International Journal of Mathematical Archive-3(12), 2012, 4879-4882
 JMA Available online through www.ijma.info ISSN 2229-5046

ON SOME FIXED POINT THEOREMS IN 2-UNIFORM SPACES

${ }^{*}$ V. Srinivasa kumar \& ${ }^{* *}$ T. V. L. Narayana
*Assistant Professor, Department of Mathematics, JNTUH College of Engineering, JNTU, Hyderabad-500085, A.P., India
** D.No-4-5-14, SNP Agraharam, $2^{\text {nd }}$ line, Bapatla-522101, Guntur (Dt), A.P. India

(Received on: 23-11-12; Revised \& Accepted on: 24-12-12)

Abstract

In this paper, some fixed point theorems in 2-uniform spaces are established and contraction type mappings in 2 uniform spaces are introduced.

AMS subject Classification: 37C25, 47H10
Key words: Pseudo 2 - metric, Uniformity, 2 - uniform space, Contraction type mapping.

INTRODUCTION

In this paper we introduce contraction type mappings in 2 - uniform spaces and we present some fixed point theorems of operators in 2 - uniform spaces. These theorems generalize the results of many authors such as Lal and Singh, Das and Sharma etc.

In what follows X and \mathbb{R} stand for a non-empty set and the real line respectively and $X^{3}=X \times X \times X$. If A and B are any two sets then by the symbol $A \leq B$ we mean that A is contained in B.

1. PRELIMINARIES

1.1 Definition: A pseudo 2-metric for X is a mapping $\rho: X^{3} \rightarrow \mathbb{R}$ such that for all a, b, c and d in X we have (i) $\rho(a, b, c)>0$ and $\rho(a, b, c)=0$ if at least two of a, b, c are equal.
(ii) $\rho(a, b, c)=\rho(b, c, a)=\rho(c, a, b)=\ldots$
(iii) $\rho(a, b, c) \leq \rho(a, b, d)+\rho(a, d, c)+\rho(d, b, c)$

A set X together with a pseudo 2 - metric ρ is called a pseudo $2-$ metric space (X, ρ).
1.2 Definition: If U is any subset of X^{3} then $U^{-1}=\{(z, y, x) /(x, y, z) \in U\}$. We define the diagonal of X^{3} to be the set $\Delta=\{(x, x, x) / x \in X\}$.
1.3 Definition: A 2 - uniformity for X is a non-void family \mathscr{U} of subsets of X^{3} such that
(i) each member of \mathscr{U} contains Δ
(ii) if $U \in \mathscr{X}$ then $V \circ V \circ V \leq U$ for some V in \mathcal{X}
(iii) if U and V are two members of U then $U \cap V \in \mathscr{C}$
(iv) if $U \in \mathscr{U}$ and $U \leq V \leq X^{3}$ then $V \in \mathscr{U}$

By a 2 - uniform space we mean a non-empty set X together with a 2 - uniformity \mathscr{C} on X and we denote it by (X, \mathscr{Q}).

Corresponding author: ${ }^{*} V$. Srinivasa kumar
*Assistant Professor, Department of Mathematics, JNTUH College of Engineering, JNTU, Hyderabad-500085, A.P., India

1.4 Definition: If (X, \mathscr{Q}) is 2 - uniform space then a subset \mathscr{B} of \mathscr{C} is called a basis for (X, \mathscr{C})
(i) if each member of \mathscr{B} contains the diagonal Δ
(ii) $U \in \mathscr{B}$ then U^{-1} contains a member of \mathscr{B}
(iii) if $U \in \mathscr{B}$ then $V \circ V \circ V \leq U$ for some V in \mathscr{B}
(iv) the intersection of two members of \mathfrak{B} contains a member of \mathscr{B}
1.5 Remark: By $V \circ V \circ V$ we mean that the composition by treating V as a relation in the order $V: X \rightarrow X \times X$, $V: X \times X \rightarrow X$ and $V: X \rightarrow X \times X$ respectively.
1.6 Definition: A 2 - uniform space (X, \mathscr{C}) is said to be sequentially complete if every cauchy sequence in X converges to a point in X.
1.7 Definition: If (X, ρ) is a pseudo 2 -metric space and if r is a positive real number then we define $V_{(\rho, r)}=\left\{(x, y, z) \in X^{3} / \rho(x, y, z)<r\right\}$.

