International Journal of Mathematical Archive-3(12), 2012, 4848-4855

ON FUZZY SEMI-PRE-BOUNDARY

Dr. K. Bageerathi*

Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur-628215, India

(Received on: 27-11-12; Revised & Accepted on: 26-12-12)

ABSTRACT

In this paper we introduce the concept of fuzzy \mathscr{C} -semi-pre-boundary by using the arbitrary complement function \mathscr{C} and by using fuzzy \mathscr{C} -semi-pre closure of a fuzzy topological space where $\mathscr{C}_{\cdot}[0, 1] \rightarrow [0, 1]$ is a function. Let λ be a fuzzy subset of a fuzzy topological space X and let \mathscr{C} be a complement function. Then the fuzzy \mathscr{C} -semi-pre-boundary of λ is defined as $SPBd_{\mathscr{C}} = SPCl_{\mathscr{C}} \lambda \wedge SPCl_{\mathscr{C}}(\mathscr{C}\lambda)$, where $SPCl_{\mathscr{C}}\lambda$ is the fuzzy \mathscr{C} -semi-pre-closure of λ and $\mathscr{C}\lambda(x)$ $= \mathscr{C}(\lambda(x)), 0 \le x \le 1$. In this paper we discuss the basic properties of fuzzy \mathscr{C} -semi-pre-boundary.

MSC 2010: 54A40, 3E72.

Key words: Fuzzy &semi-pre-boundary, fuzzy &semi-pre closure, fuzzy z-semi-pre closed sets and fuzzy topology.

1. INTRODUCTION

Athar and Ahmad [2] defined the notion of fuzzy semi boundary in fuzzy topological spaces and studied[1] the properties of fuzzy semi boundary. The authors introduced the concept of fuzzy \mathscr{C} -closed sets, fuzzy \mathscr{C} -semi closed sets, fuzzy \mathscr{C} -semi-pre-closed sets in fuzzy topological spaces, where \mathscr{C} [0, 1] \rightarrow [0, 1] is an arbitrary complement function.

In this paper, we introduce the concept of fuzzy semi-pre-boundary by using the arbitrary complement function \mathscr{C} instead of the usual fuzzy complement function, and by using fuzzy \mathscr{C} -semi-pre-closure instead of fuzzy semi-pre-closure.

Such a generalized fuzzy semi-pre-boundary is defined as $SPBd_{\mathscr{C}}\lambda = SPCl_{\mathscr{C}}\lambda \wedge SPCl_{\mathscr{C}}(\mathscr{C}\lambda)$, called the fuzzy \mathscr{C} -semi-pre-boundary of λ , where $SPCl_{\mathscr{C}}\lambda$ is the intersection of all fuzzy \mathscr{C} -semi-pre- closed sets containing λ and $\mathscr{C}\lambda(x) = \mathscr{C}(\lambda(x))$, $0 \le x \le 1$.

For the basic concepts and notations, one can refer Chang [7]. The concepts that are needed in this paper are discussed in the second section. The third section is dealt with the concept of fuzzy \mathcal{C} - semi-pre-boundary.

2. PRELIMINARIES

Throughout this paper (X,τ) denotes a fuzzy topological space in the sense of Chang. Let $\mathscr{C}: [0, 1] \rightarrow [0, 1]$ be a complement function. If λ is a fuzzy subset of (X,τ) then the complement $\mathscr{C}\lambda$ of a fuzzy subset λ is defined by $\mathscr{C}\lambda(x) = \mathscr{C}(\lambda(x))$ for all $x \in X$. A complement function \mathscr{C} is said to satisfy

- (i) the boundary condition if $\mathscr{C}(0) = 1$ and $\mathscr{C}(1) = 0$,
- (ii) monotonic condition if $x \le y \Rightarrow \mathscr{C}(x) \ge \mathscr{C}(y)$, for all $x, y \in [0, 1]$,
- (iii) involutive condition if $\mathscr{C}(\mathscr{C}(x)) = x$, for all $x \in [0, 1]$.

The properties of fuzzy complement function \mathscr{C} and $\mathscr{C}\lambda$ are given in George Klir [8] and Bageerathi *et al* [4]. The following lemma will be useful in sequel.

Lemma 2.1[4]. Let \mathscr{C} : $[0, 1] \to [0, 1]$ be a complement function that satisfies the monotonic and involutive conditions. Then for any family $\{\lambda_{\alpha} : \alpha \in \Delta\}$ of fuzzy subsets of X, we have (i) $\mathscr{C}(\sup\{\lambda_{\alpha}(x): \alpha \in \Delta\}) = \inf\{\mathscr{C}(\lambda_{\alpha}(x)): \alpha \in \Delta\} = \inf\{(\mathscr{C}\lambda_{\alpha}(x)): \alpha \in \Delta\}$ and (ii) $\mathscr{C}(\inf\{\lambda_{\alpha}(x): \alpha \in \Delta\}) = \sup\{\mathscr{C}(\lambda_{\alpha}(x)): \alpha \in \Delta\} = \sup\{(\mathscr{C}\lambda_{\alpha}(x)): \alpha \in \Delta\}$ for $x \in X$.

