(c) JMA Available online through www.ijma.info ISSN 2229-5046

AN INEQUALITY FOR CERTAIN ANALYTIC FUNCTIONS DEFINED BY A NEW MULTIPLIER TRANSFORMATION

S R SWAMY ${ }^{\mathbf{1}}$, ROHAN R $^{\mathbf{1}}$ AND NIRMALA $\mathbf{J}^{\mathbf{2}}$
${ }^{1}$ Department of Computer Science and Engineering, R V College of Engineering, Mysore Road, Bangalore - 560 059, India
${ }^{2}$ Department of Mathematics, Maharani's Science College for women, Palace road, Bangalore-560 001, India

(Received on: 16-11-12; Revised \& Accepted on: 19-12-12)

Abstract

In this paper, the authors investigate an interesting differential inequality of certain analytic functions, defined by a new multiplier transformation in the open unit disc $U=\{z:|z|<1\}$.

2000 Mathematical Subject Classification: 30C45.
Key words and Phrases: Multivalent function, Starlike function, Convex function, Multiplier transformation.

1. INTRODUCTION

Let $A_{p}(n)$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+n}^{\infty} a_{k} z^{k},(p, n \in N=\{1,2,3 \ldots\}) . \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disc $U=\{z:|z|<1\}$. In particular, we set $A_{p}(1)=A_{p}, A_{1}(n)=A(n)$ and $A_{1}(1)=A_{1}=A(1)=A$, a well-known class of normalized analytic functions in U.

For $0 \leq \rho<p, p, n \in N$, we denote by $S_{p}^{*}(n, \rho)$ and $K_{p}(n, \rho)$ the subclasses of $A_{p}(n)$ consisting of all analytic functions which are, respectively, n-p-valent starlike of order ρ and n-p-valent convex of order ρ. Note that $S_{1}^{*}(1, \rho)=S^{*}(\rho)$ and $K_{1}(1, \rho)=K(\rho)$ are, respectively, the usual classes of univalent starlike functions of order ρ and univalent convex functions of order $\rho, 0 \leq \rho<1$. We also write $S^{*}(0)=S^{*}$ and $K(0)=K$, which are the classes of univalent starlike (w.r.t origin) and univalent convex functions in U.

Definition 1.1. ([18, 19]). Let $p, n \in N, \quad m \in N_{0}=N \bigcup\{0\}, \beta \geq 0$ and α a real number with $\alpha+p \beta>0$. Then we define the operator $I_{p, \alpha, \beta}^{m}: A_{p}(n) \rightarrow A_{p}(n)$, by

$$
\begin{aligned}
& I_{p, \alpha, \beta}^{0} f(z)=f(z),\left(f \in A_{p}(n)\right), \\
& I_{p, \alpha, \beta}^{1} f(z)=\frac{\alpha f(z)+\beta z f^{\prime}(z)}{\alpha+p \beta}, \\
& \ldots, \\
& I_{p, \alpha, \beta}^{m} f(z)=I_{p, \alpha, \beta}\left(I_{p, \alpha, \beta}^{m-1} f(z)\right) .
\end{aligned}
$$

Remark 1.2. We observe that $I_{p, \alpha, \beta}^{m}$ is a linear operator and for $f(z)$ given by (1.1), we have

$$
\begin{equation*}
I_{p, \alpha, \beta}^{m} f(z)=z^{p}+\sum_{k=p+n}^{\infty}\left(\frac{\alpha+k \beta}{\alpha+p \beta}\right)^{m} a_{k} z^{k} . \tag{1.2}
\end{equation*}
$$

It follows from (1.2) that

$$
\begin{equation*}
I_{p, \alpha, 0}^{m} f(z)=f(z) \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
(\alpha+p \beta) I_{p, \alpha, \beta}^{m+1} f(z)=\alpha I_{p, \alpha, \beta}^{m} f(z)+\beta z\left(I_{p, \alpha, \beta}^{m} f(z)\right)^{\prime}, \tag{1.4}
\end{equation*}
$$

