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ABSTRACT

The scope of this paper is to obtain the numerical solutions of the Korteweg-de Vries (KdV) equation and the related
partial differential equations (namely: the modified Korteweg-de Vries equation (MKdV) and the Korteweg-de Vries-
Burgers' equation (KdVB)) using the multigrid method. The difference equation of the Korteweg-de Vries (KdV)
equation and the related partial differential equations using the finite difference method are obtained. The computer

cods are used to obtain the numerical solutions that compared with the analytical ones to get the L,-errors. The

obtained results are compared with another method using L, -errors to show the deviation between them.
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1. INTRODUCTION

The numerical solution of partial differential equations requires some discretization of the domain into a collection of
points. A large system of equations comes out from discretization of the same partial differential equations and the
optimal method for solving these problems is multigrid method, see [1- 8].

In the past two decades, a great deal of research work has been published on the development of numerical solution of
non-linear waves. Various numerical methods are known in order to obtain approximate solutions of the KdV equation,
namely: Zabusky and Kruskal method [9], Hopscotch method (Greig and Morris [10]), Galerkin method (Alexander
and Morris [11]), Petrove-Galerkin method (Sanz-Serna and Christie [12]), Central finite-difference scheme
(Schoombie [13] and Shamardan [14]) and Split step Fourier method (Chan and Kerkhoven [15]).

In this work, we present the numerical solution of three types of non-linear wave equations; namely:

1)  The Korteweg-de Vries (KdV) equation of the form
u, +uu, +eu,, =0, >0, xe[0,X],te[0,T], 1)

with the initial condition

u(x,0) = f(x), 2)

and boundary conditions

u(0,t) =u(X,t) =0,

3
u (0,t) =u, (X,t) = 0. ®)
2) The modified Korteweg-de Vries (MKdV) equation of the form
u +(p+Yufu, +eu,, =0, £>0, p>1 xe[0,X],t[0,T], (4)
with the initial condition (2) and following the periodicity condition
u(x,t) =u(x+ X,t), 5)
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3) The Korteweg-de Vries-Burgers' (KdVB) equation of the form
u, +uu,-vu,+eu,, =0, v,e>0, xe[0,X], te[0,T], 6)

with the same initial and boundary conditions (2) and (3). Equation (6) was derived by Su and Gradner [16] for a wide
class of non-linear systems in the weak non-linearity and long wavelength approximation. In [17] the steady state
solution of the KdVB equation has been shown to model plasma shocks propagating perpendicularly to a magnetic
field. When diffusion dominates dispersion, the steady state solution of the KdVB equation are monotonic shocks, and
when dispersion dominates, the shocks are oscillatory. The KdVB equation has been obtained when including electron
inertia effects in the description of weak non-linear plasma waves [18]. The KdVB equation has also been used in a
study of wave propagation through liquid field elastic tubes by Johnson [19] and for a description of shallow water
waves on viscous fluid by Johnson [20]. Canosa and Gazdag [21], discussed the evolution of non-analytic initial data
into a monotonic shock and given brief details of a numerical solution for the KdVB equation using the accurate space
derivative method.

In this article, the multigrid technique is developed to solve the initial value problems. Then we can use this technique
to find the numerical solutions of Korteweg-de Vries (KdV) equation and its related partial differential equations.

2. NUMERICAL METHOD
The goal of this section is to apply the multigrid method for initial boundary value problem, except that, the upper

boundary conditions change with time, in which the initial condition is u(x,0) = f(x) for 0 <t <T . Dividing the
interval of time to K parts, we obtain the solutions of the partial differential equation at time t, and use these

solutions as initial values for the next level Uu(X,0) = u(X,t,), and for the other, we obtain the solutions at time T .
The numbers of points in a coarse grid for this domain are two points.

The class of equations we are dealing within this section are related to the known KdV equation (the types given in (1),
(4) and (6)). In all applications we assume a partition O = {XO =0, AX, 2AX, ..., X} for closed interval [0, X],

and At meshin t, AX meshin X.

Let us denote the finite-difference solution U(Xi,tn) by U; . The finite-difference for partial derivatives can be
represented as:

T P . S B 7O
’ 2AX
Uglin = Bistn _(ij):)":ui’l'“ +0(AX)?,
0 = Uiion — ZUHZH(ZX?FM —Uis, Lo )
by = O(A)

These derivatives can be used in each equation as needed.