1.8 Notation:

1. We denote \mathcal{P} for the family of pseudo 2 - metrics on X generating the uniformity.
2. \mathcal{V} denotes family of all sets of the form $\bigcap_{i=1}^{n} V_{\left(\rho_{i}, r_{i}\right)}$ where $\rho_{i} \in \mathcal{P}$ and r_{i} is a positive real number for $i=1,2,3, \ldots n \quad$ (n is not fixed).
3. If $V \in \mathcal{V}$ then $V=\bigcap_{i=1}^{n} V_{\left(\rho_{i}, r_{i}\right)}$. If α is positive then $\alpha V=\bigcap_{i=1}^{n} V_{\left(\rho_{i}, \alpha r_{i}\right)}$.
1.9 Definition: Let \mathcal{B} be a basis for the 2 - uniform space (X, \mathscr{U}) and let f be a mapping from X into itsself.
(a) f said to be a contraction with respect to \mathscr{B} if $(f(x), f(y), z) \in U$ whenever $(x, y, z) \in U \in \mathscr{B}$.
(b) f said to be an expansion with respect to \mathscr{B} if $(x, y, z) \in U$ whenever $(f(x), f(y), z) \in U \in \mathscr{B}$.

2. SOME PRELIMINARY LEMMAS

2.1 Lemma: If $V \in \mathcal{V}$ and α, β are positive then $\alpha(\beta V)=(\alpha \beta) V$.
2.2 Lemma: If $V \in \mathcal{V}$ and α, β are positive then $\alpha V \leq \beta V$ whenever $\alpha \leq \beta$.
2.3 Lemma: Let ρ be any pseudo 2 - metric on X and α, β be any two positive real numbers. If $(x, y, z) \in \alpha V_{\left(\rho, r_{1}\right)} \circ \beta V_{\left(\rho, r_{2}\right)}$ then $\rho(x, y, z)<\alpha r_{1}+\beta r_{2}$.
2.4 Lemma: If $V \in \mathcal{V}$ and α, β are two positive real numbers then $\alpha V \circ \beta V \leq(\alpha-\beta) V$.
2.5 Lemma: Let $(x, y, z) \in X^{3}$. Then for every $V \in \mathcal{V}$ there exists a positive real number α such that $(x, y, z) \in \alpha V$
2.6 Lemma: If $V \in \mathcal{V}$ then there exists a pseudo 2 - metric ρ on X such that $V=V_{(\rho, 1)}$.

3. SOME FIXED POINT THEOREMS OF OPERATORS

In this section, we assume that (X, \mathscr{U}) is a 2 - uniform space which is also sequentially complete Hausdorff space.
3.1 Theorem: Let $\mathcal{A}=\left\{S_{1}, S_{2}, \ldots, S_{p}\right\}$ and $\mathcal{B}=\left\{T_{1}, T_{2}, \ldots, T_{q}\right\}$ be two sets of operators such that
(a) each S_{i} and T_{j} map X into itself
(b) $S_{i} S_{j}=S_{j} S_{i}$ for $1 \leq i, j \leq p$ and $T_{\alpha} T_{\beta}=T_{\beta} T_{\alpha}$ for $1 \leq \alpha, \beta \leq q$
(c) for all $x, y \in X$, for every $a \in X$ and each $\rho \in \mathcal{P}$ and for any five members $V_{1}, V_{2}, V_{3}, V_{4}, V_{5}$ in \mathcal{V}, ($S(x), T(y), a) \in \alpha_{1} V_{1} \circ \alpha_{2} V_{2} \circ \alpha_{3} V_{3} \circ \alpha_{4} V_{4} \circ \alpha_{5} V_{5}$ where $S \in \mathcal{A}$ and $T \in \mathcal{B}$ and each α_{i} is a non negative real number independent of $x, y, a, V_{1}, V_{2}, V_{3}, V_{4}$ and V_{5} such that

$$
0<\frac{\alpha_{1}+\alpha_{3}+\alpha_{5}}{1-\alpha_{2}-\alpha_{3}}, \frac{\alpha_{2}+\alpha_{4}+\alpha_{5}}{1-\alpha_{1}-\alpha_{4}}<1,1-\alpha_{2}-\alpha_{3} \neq 0,1-\alpha_{1}-\alpha_{4} \neq 0
$$