Definition 2.2 [4]. A fuzzy subset λ of X is fuzzy \mathscr{C} -closed in (X,τ) if $\mathscr{C}\lambda$ is fuzzy open in (X,τ) . The fuzzy \mathscr{C} -closure of λ is defined as the intersection of all fuzzy \mathscr{C} -closed sets μ containing λ . The fuzzy \mathscr{C} -closure of λ is denoted by $Cl_{\mathscr{C}}\lambda$ that is equal to $\wedge\{\mu: \mu \geq \lambda, \ \mathscr{C}\mu \in \tau\}$.

International Journal of Mathematical Archive- 3 (12), Dec. - 2012

Lemma 2.3[4]. If the complement function \mathscr{C} satisfies the monotonic and involutive conditions, then for any fuzzy subset λ of X, $\mathscr{C}(Int \lambda) = Cl_{\mathscr{C}}(\mathscr{C}\lambda)$ and $\mathscr{C}(Cl_{\mathscr{C}}\lambda) = Int(\mathscr{C}\lambda)$.

Lemma 2.4[4]. Let (X,τ) be a fuzzy topological space. Let \mathscr{C} be a complement function that satisfies the boundary, monotonic and involutive conditions. Then for any family $\{\lambda_{\alpha} : \alpha \in \Delta\}$ of fuzzy subsets of X. we have $\mathscr{C}(\vee \{\lambda_{\alpha} : \alpha \in \Delta\}) = \wedge \{\mathscr{C}\lambda_{\alpha} : \alpha \in \Delta\}$ and $\mathscr{C}(\wedge \{\lambda_{\alpha} : \alpha \in \Delta\}) = \vee \{\mathscr{C}\lambda_{\alpha} : \alpha \in \Delta\}$.

Lemma 2.6 [Theorem 2.19, [4]]. Let (X, τ) and (Y, σ) be \mathscr{C} -product related fuzzy topological spaces. Then for a fuzzy subset λ of X and a fuzzy subset μ of Y, $Cl_{\mathscr{C}}(\lambda \times \mu) = Cl_{\mathscr{C}}\lambda \times Cl_{\mathscr{C}}\mu$.

Definition 2.7 [Definition 3.1, [6]]. Let (X,τ) be a fuzzy topological space and \mathscr{C} be a complement function. Then λ is called fuzzy \mathscr{C} -semi-pre open if there exists a \mathscr{C} - pre open set μ such that $\mu \leq \lambda \leq Cl_{\mathscr{C}}\mu$.

Lemma 2.8[6]. Let (X, τ) be a fuzzy topological space and let \mathscr{C} be a complement function that satisfies the monotonic and involutive properties. Then a fuzzy set λ of a fuzzy topological space (X, τ) is

(i) fuzzy \mathscr{C} -semi-pre open if and only if $\lambda \leq Cl_{\mathscr{C}}Int Cl_{\mathscr{C}}(\lambda)$.

(ii) fuzzy \mathscr{C} - semi-pre closed in X if Int $Cl_{\mathscr{C}}Int(\lambda) \leq \lambda$.

(iii) fuzzy &- semi-pre closed if and only if \mathfrak{B}_{λ} is fuzzy &- semi-pre open.

(iv) the arbitrary union of fuzzy & semi-pre open sets is fuzzy & semi-pre open.

Lemma 2.9 [3]. If λ_1 , λ_2 , λ_3 , λ_4 are the fuzzy subsets of X then

$$(\lambda_1 \wedge \lambda_2) \times (\lambda_3 \wedge \lambda_4) = (\lambda_1 \times \lambda_4) \wedge (\lambda_2 \times \lambda_3).$$

Lemma 2.10 [Lemma 5.1, [4]]. Suppose f is a function from X to Y. Then $f^{-1}(\mathscr{C}\mu) = \mathscr{C}(f^{-1}(\mu))$ for any fuzzy subset μ of Y.

Definition 2.11 [9]. If λ is a fuzzy subset of X and μ is a fuzzy subset of Y, then $\lambda \times \mu$ is a fuzzy subset of X \times Y, defined by $(\lambda \times \mu)$ (x, y) = min { $\lambda(x), \mu(y)$ } for each (x, y) $\in X \times Y$.

Lemma 2.12 [Lemma 2.1, [3]]. Let f: X \rightarrow Y be a function. If $\{\lambda_{\alpha}\}$ a family of fuzzy subsets of Y, then

(i) $f^{-1}(\lor \lambda_{\alpha}) = \lor f^{-1}(\lambda_{\alpha})$ and (ii) $f^{-1}(\land \lambda_{\alpha}) = \land f^{-1}(\lambda_{\alpha})$.

Lemma 2.13 [Lemma 2.2, [3]]. If λ is a fuzzy subset of X and μ is a fuzzy subset of Y, then $\mathscr{C}(\lambda \times \mu) = \mathscr{C}\lambda \times 1 \vee 1 \times \mathscr{C}\mu$.

