥𝑛𝑛+1,𝑇𝑇𝑥𝑥𝑛𝑛 , 𝑡𝑡),
𝑀𝑀(𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛+1, 𝑡𝑡)𝑀𝑀(𝑇𝑇𝑥𝑥𝑛𝑛−1,𝑇𝑇𝑥𝑥𝑛𝑛 , 𝑡𝑡),𝑀𝑀(𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛+1, 𝑡𝑡),

 𝑀𝑀(𝑇𝑇𝑥𝑥𝑛𝑛−1,𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑡𝑡)𝑀𝑀(𝑇𝑇𝑥𝑥𝑛𝑛+1,𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑡𝑡)
𝑀𝑀(𝑇𝑇𝑥𝑥𝑛𝑛−1,𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑡𝑡)

,   𝑀𝑀(𝑇𝑇𝑥𝑥𝑛𝑛−1,𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑡𝑡)𝑀𝑀(𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛+1,𝑡𝑡)
𝑀𝑀(𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛+1,𝑡𝑡)

� 

 
                      = min {𝑀𝑀(𝑇𝑇𝑥𝑥𝑛𝑛−1,𝑇𝑇𝑥𝑥𝑛𝑛 , 𝑡𝑡),𝑀𝑀(𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛+1, 𝑡𝑡)} 
 
We now claim that  𝑀𝑀(𝑇𝑇𝑥𝑥𝑛𝑛−1,𝑇𝑇𝑥𝑥𝑛𝑛 , 𝑡𝑡) < 𝑀𝑀(𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛+1, 𝑡𝑡) 
 
Otherwise we claim that  𝑀𝑀(𝑇𝑇𝑥𝑥𝑛𝑛−1,𝑇𝑇𝑥𝑥𝑛𝑛 , 𝑡𝑡) ≥ 𝑀𝑀(𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛+1, 𝑡𝑡) 
 
i.e.                     L (𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1, 𝑡𝑡) = 𝑀𝑀(𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛+1, 𝑡𝑡) 
 
∴                 1

𝑀𝑀(𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛+1,𝑡𝑡)
− 1 ≤ k � 1

𝑀𝑀(𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛+1,𝑡𝑡)
− 1� 

 
which is a contradiction. 
 
Hence,        1

𝑀𝑀(𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛+1,𝑡𝑡)
− 1 ≤ k � 1

𝑀𝑀(𝑇𝑇𝑥𝑥𝑛𝑛−1,𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑡𝑡)
− 1� 
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∴ {Txn} is a fuzzy contractive sequence in (X, M,*). So {Txn} is a Cauchy sequence in (X, M,*). 
 
As X is a complete fuzzy metric space, {Txn-1} is convergent. So, {Txn-1} converges to some point z in X.  
 
∴ {Txn-1}, {Rxn}, {Sxn} converges to z. By w-continuity of R, S and T, there exists a point u in X such that xn →  u as 
and so lim Rxn = lim Sxn = lim Txn-1 = z implies. 
 
                         Ru = Su = Tu = z 
 
Also by compatibility of pairs T, S and T, R and Tu = Ru = Su = z implies  
 
Tz = TRu = RTu = Rz and Tz = TSu = STu = Sz 
 
Therefore,   Tz = Rz = Sz 
 
We now claim that Tz = z. 
 
If  not  1

𝑀𝑀(𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛+1,𝑡𝑡)
− 1 ≤ k � 1

𝑀𝑀(𝑇𝑇𝑥𝑥𝑛𝑛−1,𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑡𝑡)
− 1� 

 

                         L (z, u, t) = min�
𝑀𝑀(𝑅𝑅𝑅𝑅, 𝑆𝑆𝑆𝑆, 𝑡𝑡),𝑀𝑀(𝑆𝑆𝑅𝑅,𝑅𝑅𝑆𝑆, 𝑡𝑡),𝑀𝑀(𝑅𝑅𝑅𝑅,𝑇𝑇𝑅𝑅, 𝑡𝑡),
 𝑀𝑀(𝑅𝑅𝑆𝑆,𝑇𝑇𝑆𝑆, 𝑡𝑡),𝑀𝑀(𝑆𝑆𝑅𝑅,𝑇𝑇𝑅𝑅, 𝑡𝑡),𝑀𝑀(𝑆𝑆𝑆𝑆,𝑇𝑇𝑆𝑆, 𝑡𝑡),

𝑀𝑀(𝑆𝑆𝑅𝑅 ,𝑅𝑅𝑆𝑆 ,𝑡𝑡)𝑀𝑀(𝑅𝑅𝑅𝑅 ,𝑇𝑇𝑅𝑅 ,𝑡𝑡)
𝑀𝑀(𝑅𝑅𝑅𝑅 ,𝑆𝑆𝑆𝑆 ,𝑡𝑡)

, 𝑀𝑀(𝑆𝑆𝑅𝑅 ,𝑇𝑇𝑅𝑅 ,𝑡𝑡)𝑀𝑀(𝑆𝑆𝑆𝑆 ,𝑇𝑇𝑆𝑆 ,𝑡𝑡)
𝑀𝑀(𝑅𝑅𝑆𝑆 ,𝑇𝑇𝑆𝑆 ,𝑡𝑡)

� 

 