If $(x, S(x), a) \in V_{1},(y, T(x), a) \in V_{2},(x, T(y), a) \in V_{3},(y, S(x), a) \in V_{4},(x, y, a) \in V_{5}$ then all $S_{i}(1 \leq i \leq p)$ and $T_{j}(1 \leq j \leq q)$ have a common unique fixed point.
Proof: Clearly $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}<1$. Suppose that $k_{1}=\frac{\alpha_{1}+\alpha_{3}+\alpha_{5}}{1-\alpha_{2}-\alpha_{3}}$ and $k_{2}=\frac{\alpha_{2}+\alpha_{4}+\alpha_{5}}{1-\alpha_{1}-\alpha_{4}}$. Let $V \in \mathcal{V}$ and $\rho \in \mathcal{P} \quad$ suppose that $x, y, a \quad$ are any three points of X. Put $\rho(x, S(x), a)=r_{1}$, $\rho(y, T(y), a)=r_{2}, \rho(x, T(y), a)=r_{3}, \rho=(y, S(x), a)=r_{4} \quad$ and $\quad \rho(x, y, a)=r_{5} \quad$ and take $\varepsilon>0$, then $(x, S(x), a) \in\left(r_{1}+\varepsilon\right) V,(y, T(y), a) \in\left(r_{2}+\varepsilon\right) V,(x, S(x), a) \in\left(r_{3}+\varepsilon\right) V,(y, T(y), a) \in\left(r_{4}+\varepsilon\right) V$, $(x, y, a) \in\left(r_{5}+\varepsilon\right) V$.

Then we have

$$
\begin{aligned}
& (S(x), T(y), a) \in \alpha_{1}\left(r_{1}+\varepsilon\right) V \circ \alpha_{2}\left(r_{2}+\varepsilon\right) V \circ \alpha_{3}\left(r_{3}+\varepsilon\right) V \circ \alpha_{3}\left(r_{3}+\varepsilon\right) V \circ \alpha_{4}\left(r_{4}+\varepsilon\right) V \circ \alpha_{5}\left(r_{5}+\varepsilon\right) \\
& \Rightarrow \rho(S(x), T(y), a) \leq \alpha_{1}\left(r_{1}+\varepsilon\right)+\alpha_{2}\left(r_{2}+\varepsilon\right)+\alpha_{3}\left(r_{3}+\varepsilon\right)+\alpha_{4}\left(r_{4}+\varepsilon\right)+\alpha_{5}\left(r_{5}+\varepsilon\right) \\
& =\alpha_{1} r_{1}+\alpha_{2} r_{2}+\alpha_{3} r_{3}+\alpha_{4} r_{4}+\alpha_{5} r_{5}+\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}\right) \varepsilon
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, we have $\rho(S(x), T(y), a) \leq \alpha_{1} r_{1}+\alpha_{2} r_{2}+\alpha_{3} r_{3}+\alpha_{4} r_{4}+\alpha_{5} r_{5}$.
Fix $x_{0} \notin X$. Construct a sequence $\left\{x_{n}\right\}$ in X such that $x_{2 n+1}=S\left(x_{2 n}\right)$ and $x_{2 n+2}=T\left(x_{2 n+1}\right)$ where $n=0,1,2,3, \ldots$.
Clearly $\left\{x_{n}\right\}$ is a Cauchy sequence in X and hence there exists a point u in X such that $u=\lim _{n \rightarrow \infty} x_{n}$.
Then

$$
\begin{aligned}
\rho(u, S(u), a) \leq & \rho\left(u, S(u), x_{2 n}\right)+\rho\left(u, x_{2 n}, a\right)+\rho\left(x_{2 n}, S(u), a\right) \\
= & \rho\left(u, S(u), x_{2 n}\right)+\rho\left(u, x_{2 n}, a\right)+\rho\left(T\left(x_{2 n-1}\right), S(u), a\right) \\
\leq & \rho\left(u, S(u), x_{2 n}\right)+\rho\left(u, x_{2 n}, a\right)+\alpha_{1} \rho(u, S(u), a)+\alpha_{2} \rho\left(x_{2 n-1}, T\left(x_{2 n-1}\right), a\right) \\
& +\alpha_{3} \rho\left(u, x_{2 n-1}, a\right)+\alpha_{4} \rho\left(x_{2 n-1}, S(u), a\right)+\alpha_{5} \rho\left(x_{2 n}, a\right)
\end{aligned}
$$