Consider the KdV equation (1) with the initial and the boundary conditions (2) and (3) respectively. We start handling

2
the non-linear term U U, by expressing in the form %ﬂ and using central difference

OX

1 2 2
(U ux)i,n zm((uiﬂ,n) _(ui—l,n) )!

. o . AXA . o . )
with an initial sub partition 7, 7, Uu, can be easily computed (in this case | =1, n=12). So the difference

approximation for the equation (1) using (7) takes the form
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ut —uX

i,n i,n-1 1 k k k
— - =27, , +2U, 0;
At 4A (( i+1, n) ( i— 1n) ) Z(A ) ( i+2,n i+1,n i-1, | 2n) (8)

i=1..2-1n=1..2 k=1...M

We apply the full multigrid algorithm for the KdV equation. Assuming the initial condition u(x,0) = f (x) and the
solution U(X,t), @< X<b, 0<t<T has the usual partition with a space step size AX and a time step size At
(te, =t +At, K=012,..).

Step 1: K =0, u(x,0) = f(x).

Step 2: Starting from k =1 in the coarse grid, we can calculate the approximate value U; , at two points using
equation (8) leading to:

At Nt .
1 1 1 1 1 1 1
uo=u ——— (U, ) —(ut, )P - Ui, —2un,  +2u,  —u, L=l n=12 (9
i,n i,n-1 4AX i+1,n i-1,n Z(A ) i+2,n i+1,n i-1,n i-2,n
and the right hand side is computed from the initial and boundary conditions.
Step 3: Interpolating the grid functions from the coarse grid to fine grid using linear interpolation Il'(‘*l, where
I k+l k (10)
which can be written explicitly as:
Usion = Uiy ; i=1..2-1 n=1,...,2%
Uk ; k k
ukt ., =0.5(uf, +uly ) i=0,..,2"-1,n=1..2",
. 11
u'2‘|+§n+1—0.5(uin+ui n+1); i=1..,2“-1,n=0,.,2“-1, )
k+1 k k . k
Uoiit,2n1 = 0. 25(” |+1n T Uina TUigna)y LN= 0,.,2" -1

Step 4: Doing relaxation sweep on G+ using the point relaxation

At eAt

k+1 k+1 k+l 2 k+l 2 k+1 k+1 k+1 k+1 k+1 k+1

U =0 ——— () = (U5,)) - Uy, —2u5  +2u —us, T;1=1..,2" -1 n=1..,2"" (12
, ,n-1 4'X(( 1,) ( 1)) 2(')()[ 2, 1, -1, 2] ( )

Step 5: Computing the residuals r“! on G**and injecting them into G* using full weighting restriction Ilf+l to get
k
r as:

I k k+l
- k+1 '

1
k k+1 k+1 k+1 k+1 k+1 k+1 k+1 k+1 k+l 7.: k
f r2|—12n—1 + r-2i—1,2n+1 + r2i+1,2n—1 + r-2i+l,2n+l + 2(r i 11 11 )+ 4 r2| Zn]’ I, n= 1' " 2 _1'

|,n 16 2i,2n-1 2i,2n+1 2|—1,2n 2|+1 2n
(13)
Step 6: Computing an approximate solution of error e
Step 7: Interpolating the solution of error e onto G,
ek+l — III(<+1ek , (14)

and adding it to u** which is the approximate value of U on the fine grid with kK = 2.

By taking this solution on coarse grid and repeating steps 3-7, we obtain the approximate values of U on the grid with
k =3 andso k =4,5,...,M the final value is the solution at the time level K +1.
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Step 8: K = K +1, go to step 2 (lead to the solution at higher time level as needed).

Consider the MKdV equation (4) with the initial and the boundary conditions (2) and (3) respectively. The difference
approximation for this equation using (7) takes the form

U—U &

i,n-1 1 p+1 p+1 k k
+ u., , —2U,
At ZAX (( i+1, n) ( i-1, n) ) Z(AX)S [ i+2,n i+1,n (15)
+2uf,, —uf, 1=0; i=1..,2-1,n=1..,2 k=1..,M
Using the same pervious steps 1-8 for MKdV equation, we can write
1 1 At 1 ) 1 + eAL 1 1 1
Ui =Uins _m((um,n)p _(ui—l,n)p )_ 2(AX)3 [ui+2,n _Zum,n + 2ui—l,n uu 2, n] i=ln=12, (16)

and the right hand side can be computed from the initial and boundary conditions. Do relaxation sweep using the non-
linear point relaxation