We note that

- $\quad I_{1, \alpha, \beta}^{m} f(z)=I_{\alpha, \beta}^{m} f(z)$ (See [17]).
- $\quad I_{p, \alpha, 1}^{m} f(z)=I_{p}^{m}(\alpha) f(z), \alpha>-p$ (See [1], [14] and [16]).
- $\quad I_{p, l+p-p \beta, \beta}^{m} f(z)=I_{p}^{m}(\beta, l) f(z), l>-p, \beta \geq 0$ (See Catas [6]).
- $\quad I_{p, 0, \beta}^{m} f(z)=D_{p}^{m} f(z)$ (See [4], [9] and [12]).

Remark 1.3 i) $I_{p}^{m}(\alpha) f(z)$ was considered in [1],[14] and [16], for $\alpha \geq 0$ and $I_{p}^{m}(\beta, l) f(z)$ was defined in [6] for $\quad l \geq 0, \beta \geq 0, \quad$ ii) $I_{p}^{m}(l) f(z)=I_{p}^{m}(1, l) f(z), l>-p, \quad$ iii) $I_{p}^{m}(\beta, 0) f(z)=D_{p}^{m}(\beta) f(z), \quad \beta \geq 0$, was mentioned in Aouf et.al. [3], iv) $D_{1}^{m}(\beta), \beta \geq 0$, was introduced by Al-Oboudi [2],v) $D_{1}^{m}(1) f(z)=D^{m} f(z)$ was defined by Salagean [13] and was considered for $m \geq 0$ in [5] , vi) $I_{1}^{m}(\alpha) f(z), \alpha \geq 0$, was investigated in [7] and [8] and vii) $I_{1}^{m}(1)$ was due to Uralegaddi and Somanatha[20].

Definition 1.4. A function $f \in A_{p}(n)$ is said to be in the class $S_{p}^{m}(n, \alpha, \beta, \rho)$ for all Z in U if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left(\frac{I_{p, \alpha, \beta}^{m+1} f(z)}{I_{p, \alpha, \beta}^{m} f(z)}\right)>\frac{\rho}{p}, \tag{1.3}
\end{equation*}
$$

where $0 \leq \rho<p, p, n \in N, m \in N_{0}=N \bigcup\{0\}, \beta \geq 0$ and α a real number with $\alpha+p \beta>0$.

We note that $S_{p}^{m}(1, \alpha, 1, \rho)$ is the class considered in [15] for $\alpha \geq 0$. we also note that

$$
S_{p}^{0}(n, 0,1, \rho)=S_{p}^{*}(n, \rho) \text { and } S_{p}^{1}(n, 0,1, \rho)=K_{p}(n, \rho)
$$

The basic tool in proving our result is the following lemma.
Lemma $1.5[10,11])$. Let Ω be a set in the complex plane C. Suppose that the function $\Psi: C^{2} \times U \rightarrow C$ satisfies the condition $\Psi\left(i x_{2}, y_{1} ; z\right) \notin \Omega$ for all $z \in U$ and for all real x_{2} and y_{1} such that

$$
y_{1} \leq \frac{n}{2}\left(1+x_{2}^{2}\right)
$$

If $\mathrm{p}(\mathrm{z})=1+\mathrm{c}_{n} \mathrm{z}^{n}+\ldots$ is analytic in E and for $\mathrm{z} \in \mathrm{E}, \psi\left(p(z), z p^{\prime}(z) ; z\right) \subset \Omega$, then $\operatorname{Re}(p(z))>0$ in U.