                                         = min�
𝑀𝑀(𝑇𝑇𝑅𝑅, 𝑅𝑅, 𝑡𝑡),𝑀𝑀(𝑇𝑇𝑅𝑅, 𝑅𝑅, 𝑡𝑡),𝑀𝑀(𝑇𝑇𝑅𝑅,𝑇𝑇𝑅𝑅, 𝑡𝑡),
 𝑀𝑀(𝑅𝑅, 𝑅𝑅, 𝑡𝑡),𝑀𝑀(𝑇𝑇𝑅𝑅,𝑇𝑇𝑅𝑅, 𝑡𝑡),𝑀𝑀(𝑅𝑅, 𝑅𝑅, 𝑡𝑡) ,
𝑀𝑀(𝑇𝑇𝑅𝑅 ,𝑅𝑅 ,𝑡𝑡)𝑀𝑀(𝑇𝑇𝑅𝑅 ,𝑇𝑇𝑅𝑅 ,𝑡𝑡)

𝑀𝑀(𝑇𝑇𝑅𝑅 ,𝑅𝑅 ,𝑡𝑡)
, 𝑀𝑀(𝑇𝑇𝑅𝑅 ,𝑇𝑇𝑅𝑅 ,𝑡𝑡)𝑀𝑀(𝑅𝑅 ,𝑅𝑅 ,𝑡𝑡)

𝑀𝑀(𝑅𝑅 ,𝑅𝑅 ,𝑡𝑡)

� 

 
                                         = min {𝑀𝑀(𝑇𝑇𝑅𝑅, 𝑅𝑅, 𝑡𝑡),𝑀𝑀(𝑇𝑇𝑅𝑅, 𝑅𝑅, 𝑡𝑡), 1,1,1,1,1,1} 
  
                                         = 𝑀𝑀(𝑇𝑇𝑅𝑅, 𝑅𝑅, 𝑡𝑡) 
 
      ∴  1

𝑀𝑀(𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛+1,𝑡𝑡)
− 1  ≤ k � 1

𝑀𝑀(𝑇𝑇𝑥𝑥𝑛𝑛−1,𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑡𝑡)
− 1� 

 
which is a contradiction. 
 
Hence Tz = z 
 
So z is a common fixed point of R, T and S. 
 
Now suppose v ≠ z be another fixed point of R, T and  
∴  1

𝑀𝑀(𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛+1,𝑡𝑡)
− 1 ≤ k � 1

𝑀𝑀(𝑇𝑇𝑥𝑥𝑛𝑛−1,𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑡𝑡)
− 1� 

 

                   L (v, z, t) = min�
𝑀𝑀(𝑅𝑅𝑅𝑅, 𝑆𝑆𝑅𝑅, 𝑡𝑡),𝑀𝑀(𝑆𝑆𝑅𝑅,𝑅𝑅𝑅𝑅, 𝑡𝑡),𝑀𝑀(𝑅𝑅𝑅𝑅,𝑇𝑇𝑅𝑅, 𝑡𝑡),
   𝑀𝑀(𝑅𝑅𝑅𝑅,𝑇𝑇𝑅𝑅, 𝑡𝑡),𝑀𝑀(𝑆𝑆𝑅𝑅,𝑇𝑇𝑅𝑅, 𝑡𝑡),𝑀𝑀(𝑆𝑆𝑅𝑅,𝑇𝑇𝑅𝑅, 𝑡𝑡),

𝑀𝑀(𝑆𝑆𝑅𝑅 ,𝑅𝑅𝑅𝑅 ,𝑡𝑡)𝑀𝑀(𝑅𝑅𝑅𝑅 ,𝑇𝑇𝑅𝑅 ,𝑡𝑡)
𝑀𝑀(𝑅𝑅𝑅𝑅 ,𝑆𝑆𝑅𝑅 ,𝑡𝑡)

, 𝑀𝑀(𝑆𝑆𝑅𝑅 ,𝑇𝑇𝑅𝑅 ,𝑡𝑡)𝑀𝑀(𝑆𝑆𝑅𝑅 ,𝑇𝑇𝑅𝑅 ,𝑡𝑡)
𝑀𝑀(𝑅𝑅𝑅𝑅 ,𝑇𝑇𝑅𝑅 ,𝑡𝑡)

� 

 

                                   = min�
𝑀𝑀(𝑅𝑅, 𝑅𝑅, 𝑡𝑡),𝑀𝑀(𝑅𝑅, 𝑅𝑅, 𝑡𝑡),𝑀𝑀(𝑅𝑅, 𝑅𝑅, 𝑡𝑡),
 𝑀𝑀(𝑅𝑅, 𝑅𝑅, 𝑡𝑡),𝑀𝑀(𝑅𝑅, 𝑅𝑅, 𝑡𝑡),𝑀𝑀(𝑅𝑅, 𝑅𝑅, 𝑡𝑡),

𝑀𝑀(𝑅𝑅,𝑅𝑅 ,𝑡𝑡)𝑀𝑀(𝑅𝑅,𝑅𝑅,𝑡𝑡)
𝑀𝑀(𝑅𝑅,𝑅𝑅 ,𝑡𝑡)

, 𝑀𝑀(𝑅𝑅,𝑅𝑅,𝑡𝑡)𝑀𝑀(𝑅𝑅 ,𝑅𝑅 ,𝑡𝑡)
𝑀𝑀(𝑅𝑅 ,𝑅𝑅 ,𝑡𝑡)

� 

 
                                  = min {𝑀𝑀(𝑅𝑅, 𝑅𝑅, 𝑡𝑡),𝑀𝑀(𝑅𝑅, 𝑅𝑅, 𝑡𝑡), 1,1,1,1,1,1} 
 
                                  =  𝑀𝑀(𝑅𝑅, 𝑅𝑅, 𝑡𝑡) 
 
    ∴            1

𝑀𝑀(𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛+1,𝑡𝑡)
− 1 ≤ k � 1

𝑀𝑀(𝑇𝑇𝑥𝑥𝑛𝑛−1,𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑡𝑡)
− 1� 

which is a contradiction. Hence v = z. 
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Thus R, T and S have a unique fixed point.  
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