3. FUZZY &-SEMI-PRE-BOUNDARY

In this section, the concept of fuzzy &- semi-pre-boundary is introduced and its properties are discussed.

Definition 3.1. Let λ be a fuzzy subset of a fuzzy topological space X and let \mathscr{C} be a complement function. Then the fuzzy \mathscr{C} -semi-pre-boundary of λ is defined as $SPBd_{\mathscr{C}}\lambda = SPCl_{\mathscr{C}}\lambda \wedge SPCl_{\mathscr{C}}(\mathscr{C}\lambda)$.

Since the arbitrary intersection of fuzzy \mathscr{C} -semi-pre-closed sets is fuzzy \mathscr{C} -semi-pre closed, $SPBd_{\mathscr{C}}\lambda$ is fuzzy \mathscr{C} -semi-pre closed.

We identify $SPBd_{\mathscr{C}}\lambda$ with $SPBd(\lambda)$ when $\mathscr{C}(x) = 1-x$, the usual complement function.

Proposition 3.2. Let (X,τ) be a fuzzy topological space and \mathscr{C} be a complement function that satisfies the involutive condition. Then for any fuzzy subset λ of X, $SPBd_{\mathscr{C}}\lambda = SPBd_{\mathscr{C}}(\mathscr{C}\lambda)$.

Proof. By using Definition 3.1, $SPBd_{\mathscr{C}}\lambda = SPCl_{\mathscr{C}}\lambda \wedge SPCl_{\mathscr{C}}(\mathscr{C}\lambda)$. Since \mathscr{C} satisfies the involutive condition $\mathscr{C}(\mathscr{C}\lambda) = \lambda$, that implies $SPBd_{\mathscr{C}}\lambda = SPCl_{\mathscr{C}}(\mathscr{C}\lambda) \wedge SPCl_{\mathscr{C}}\mathscr{C}(\mathscr{C}\lambda)$.

Again by using Definition 3.1, $SPBd_{\mathscr{C}}\lambda = SPBd_{\mathscr{C}}(\mathscr{C}\lambda)$.

The following example shows that, the word "involutive" can not be dropped from the hypothesis of Proposition 4.2.

Example 3.3. Let $X = \{a, b, c\}$ and $\tau = \{0, \{a_{.3}, b_{.7}\}, \{a_{.5}, b_{.2}, c_{.6}\}, \{a_{.5}, b_{.7}, c_{.6}\}, \{a_{.3}, b_{.2}\}, 1\}.$

Let $\mathscr{C}(x) = \frac{1-x}{1+x^2}$, $0 \le x \le 1$, be the complement function. We note that the complement function \mathscr{C} does not satisfy

the involutive condition. The family of all fuzzy \mathscr{C} -closed sets is $\mathscr{C}(\tau) = \{0, \{a_{.642}, b_{.201}, c_1\}, \{a_{.4}, b_{.769}, c_{.294}\}, \{a_{.4}, b_{.201}, c_{.294}\}, \{a_{.642}, b_{.769}, c_1\}, 1\}.$

Let $\lambda = \{a_{.5}, b_{.8}, c_{.4}\}$. Then it can be calculated that $SPCl_{\mathcal{G}}\lambda = \{a_{.5}, b_{.8}, c_{.4}\}$.

Now $\mathscr{C}\lambda = \{a_{.4}, b_{.122}, c_{.57}\}$ and the value of $SPCl_{\mathscr{C}}\mathcal{C}\lambda = \{a_{.4}, b_{.122}, c_{.517}\}$. Hence $SPBd_{\mathscr{C}}\lambda = SPCl_{\mathscr{C}}\wedge SPCl_{\mathscr{C}}(\mathscr{C}\lambda) = \{a_{.4}, b_{.122}, c_{.517}\}$. Also $\mathscr{C}(\mathscr{C}\lambda) = \{a_{.517}, b_{.865}, c_{.381}\}$, $SPCl_{\mathscr{C}}\mathcal{C}(\mathscr{C}\lambda) = \{a_{.517}, b_{.865}, c_{.381}\}$. $SPBd_{\mathscr{C}}\mathcal{C}\lambda = SPCl_{\mathscr{C}}\mathcal{C}\lambda \wedge SPCl_{\mathscr{C}}\mathcal{C}(\mathscr{C}\lambda) = \{a_{.4}, b_{.122}, c_{.381}\}$. This implies that $SPBd_{\mathscr{C}}\lambda \neq SPBd_{\mathscr{C}}\mathcal{C}\lambda$.

Proposition 3.4. Let (X,τ) be a fuzzy topological space and \mathscr{C} be a complement function that satisfies the monotonic and involutive conditions. If λ is fuzzy \mathscr{C} -semi-pre closed, then $SPBd_{\mathscr{C}}\lambda \leq \lambda$.