2. MAIN RESULTS

Theorem 2.1. Let $\lambda \geq 0, \gamma \leq 1,0 \leq \rho<p$ be real numbers such that $\gamma \leq \lambda$ and $\gamma\left(1-\frac{\rho}{p}\right)<\frac{1}{2}$. Let $\beta \geq 0, \alpha$ a real number such that $\alpha+p \beta>0$ and let

$$
M(p, n, \lambda, \gamma, \alpha, \beta, \rho)=\frac{(1-\lambda)(\rho / p)+\lambda(\rho / p)^{2}-\frac{n \lambda \beta(1-(\rho / p))}{2(\alpha+p \beta)}}{1-\gamma(1-(\rho / p))} .
$$

If $f \in A_{p}(n)$ satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left(\frac{(1-\lambda) I_{p, \alpha, \beta}^{m+1} f(z)+\lambda I_{p, \alpha, \beta}^{m+2} f(z)}{(1-\gamma) I_{p, \alpha, \beta}^{m} f(z)+\gamma I_{p, \alpha, \beta}^{m+1} f(z)}\right)>M(p, n, \lambda, \gamma, \alpha, \beta, \rho), \tag{2.1}
\end{equation*}
$$

then

$$
\operatorname{Re}\left(\frac{I_{p, \alpha, \beta}^{m+1} f(z)}{I_{p, \alpha, \beta}^{m} f(z)}\right)>\frac{\rho}{p}
$$

i.e., $f(z) \in S_{p}^{m}(n, \alpha, \beta, \rho)$.

Proof. Since, $0 \leq \rho<p$, let us write $\tau=\frac{\rho}{p}$.Thus, we have , $0 \leq \tau<1$. Now we define
$\frac{I_{p, \alpha, \beta}^{m+1} f(z)}{I_{p, \alpha, \beta}^{m} f(z)}=\tau+(1-\tau) p(z), z \in U$.

Therefore $p(z)$ is analytic in U and $p(0)=1$. Differentiating (2.2) logarithmically and using (1.4), we obtain
$\frac{I_{p, \alpha, \beta}^{m+2} f(z)}{I_{p, \alpha, \beta}^{m+1} f(z)}=[\tau+(1-\tau) p(z)]+\frac{(1-\tau) \beta z p^{\prime}(z)}{(\alpha+p \beta)[\tau+(1-\tau) p(z)]}$.

A simple calculation yields

$$
\left(\frac{(1-\lambda) I_{p, \alpha, \beta}^{m+1} f(z)+\lambda I_{p, \alpha, \beta}^{m+2} f(z)}{(1-\gamma) I_{p, \alpha, \beta}^{m} f(z)+\gamma I_{p, \alpha, \beta}^{m+1} f(z)}\right)=\psi\left(p(z), z p^{\prime}(z) ; z\right)
$$

where
$\psi\left(p(z), z p^{\prime}(z) ; z\right)=\frac{(1-\lambda)[\tau+(1-\tau) p(z)]+\lambda[\tau+(1-\tau) p(z)]^{2}+\frac{(1-\tau) \lambda \beta}{(\alpha+p \beta)} z p^{\prime}(z)}{(1-\gamma)+\gamma[\tau+(1-\tau) p(z)]}$.
Let $p(z)=u_{1}+i u_{2}$ and $z p^{\prime}(z)=v_{1}+i v_{2}$, where $u_{1}, u_{2}, v_{1}, v_{2}$ are real numbers with $v_{1} \leq-\frac{n}{2}\left(1+u_{2}^{2}\right)$. Then we have

$$
\begin{equation*}
\operatorname{Re}\left(\psi\left(i u_{2}, v_{1} ; z\right)\right) \leq \frac{S+R u_{2}^{2}}{(1-\gamma+\gamma \tau)^{2}+\gamma^{2}(1-\tau)^{2} u_{2}^{2}}=\phi\left(u_{2}\right) \leq \max \phi\left(u_{2}\right) \tag{2.5}
\end{equation*}
$$

where,

$$
S=\left[(1-\lambda) \tau+\lambda \tau^{2}-\frac{n \lambda \beta(1-\tau)}{2(\alpha+p \beta)}\right](1-\gamma+\gamma \tau)
$$

and

$$
R=(1-\tau)^{2}(\gamma-\lambda+\lambda \gamma \tau)-(1-\gamma+\gamma \tau) \frac{n \lambda \beta(1-\tau)}{2(\alpha+p \beta)}
$$