+ + At +1\p+ +1yp+ At + + + + + +
Uiy =i 4AX ()" =)™ - 2(AX)° Uy, - 20, + 20, —u 1ii=1.., 2% -1 n=1..,2

(A7)

Consider the KdVB equation (6) with the initial and the boundary conditions (2) and (3) respectively. The difference
approximation for this equation using (7) takes the form

u A'l[JI T 4ix ((uikﬂ’n)z _(uik_l'n)z) - Hl ” (ZAUX) e
(18)
Z(A % —— (U, —2uf 20, U, ) =0 i=1..,2" -1 n=1..,2" k=1..,M
Applying the same pervious steps 1-8 for KdVB equation, we can write
Ui = [4(Ax)® +18v AX At][ (807U = (30" A(Uy, )
Uiy o)) — 28 At(U;,, —2U5,  +2U;, , — Ui, ) (19)
+4v AXAL(UL, , + U7 DT I=Ln=12,

and the right hand side is computed from the initial and boundary conditions. Do relaxation sweep using the non-linear
point relaxation

k+1 l 3 k+1 k+1
i,n [4(AX)3+8VAXA1:][ ( ) i,n-1 ( ) (( |+ln)
|kzln) ) 28 At(l‘||k++21n - |k+;ln + 2U.k+11n - u|k+21n) (20)
+Av AXAL(USE +ult )] i=1..,2" -1, n=1,.., 2",

3. STABILITY OF FINITE DIFFERENCE SCHEME
In this section we investigate the stability of the numerical scheme (18) for the KdVB equation in the linearised form.
We can rewrite the scheme (18) in the linearised form as

u.—u

i,n i,n-1

Uispn —Uign |+1n 2U n T Uiy Uiszn —2u |+1n +2U —U;_
C - ——V -|- & - = 0, (21)
At 2AX (Ax) 2 AX)°
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which may be put in the form
ui,n _ui,n -1 t1 (u|+1 n i— 1,n) - S( i+1,n 2U + ul -1, n) tp (u|+2 n 2ui+1,n + 2ui—l,n _ui—z,n) = 0’ (22)

where
CAt v At . EAL

L=—— 5= L p = .
o T T P T 2wy
at ik x

To study the stability of the difference equation (22) we apply the Von-Neumann analysis. Let U; , =€7€"™" to get

eatelk X —e (t—At)eik mX +r (eat ik, (X+AX) eatelk m (X= Ax)) S(eatelk m (X+AX)
at 4 ikyx at 4 iy, (X—AXx) |k m (X+2AX) at 4 ik, (X+AX)
— et 4 pdgln M)y L n* (e —2e’e 23
+2€ ik, (X—AX) eatelk X— ZAX)) =O.
Divide by e*e™™* to obtain
1—¢e —aAt + rl(elkmAx _ eflkmAX) _ s(elkmAx —iky AX) + 2S + p (62lkmAx
_ 2eikmAX + 2e—ikmAX _ e—ZikmAX) — O,
1-e " +2ir sin 8" —2s cos 8" +2s +2ip°(sin 28" — 2sin ") =0, (24)
where ,B* = kmAX and the amplification factor is denoted by
G :eaAt — 1
1+ 2ir;sin B* +2s(1—cos B") + 4ip*sin g7 (cos " -1)
(25)
1

- (L+4ssin®(B*12)) + 2isin g*(r,—4p*sin®(B12))

aAt

Here, we note that B =0 = ‘eam‘zl, L >0=e*| <1

Then for any I, S, p*,ﬂ* the amplification factor |G| <1, thus the method is unconditionally stable and from

equation (7) the truncation error is of O[At, (AX)?].

4. NUMERICAL APPLICATIONS
We consider the KdV and MKdV problems with the appropriate prescribed initial conditions. For the KdV problem (1)
under the initial condition given in [14] as

u(x,O)=BCsech2(1/£(x—£)), x [0, X], (26)
4e 2
it possesses the exact theoretical solution which represents a single solitons solution with amplitude 3C
X
U(xt) = 3C sech?(, /43(x —ot-29), xelox], tefoT] o
&

On the other hand, the MKdV problem (4) under the initial condition

v(x,0)° = P*2 G sech? (p\/%(x—é)), x [0, X], -

has a p-solution

(u(x,t))’ = Csech (p\/i(x Ct——)) xe[0,X],te[0,T]. (29)
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Example 1. Consider the KdV equation
u +uu,+eu,, =0, >0, xe[0,X],t€[0,T], (30)

with the initial condition (26) and the following boundary condition
u(0,t) =u(X,t) =0,

u,(0,t) =u,(X,t)=0. (31)

Applying the multigrid algorithm for k =1,2,3,4,5; the numerical solutions when & =0.0000484, C=0.3,X =4.0
and T =1.6 are determined as shown in Table (1). Also, this table shows a comparison between our results and the
other methods given in [12] and [14] using the L, -errors, where

L, :[hZ(U(Xi ’tn)_ui,n)z]E'

Table (1): L, -errors for the numerical solutions of equation (30).