Proof. Let λ be fuzzy \mathscr{C} -semi-pre- closed. By using Definition 3.1, $SPBd_{\mathscr{C}}\lambda = SPCl_{\mathscr{C}}\lambda \wedge SPCl_{\mathscr{C}}(\mathscr{C}\lambda)$. Since \mathscr{C} satisfies the monotonic and involutive conditions, by using Proposition 5.6(ii) in [6], we have $SPCl_{\mathscr{C}}\lambda = \lambda$. Hence $SPBd_{\mathscr{C}}\lambda \leq SPCl_{\mathscr{C}}\lambda = \lambda$.

The following example shows that if the complement function \mathscr{C} does not satisfy the monotonic and involutive conditions, then the conclusion of Proposition 3.4 is false.

Example 3.5. Let $X = \{a, b, c\}$ and $\tau = \{0, \{a_{.6}, b_{.9}\}, \{a_{.7}, b_{.3}\}, \{a_{.6}, b_{.3}\}, \{a_{.7}, b_{.9}\}, 1\}$.

Let $\mathscr{C}(x) = \frac{2x}{1+x}$, $0 \le x \le 1$, be a complement function. From this, we see that the complement function \mathscr{C} does not

satisfy the monotonic and involutive conditions. The family of all fuzzy \mathscr{C} -closed sets is given by $\mathscr{C}(\tau) = \{0, \{a_{.75}, b_{.947}\}, \{a_{.824}, b_{.947}\}, \{a_{.824}, b_{.947}\}, \{a_{.824}, b_{.947}\}, 1\}$. Let $\lambda = \{a_{.8}, b_{.3}\}$, it can be found that *Int* $\lambda = \{a_{.7}, b_{.3}\}$, *Cl* gInt $\lambda = \{a_{.824}, b_{.462}\}$ and *Int Cl* gInt $\lambda = \{a_{.7}, b_{.3}\}$. That implies *Int Cl* g $\lambda \leq \lambda$. This shows that λ is fuzzy \mathscr{C} - pre closed. Further it can be calculated that $SPCl_{\mathscr{C}}\lambda = \{a_{.85}, b_{.632}\}$. Now $\mathscr{C}\lambda = \{a_{.889}, b_{.67}\}$ and $SPCl_{\mathscr{C}}\mathcal{C}\lambda = \{a_{.889}, b_{.67}\}$. Hence $SPBd_{\mathscr{C}}\lambda = SPCl_{\mathscr{C}}\lambda \wedge SPCl_{\mathscr{C}}(\mathscr{C}\lambda) = \{a_{.85}, b_{.632}\}$. This implies that $SPBd_{\mathscr{C}}\lambda \leq \lambda$. This shows that the conclusion of Proposition 3.4 is false.

Proposition 3.6. Let (X,τ) be a fuzzy topological space and Seb a complement function that satisfies the monotonic and involutive conditions. If λ is fuzzy S-semi-pre open then $SPBd_{S\lambda} \leq S\lambda$.

Proof. Let λ be fuzzy \mathscr{C} semi-pre open. Since \mathscr{C} satisfies the involutive condition, this implies that $\mathscr{C}(\mathscr{C}\lambda)$ is fuzzy \mathscr{C} semi-pre open. By using Lemma 2.8, $\mathscr{C}\lambda$ is fuzzy \mathscr{C} -semi-pre closed. Since \mathscr{C} satisfies the monotonic and the involutive conditions, by using Proposition 3.4, $SPBd_{\mathscr{C}}(\mathscr{C}\lambda) \leq \mathscr{C}\lambda$. Also by using Proposition 3.2, we get $SPBd_{\mathscr{C}}(\lambda) \leq \mathscr{C}\lambda$. This completes the proof.

Example 3.7. Let $X = \{a, b, c\}$ and $\tau = \{0, \{a_{.3}, b_{.7}\}, \{a_{.5}, b_{.2}, c_{.6}\}, \{a_{.5}, b_{.7}, c_{.6}\}, \{a_{.3}, b_{.2}\}, 1\}$.

Let $\mathscr{C}(x) = \frac{1-x}{1+x^2}$, $0 \le x \le 1$, be the complement function. We note that the complement function \mathscr{C} does not satisfy

the involutive condition. The family of all fuzzy \mathscr{C} -closed sets is $\mathscr{C}(\tau) = \{0, \{a_{.642}, b_{.201}, c_1\}, \{a_{.4}, b_{.769}, c_{.294}\}, \{a_{.4}, b_{.201}, c_{.294}\}, \{a_{.642}, b_{.769}, c_1\}, 1\}.$

Let $\lambda = \{a_{.4}, b_{.122}, c_{.57}\}$, the value of $SPCl_{\mathscr{C}}\lambda = \{a_{.4}, b_{.122}, c_{.517}\}$. Now $\mathscr{C}\lambda = \{a_{.517}, b_{.865}, c_{.381}\}$ and $SPCl_{\mathscr{C}}\lambda = \{a_{.517}, b_{.865}, c_{.381}\}$ and $SPCl_{\mathscr{C}}\lambda = \{a_{.517}, b_{.865}, c_{.381}\}$, it follows that $SPBd_{\mathscr{C}}\lambda \leq \mathscr{C}\lambda$.