It can be easily verified that $\phi^{\prime}\left(u_{2}\right)=0$ implies $u_{2}=0$ and $\phi^{\prime}(0)<0$, under the given conditions. Therefore,

$$
\begin{equation*}
\max \phi\left(u_{2}\right)=\phi(0)=M(p, n, \lambda, \gamma, \alpha, \beta, \rho) \tag{2.6}
\end{equation*}
$$

Let

$$
\Omega=\{w: \operatorname{Re}(w)>M(p, n, \lambda, \gamma, \alpha, \beta, \rho)\}
$$

Then from (2.1) and (2.4), we have $\psi\left(p(z), z p^{\prime}(z) ; z\right) \in \Omega$ for all $z \in U$, but $\psi\left(i u_{2}, v_{1} ; z\right) \notin \Omega$, in view of (2.5) and (2.6). Therefore, by Lemma 2.1 and (2.2), we conclude that

$$
\operatorname{Re}\left(\frac{I_{p, \alpha, \beta}^{m+1} f(z)}{I_{p, \alpha, \beta}^{m} f(z)}\right)>\frac{\rho}{p} .
$$

Remark 2.2. Taking $\beta=n=1$ in Theorem 2.1, we obtain Theorem 2.2 of Singh et.al. [15] (Considered for $\alpha \geq 0$). Our result hold true for $\alpha>-p$.

$$
\alpha=0 \text { in Theorem } 2.1 \text { yields }
$$

Corollary 2.3. Let $\lambda \geq 0, \gamma \leq 1,0 \leq \rho<p$ be real numbers such that $\gamma \leq \lambda$ and $\gamma\left(1-\frac{\rho}{p}\right)<\frac{1}{2}$.
Let

$$
T(p, n, \lambda, \gamma, \rho)=\frac{(1-\lambda)(\rho / p)+\lambda(\rho / p)^{2}-\frac{n \lambda(1-(\rho / p))}{2}}{1-\gamma(1-(\rho / p))}
$$

If $f \in A_{p}(n)$ satisfies the condition

$$
\operatorname{Re}\left(\frac{(1-\lambda) D_{p}^{m+1} f(z)+\lambda D_{p}^{m+2} f(z)}{(1-\gamma) D_{p}^{m} f(z)+\gamma D_{p}^{m+1} f(z)}\right)>T(p, n, \lambda, \gamma, \rho),
$$

then

$$
\operatorname{Re}\left(\frac{D_{p}^{m+1} f(z)}{D_{p}^{m} f(z)}\right)>\frac{\rho}{p}
$$

Remark 2.4. In the case when $p=n=1$, Corollary 2.3 reduces to Corollary 3.1 of Singh et. al [15].
Taking $\alpha=l+p-p \beta, l>-p$, in Theorem 2.1, we obtain
Corollary 2.5. Let $\lambda \geq 0, \gamma \leq 1,0 \leq \rho<p$ be real numbers such that $\gamma \leq \lambda$ and $\gamma\left(1-\frac{\rho}{p}\right)<\frac{1}{2}$. Let $\beta \geq 0$ and $l>-p$ and let

$$
\mathrm{T}(p, n, \lambda, \gamma, l, \beta, \rho)=\frac{(1-\lambda)(\rho / p)+\lambda(\rho / p)^{2}-\frac{n \lambda \beta(1-(\rho / p))}{2(l+p)}}{1-\gamma(1-(\rho / p))}
$$

If $f \in A_{p}(n)$ satisfies the condition

$$
\operatorname{Re}\left(\frac{(1-\lambda) I_{p}^{m+1}(l, \beta) f(z)+\lambda I_{p}^{m+2}(l, \beta) f(z)}{(1-\gamma) I_{p}^{m}(l, \beta) f(z)+\gamma I_{p}^{m+1}(l, \beta) f(z)}\right)>\mathrm{T}(p, n, \lambda, \gamma, l, \beta, \rho),
$$

then

$$
\operatorname{Re}\left(\frac{I_{p}^{m+1}(l, \beta) f(z)}{I_{p}^{m}(l, \beta) f(z)}\right)>\frac{\rho}{p} .
$$