Letting $n \rightarrow \infty$, we get $\left(1-\alpha_{1}-\alpha_{4}\right) \rho(u, S(u), a) \leq 0 \Rightarrow \rho(u, S(u), a)=0 \Rightarrow u=S(u)$

$$
\Rightarrow u \text { is a fixed point of } S .
$$

Similarly u is a fixed point of T. Furthermoer u is unique common fixed point of S and T.
3.2 Theorem: Suppose that $S: X \rightarrow X$ and $T: X \rightarrow X$ are two operators such that
(a) $S T=T S$ (b) For all x, y, z_{1}, z_{2} in X, for each $\rho \in \mathcal{P}$ and for any six members $V_{1}, V_{2}, V_{3}, V_{4}, V_{5}, V_{6}$ in \mathcal{V}, $(S(x), T(y), a) \in \alpha_{1} V_{1} \circ \alpha_{2} V_{2} \circ \alpha_{3} V_{3} \circ \alpha_{4} V_{4} \circ \alpha_{5} V_{5} \circ \alpha_{6} V_{6}$.

If $\left(x, S^{k}\left(z_{1}\right), a\right) \in V_{1},\left(y, T^{k}\left(z_{2}\right), a\right) \in V_{2},\left(x, S^{k}\left(z_{2}\right), a\right) \in V_{3},\left(y, S^{k}\left(z_{2}\right), a\right) \in V_{4},\left(S^{k}\left(z_{1}\right), T^{k}\left(z_{2}\right), a\right) \in V_{5}$ and $(x, y, a) \in V_{6}$ where k is a positive integer and $\sum_{i=1}^{6} \alpha_{i}>1$ then S and T have a unique common fixed point in X.
3.3 Theorem: Suppose that $S: X \rightarrow X$ and $T: X \rightarrow X$ are two operators such that
(a) $S T=T S$ (b) For all x, y, z_{1}, z_{2} in X, for each $\rho \in \mathcal{P}$ and for any five members $V_{1}, V_{2}, V_{3}, V_{4}, V_{5}$ in \mathcal{V}, $(S(x), T(y), a) \in \alpha_{1} V_{1} \circ \alpha_{2} V_{2} \circ \alpha_{3} V_{3} \circ \alpha_{4} V_{4} \circ \alpha_{5} V_{5}$.

If $\left(x, S^{k}\left(z_{1}\right), a\right) \in V_{1},\left(y, T^{k}\left(z_{2}\right), a\right) \in V_{2},\left(x, S^{k}\left(z_{2}\right), a\right) \in V_{3},\left(y, S^{k}\left(z_{2}\right), a\right) \in V_{4},(x, y, a) \in V_{5} \quad$ where k is a positive integer and $\sum_{i=1}^{5} \alpha_{i}>1$ then S and T have a unique common fixed point in X.
3.4 Theorem: Suppose that $S: X \rightarrow X$ and $T: X \rightarrow X$ are two operators such that
(a) $S T=T S$ (b) For all $x, y, z_{1}, z_{2}, z_{3}, z_{4}$ in X, for each $\rho \in \mathcal{P}$ and for any four members $V_{1}, V_{2}, V_{3}, V_{4}$ in \mathcal{V}, $(S(x), T(y), a) \in \alpha_{1} V_{1} \circ \alpha_{2} V_{2} \circ \alpha_{3} V_{3} \circ \alpha_{4} V_{4}$.

If $\left(x, S^{k}\left(z_{1}\right), a\right) \in V_{1},\left(y, T^{k}\left(z_{2}\right), a\right) \in V_{2},\left(S\left(z_{1}\right), S^{k}\left(z_{3}\right), a\right) \in V_{3},\left(T(y), S^{k}\left(z_{4}\right), a\right) \in V_{4} \quad$ where k is a positive integer and $\sum_{i=1}^{4} \alpha_{i}>1$ then S and T have a unique common fixed point in X.

REFERENCES

1. Das, B.K., and Sharma A.K., A Fixed point theorem, Bull. Cal. Math. Soc., Vol. 72, p.p 263-266, 1980.
2. Kelley, J. L., General Topology, Springer - Verlag, New York, 1955.
3. Lal, S.N., and Singh, A.K., An analogue of Banach's contraction principal for 2-metric spaces, Bull. Austral. Math.Soc. Vol. 18, p. p 137-143, 1978.
4. Singh, U.N., and Singh, R.K., Generalized fixed point theorems in metric spaces, Jnanabha, Vol. 18, p. p 151-163.