Therefore the conclusion of Proposition 3.6 is false. *© 2012, IJMA. All Rights Reserved*

Proposition 3.8. Let (X, τ) be a fuzzy topological space and \mathscr{C} be a complement function that satisfies the monotonic and involutive conditions. If $\lambda \leq \mu$ and μ is fuzzy \mathscr{C} -semi-pre closed then $SPBd_{\mathscr{C}} \lambda \leq \mu$.

Proof. Let $\lambda \leq \mu$ and μ be fuzzy \mathscr{C} -semi-pre closed. Since \mathscr{C} satisfies the monotonic and involutive conditions, by using Proposition 5.6(iv) in [6], we have $\lambda \leq \mu$ implies $SPCl_{\mathscr{C}}\lambda \leq SPCl_{\mathscr{C}}\mu$.

By using Definition 3.1, $SPBd_{\mathscr{G}}\lambda = SPCl_{\mathscr{G}}\lambda \wedge SPCl_{\mathscr{G}}(\mathbb{T}\lambda)$. Since $SPCl_{\mathscr{G}}\lambda \leq SPCl_{\mathscr{G}}\mu$, we have $SPBd_{\mathscr{G}}\lambda \leq SPCl_{\mathscr{G}}\mu$ $\mu \wedge SPCl_{\mathscr{G}}(\mathscr{G}\lambda) \leq SPCl_{\mathscr{G}}\mu$. Again by using Proposition 5.6 (ii) in [6], we have $SPCl_{\mathscr{G}}\mu = \mu$.

This implies that $SPBd \mathfrak{C} \lambda \leq \mu$.

The following example shows that if the complement function \mathscr{C} does not satisfy the monotonic and involutive conditions, then the conclusion of Proposition 3.8 is false.

Now $\mathcal{C}_{\lambda} = \{a_{.824}, b_{.62}\}$ and $\mathcal{SPCl}_{\mathcal{C}} \mathcal{C}_{\lambda} = \{a_{.824}, b_{.47}\}$. $\mathcal{SPBd}_{\mathcal{C}} \lambda = \mathcal{SPCl}_{\mathcal{C}} \lambda \wedge \mathcal{SPCl}_{\mathcal{C}} \mathcal{C}_{\lambda} = \{a_{.8}, b_{.47}\}$. This shows that $\mathcal{SPBd}_{\mathcal{C}} \lambda \leq \mu$.

Therefore the conclusion of Proposition 3.8 is false.

Proposition 3.10. Let (X,τ) be a fuzzy topological space and \mathscr{C} be a complement function that satisfies the monotonic and involutive conditions. If $\lambda \leq \mu$ and μ is fuzzy \mathscr{C} -semi-pre open then $SPBd_{\mathscr{C}} \leq \mathscr{C}\mu$.

Proof. Let $\lambda \leq \mu$ and μ is fuzzy \mathscr{C} -semi-pre open. Since \mathscr{C} satisfies the monotonic condition, by using Proposition 5.6(iv) in [6], we have $\mathscr{C}\mu \leq \mathscr{C}\lambda$ that implies $SPCl_{\mathscr{C}}\mathcal{C}\mu \leq SPCl_{\mathscr{C}}\mathcal{C}\lambda$. By using Definition 3.1, $SPBd_{\mathscr{C}}\lambda = SPCl_{\mathscr{C}}\lambda \land$ $SPCl_{\mathscr{C}}\mathcal{C}\lambda$. Taking complement on both sides, we get $\mathscr{C}(SPBd_{\mathscr{C}}\lambda) = \mathscr{C}(SPCl_{\mathscr{C}}\lambda \land SPCl_{\mathscr{C}}(\mathscr{C}\lambda))$. Since \mathscr{C} satisfies the monotonic and involutive conditions, by using Lemma 2.1, we have $\mathscr{C}(SPBd_{\mathscr{C}}\lambda) = \mathscr{C}(SPCl_{\mathscr{C}}\lambda) \lor \mathscr{C}(SPCl_{\mathscr{C}}(\mathscr{C}\lambda))$. Since $SPCl_{\mathscr{C}}\mathcal{C}\mu \leq SPCl_{\mathscr{C}}\mathcal{C}\lambda$, $\mathscr{C}(SPBd_{\mathscr{C}}\lambda) \geq \mathscr{C}(SPCl_{\mathscr{C}}\mathcal{C}\mu) \lor \mathscr{C}(SPCl_{\mathscr{C}}\lambda)$, by using Proposition 5.5(ii) in [6], $\mathscr{C}(SPBd_{\mathscr{C}}\lambda) \geq SPInt_{\mathscr{C}}\mu \lor SPInt_{\mathscr{C}}\mathcal{C}\lambda \geq pInt_{\mathscr{C}}\mu$. Since μ is fuzzy \mathscr{C} -semi-pre open, $\mathscr{C}(SPBd_{\mathscr{C}}\lambda) \geq \mu$. Since \mathscr{C} satisfies the monotonic conditions, $SPBd_{\mathscr{C}}\lambda \leq \mathscr{C}\mu$.