Method | AX | At | t=025| t=05 |t=075| t=1.0
ZK 0.05 | 0.25 | 0.77410° | 0.27410" | 0.47010" | 0.66610*
HOP | 0.05 | 0.25 | 0.13610-! | 0.27310" | 0.40510* | 0.51010*
PG 0.05 | 0.25 | 0.181107 | 0.229107 | 0.28110" | 0.33610*
MPG | 0.05 | 0.25 | 0.11610" | 0.14510* | 0.19910* | 0.23910"
CFS | 0.05 | 0.25 | 0.79310% | 0.11010™" | 0.11810" | 0.142107
MG | 0.05 | 0.25 | 0.461102 | 0.17310° | 0.29410° | 0.36510°°

In this table the abbreviations ZK, HOP, PG, MPG, CFS and MG denote to the Zabusky-Kruskal method [9],

Hopscotch method [10], Petrov-Galerkin method [11], Modified Petrov-Galerkin method [11], Central finite difference
schemes [14] and the Multigrid method.

Example 2. We consider the MKdV equation
u +(p+Hufu, +eu,, =0, >0, p>1 xe[0,X], t[0,T], (32)

with the initial condition (28) and the boundary conditions (31) when p =1, & =0.0000484, C =0.9,X =4.0

and T =1.0. The numerical results using the multigrid algorithm are presented in Table (2) for various values of At
and AX.

Table (2): L, -errors for the numerical solutions of equation (32).

t At | AX L, - errors
0.25| 0.01 | 1/16 | 0.854110°°
0.25| 0.01 | 1/32 | 0.807810°°
0.25 | 0.001 | 1/16 | 0.6392 10°°
0.25 | 0.001 | 1/32 | 0.5046 10°°
05 | 0.01 | 1/16 | 0.638810™*
05 | 0.01 | 1/32| 0.607310
05 |0.001 | 1/16 | 0.5608 10
05 | 0.001 | 1/32 | 0.489110*
0.75| 0.01 | 1/16 | 0.9785 10

0.75| 0.01 | 1/32 | 0.935110™*
© 2012, IJMA. All Rights Reserved 4908
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0.75 | 0.001 | 1/16 | 0.8954 10*
0.75 | 0.001 | 1/32 | 0.8416 10™*
1.0 | 001 | 1/16 | 0.4134107°
1.0 | 0.01 | 1/32 | 0.3044 10
1.0 | 0.001 | 1/16 | 0.296110°°
1.0 | 0.001 | 1/32 | 0.102310°°

Example 3. Let us consider the MKdV equation (32) with the initial condition (28) and the boundary conditions (31)
when p=4,&£=0.0000484,C =0.3, X =8.0 and T =1.0. The numerical results are presented in Table (3)

(At =0.01 and Ax =0.125).

Table (3)

t 0.25 0.5 0.75 1.0
L, | 0.167524 107 | 0.903229 10 | 0.980877 10 | 0.17398110°*

Example 4. We consider the KdVB equation
u +uu, —vu, +eu,, =0, v,e>0, xe[0,X],te[0,T], (33)

with the initial condition (26) and the boundary conditions (31) when & =0.0000484, C =0.3, X =4.0 and

T =4.0. The numerical results for this example applying the multigrid algorithm are presented graphically in fig. 1

for v =0.1. This figure shows an agreement with the physical expected phenomena given by Conosa and Gazdag
[21].

1 T T T T T T T T T
U

08 - —
t=0.0

t=0.1 06 7]
t=02
t=023

—_ D4 |
t=04

02 —

1 1 1

Figure: 1
5. CONCLUSION
In this work we extended the use of multigrid technique to initial boundary value problems, namely the KdV and the
related equations. The results show that the mentioned method compares favourably with other methods (Table (1)). It
is evident from fig. 1, that the stationary wave with its amplitude is damped in very fast way which agrees with the well
known theoretical results.
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