REFERENCES

[1] R. Aghalary, R. M. Ali , S. B. Joshi and V. Ravichandran, Inequalities for functions defined by certain linear operator, Int. j. Math. Sci., 4, no. 2 (2005), 267-274.
[2] F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math.Math. Sci., 27(2004), 1429-1436.
[3] M. K. Aouf, R. M. El-Ashwah and S. M. El-Deeb, Some inequalities for certain p-valent functions involving extended multiplier transformations, Proc. Pak. Acad. Sci.,46(4)(2009), 217-221.
[4] M. K. Aouf and A. O. Mostafa, On a subclasses of n-p-valent prestarlike, functions, Comput. Math. Appl., 55(2008), 851-861.
[5] S. S. Bhoosnurmath and S. R. Swamy, On certain classes of analytic functions, Soochow J. Math., 20, no.1, (1994), 1-9.
[6] A. Catas, On certain class of p-valent functions defined by new multiplier transformations, Proceedings book of the international symposium on geometric function theory and applications, August, 20-24, 2007, TC Isambul Kultur Univ., Turkey, 241-250.
[7] N. E. Cho and H. M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modeling, 37(1-2) (2003), 39-49.
[8] N. E. Cho and T. H. Kim, Multiplier transformations and strongly Close-to-Convex functions, Bull. Korean Math. Soc., 40(3) (2003), 399-410.
[9] M. Kamali and H. Orhan, On a subclass of certain starlike functions with negative coefficients, Bull. Korean Math. Soc., 41(2004), 53-71.
[10] S. S. Miller and P. T. Mocanu, Differential Subordinations and inequalities in the complex plane , J. Diff. Eqns.,, 67(1987), 199 -211.
[11] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Text Books in Pure and Applied Mathematics (N.225), Marcel Dekker, New York and Besel, 2000.
[12] H. Orhan and H. Kiziltunc, A generalization on subfamily of p-valent functions with negative coefficients, Appl. Math. Comput. 155(2004)521-530.
[13] G. St. Salagean, Subclasses of univalent functions, Proc. Fifth Rou. Fin. Semin. Buch. Complex Anal., Lect. notes in Math., Springer -Verlag, Berlin, 1013(1983), 362-372.
[14] S. Shivaprasad Kumar, H. C. Taneja and V. Ravichandran, Classes of Multivalent functions defined by DziokSrivastava linear operator and multiplier transformation, Kyungpook Math. J., 46(2006), no.1, 97-109.
[15] S. Singh, S. Gupta and S. Singh, On starlikeness and convexity of analytic functions satisfying a differential inequality, J. Ineq. Pure. Appl. Math. , 9, no.3, (2008), Article 81, 7 pp.
[16] H. M. Srivastava, K. B. Suchitra, A. Stephen and S. Sivasubramanian, Inclusion and neighborhood properties of certain subclasses of multivalent functions of complex order, JIPAM, 7,Issue (2006), article 7,1-8
[17] S. R. Swamy, Inclusion properties of certain subclasses of analytic functions, Int. Math. Forum, 7, no.36, (2012), 1751-1760.
[18] S. R. Swamy, Inclusion properties of certain subclasses of analytic functions defined by a generalized multiplier transformation, Int. J. Math. Anal., 6, no. 32, (2012), 1553 - 1564.
[19] S. R. Swamy, Some properties of analytic functions defined by a new generalized multiplier transformation, J. Math, Comput, Sci. 2, no.3, (2012), 759-767.
[20] B. A. Uralegaddi and C. Somanatha, Certain classes of univalent functions, Current topics in analytic function theory, World Sci. Publishing, River Edge, N. Y., (1992), 371 - 374.

Source of support: Nil, Conflict of interest: None Declared