The following example shows that if the complement function \mathscr{C} does not satisfy the monotonic and involutive conditions, then the conclusion of Proposition 4.10 is false.

Example 3.11. From Example 3.5, let $X = \{a, b\}$ and $\tau = \{0, \{a._6, b._9\}, \{a._7, b._3\}, \{a._6, b._3\}, \{a._7, b._9\}, 1\}$. Let $\lambda = \{a._6, b._3\}$ and $\mu = \{a._{65}, b._4\}$. Then it can be evaluated that $Cl_{\mathscr{C}}\lambda = \{a._{75}, b._{462}\}$, Int $Cl_{\mathscr{C}}\lambda = \{a._6, b._3\}$ and $Cl_{\mathscr{C}}Int \lambda = \{a._{75}, b._{462}\}$. Thus we see that $\lambda \leq Cl_{\mathscr{C}}(Int\lambda)$. By using Lemma 2.8, λ is fuzzy \mathscr{C} -semi-pre open. It can be computed that $SPCl_{\mathscr{C}}\lambda = \{a._{85}, b._{632}\}$. Now $\mathscr{C}\lambda = \{a._{75}, b._{462}\}$ and $SPCl_{\mathscr{C}}\mathcal{C}\lambda = \{a._{85}, b._{632}\}$. $SPBd_{\mathscr{C}}\lambda = SPCl_{\mathscr{C}}\lambda \wedge SPCl_{\mathscr{C}}(\mathscr{C}\lambda) = \{a._{85}, b._{632}\}$. This shows that $SPBd_{\mathscr{C}}\lambda \leq \mathscr{C}\mu$.

Proposition 3.12. Let (X,τ) be a fuzzy topological space. Let \mathscr{C} be a complement function that satisfies the monotonic and involutive conditions. Then for any fuzzy subset λ of X, we have $\mathscr{C}(SPBd_{\mathscr{C}}\lambda) = SPInt_{\mathscr{C}}(\mathscr{C}\lambda)$.

Proof. By using Definition 3.1, $SPBd_{\mathscr{C}}\lambda = SPCl_{\mathscr{C}}\lambda \wedge SPCl_{\mathscr{C}}(\mathscr{C}\lambda)$. Taking complement on both sdes, we get \mathscr{C} $(SPBd_{\mathscr{C}}\lambda) = \mathscr{C}(SPCl_{\mathscr{C}}\lambda \wedge SPCl_{\mathscr{C}}(\mathscr{C}\lambda))$. Since \mathscr{C} satisfies the monotonic and involutive conditions, by using Lemma 2.4(ii), $(SPBd_{\mathscr{C}}\lambda) = \mathscr{C}(SPCl_{\mathscr{C}}\lambda) \vee \mathscr{C}(SPCl_{\mathscr{C}}(\mathscr{C}\lambda))$. Also by using Proposition 5.6(ii) in [6], that implies $\mathscr{C}(SPBd_{\mathscr{C}}\lambda) = SPInt_{\mathscr{C}}(\mathscr{C}\lambda) \vee SPInt_{\mathscr{C}}(\mathscr{C}\lambda)$.

The following example shows that if the monotonic and involutive conditions of the complement function \mathscr{C} are dropped, then the conclusion of Proposition 3.12 is false.

Example 3.13. Let $X = \{a, b\}$ and $\tau = \{0, \{a_{.3}, b_{.8}\}, \{a_{.2}, b_{.5}\}, \{a_{.7}, b_{.1}\}, \{a_{.3}, b_{.5}\}, \{a_{.3}, b_{.1}\}, \{a_{.2}, b_{.1}\}, \{a_{.7}, b_{.8}\}, \{a_{.7}, b_{.8}\}, \{a_{.7}, b_{.5}\}, 1\}$. Let $\mathscr{C}(x) = \sqrt{x}$, $0 \le x \le 1$ be the complement function. From this example, we see that \mathscr{C} does not satisfy the

Dr. K. Bageerathi*/ On fuzzy semi-pre-boundary /IJMA- 3(12), Dec.-2012.

monotonic and involutive conditions. The family of all fuzzy \mathscr{C} -closed sets is $\mathscr{C}(\tau) = \{0, \{a_{.548}, b_{.894}\}, \{a_{.447}, b_{.894}\}, \{a_{.47}, b_{$ $b_{.707}$, { $a_{.837}$, $b_{.316}$ }, {.548, $b_{.707}$ }, { $a_{.548}$, $b_{.316}$ }, { $a_{.447}$, $b_{.316}$ }, { $a_{.837}$, $b_{.894}$ }, { $a_{.837}$, $b_{.707}$ }, 1}.

Let $\lambda = \{a_{.6}, b_{.3}\}$. Then it can be evaluated that $SPInt \otimes \lambda = \{a_{.3}, b_{.1}\}, \ \ \ \& \lambda = \{a_{.775}, b_{.548}\}$ and $SPInt \otimes \& \lambda = \{a_{.775}, b_{.548}\}$. Thus we see that $SPInt \otimes \lambda \vee SPInt \otimes \mathcal{C}\lambda = \{a_{.775}, b_{.548}\}$. It can be computed that $SPCl \otimes \lambda = \{a_{.6}, b_{.8}\}$. Now $\mathcal{C}\lambda = \{a_{.775}, b_{.548}\}$. b.548}, $SPCl \ll \mathscr{C}\lambda = \{a_{.837}, b_{.707}\}$ and $SPBd \ll \lambda = SPCl \ll \lambda \land SPCl \ll (\mathscr{C}\lambda) = \{a_{.6}, b_{.707}\}$. Also $\mathscr{C}(SPBd \ll \lambda) = \{a_{.775}, a_{.775}\}$ b.₈₄₀}. Thus we see that $\mathscr{C}(SPBd_{\mathscr{C}}\lambda) \neq SPInt_{\mathscr{C}}\lambda \lor SPInt_{\mathscr{C}}\mathcal{C}\lambda$. Therefore the conclusion of Proposition 3.12 is false.

Proposition 3.14. Let (X,τ) be a fuzzy topological space. Let \mathscr{C} be a complement function that satisfies the monotonic and involutive conditions. Then for any fuzzy subset λ of X, we have $SPBd_{\mathcal{A}}(\lambda) = SPCl_{\mathcal{A}}(\lambda) \wedge \mathcal{C}(SPInt_{\mathcal{A}}(\lambda))$.

Proof. By using Definition 3.1, we have $SPBd_{\mathscr{C}}(\lambda) = SPCl_{\mathscr{C}}(\lambda) \wedge SPCl_{\mathscr{C}}(\mathscr{C}\lambda)$. Since \mathscr{C} satisfies the monotonic and involutive conditions, by using Proposition 5.5(ii) in [6], we have $SPBd_{\mathcal{C}}(\lambda) = SPCl_{\mathcal{C}}(\lambda) \wedge \mathcal{C}(SPInt_{\mathcal{C}}(\lambda))$.

The next example shows that if the complement function \mathscr{C} does not satisfy the monotonic and involutive conditions, then the conclusion of Proposition 3.14 is false.

Example 3.15. From Example 3.5, let $X = \{a, b\}$ and $\tau = \{0, \{a_{.6}, b_{.9}\}, \{a_{.7}, b_{.3}\}, \{a_{.6}, b_{.3}\}, \{a_{.7}, b_{.9}\}, 1\}$. Let $\lambda = \{a_{.9}, a_{.9}\}$. b.5]. Then it can be evaluated that $SPInt \otimes \lambda = \{a.75, b.462\}$ and $\mathscr{C}(SPInt \otimes \lambda) = \{a.857, b.632\}$ and it can be computed that $SPCl \approx \lambda = \{a_{.9}, b_{.5}\}. \text{ Now } \ll \lambda = \{a_{.947}, b_{.667}\}, SPCl \approx \ll \lambda = \{a_{.947}, b_{.667}\} \text{ and } SPBd \approx \lambda = SPCl \approx \lambda \land SPCl \approx (\ll \lambda) = \{a_{.9}, b_{.9}\}.$ b.5. Also $SPCl_{\mathcal{C}}\lambda \wedge \mathcal{C}(SPInt_{\mathcal{C}}\lambda) = \{a_{.857}, b_{.5}\}$. Thus we see that $SPBd_{\mathcal{C}}\lambda \neq SPCl_{\mathcal{C}}\lambda \wedge \mathcal{C}(SPInt_{\mathcal{C}}\lambda)$. Therefore the conclusion of Proposition 3.14 is false.

Proposition 3.16. Let (X,τ) be a fuzzy topological space. Let \mathscr{C} be a complement function that satisfies the monotonic and involutive conditions. Then for any subset λ of X, $SPBd_{\mathcal{C}}(SPInt_{\mathcal{C}}(\lambda)) \leq SPBd_{\mathcal{C}}(\lambda)$.

Proof. Since Castisfies the monotonic and involutive conditions, by using Proposition 3.14, we have SPBd (SPInt) $(\lambda)) = SPCl_{\mathscr{C}}(SPInt_{\mathscr{C}}(\lambda)) \wedge \mathscr{C}(SPInt_{\mathscr{C}}(SPInt_{\mathscr{C}}(\lambda))). \text{ Since } SPInt_{\mathscr{C}}(\lambda) \text{ is fuzzy } \mathscr{C}\text{-semi-pre open, } SPBd_{\mathscr{C}}(SPInt_{\mathscr{C}}(\lambda)) =$ $SPCl_{\mathcal{A}}(SPInt_{\mathcal{A}}(\lambda)) \land \mathscr{C}(SPInt_{\mathcal{A}}(\lambda))$. Since $SPInt_{\mathcal{A}}(\lambda) \le \lambda$, by using Proposition 5.6(ii) in [6], $SPCl_{\mathcal{A}}(SPInt_{\mathcal{A}}(\lambda)) \le SPCl_{\mathcal{A}}(\lambda)$ (λ). Thus $SPBd_{\mathscr{C}}(SPInt_{\mathscr{C}}(\lambda)) \leq SPCl_{\mathscr{C}}(\lambda) \wedge \mathscr{C}(SPInt_{\mathscr{C}}(\lambda))$. Since \mathscr{C} satisfies the monotonic and involutive conditions, by using Proposition 5.5 in [6], SPBd $\mathcal{A}(SPInt_{\mathcal{A}}(\lambda)) \leq SPCl_{\mathcal{A}}(\lambda) \wedge SPCl_{\mathcal{A}}(\mathcal{A})$. By using Definition 3.1, we have SPBd \mathcal{A} $(SPInt_{\mathscr{C}}(\lambda)) \leq SPBd_{\mathscr{C}}(\lambda).$

Proposition 3.17. Let (X,τ) be a fuzzy topological space. Let \mathscr{C} be a complement function that satisfies the monotonic and involutive conditions. Then $SPBd_{\mathcal{C}}(SPCl_{\mathcal{C}}(\lambda)) \leq SPBd_{\mathcal{C}}(\lambda)$.

Proof. Since \mathscr{C} satisfies the monotonic and involutive conditions, by using Proposition 3.14, $SPBd_{\mathscr{C}}(SPCl_{\mathscr{C}}(\lambda)) =$ $SPCl_{\mathcal{C}}(SPCl_{\mathcal{C}}(\lambda)) \land \mathcal{C}(SPCl_{\mathcal{C}}(\lambda))$. By using Proposition 5.6(iii) in [6], we have $SPCl_{\mathcal{C}}(SPCl_{\mathcal{C}}(\lambda)) = SPCl_{\mathcal{C}}(\lambda)$ (λ), that implies $SPBd_{\mathcal{A}}(SPCl_{\mathcal{A}}(\lambda)) = SPCl_{\mathcal{A}}(\lambda) \wedge \mathscr{C}(SPInt_{\mathcal{A}}(SPCl_{\mathcal{A}}(\lambda)))$. Since $\lambda \leq SPCl_{\mathcal{A}}(\lambda)$, that implies $SPInt_{\mathcal{A}}(\lambda) \leq SPCl_{\mathcal{A}}(\lambda)$. **SPI** $nt \ll (Cl \ll \lambda)$. Therefore, **SP**Bd $\ll (SPCl \ll \lambda) \leq SPCl \ll \lambda \wedge \ll SPInt \ll \lambda$. By using Proposition 5.5 (ii) in [6], and by using Definition 3.1, we get $SPBd \mathscr{C}(SPCl \mathscr{C}(\lambda)) \leq SPBd \mathscr{C}(\lambda)$.

Theorem 3.18. Let (X,τ) be a fuzzy topological space. Let \mathscr{C} be a complement function that satisfies the monotonic and involutive conditions. Then $SPBd_{\mathcal{C}}(\lambda \lor \mu) \leq SPBd_{\mathcal{C}}\lambda \lor SPBd_{\mathcal{C}}\mu$.

Proof. By using Definition 3.1, *SP*Bd $\mathscr{C}(\lambda \lor \mu) = SPCl \mathscr{C}(\lambda \lor \mu) \land SPCl \mathscr{C}(\mathscr{C}(\lambda \lor \mu))$. Since \mathscr{C} satisfies the monotonic and involutive conditions, by using Proposition 5.7(i) in [6], that implies $SPBd_{\mathscr{C}}(\lambda \lor \mu) = (SPCl_{\mathscr{C}}(\lambda) \lor SPCl_{\mathscr{C}})$ $(\mu) \land SPCl_{\mathcal{C}}(\mathcal{C}(\lambda \lor \mu))$. By using Lemma 2.4 and Proposition 5.7(ii) in [6], $SPBd_{\mathcal{C}}(\lambda \lor \mu) \le (SPCl_{\mathcal{C}}(\lambda) \lor SPCl_{\mathcal{C}}(\mu)) \land$ $(SPCl_{\mathscr{C}}(\mathscr{C}\lambda) \land SPCl_{\mathscr{C}}(\mathscr{C}\mu))$. That is, $SPBd_{\mathscr{C}}(\lambda \lor \mu) \le (SPCl_{\mathscr{C}}(\lambda) \land SPCl_{\mathscr{C}}(\mathscr{C}\lambda)) \lor (SPCl_{\mathscr{C}}(\mu)) \land SPCl_{\mathscr{C}}(\mathscr{C}\mu)$. Again by using Definition 3.1, $SPBd_{\mathscr{C}}(\lambda \lor \mu) \le SPBd_{\mathscr{C}}(\lambda) \lor SPBd_{\mathscr{C}}(\mu)$.

Theorem 3.19. Let (X,τ) be a fuzzy topological space. Suppose the complement function \mathscr{C} satisfies the monotonic and involutive conditions. Then for any two fuzzy subsets λ and μ of a fuzzy topological space X, we have $SPBd_{\mathscr{C}}(\lambda \wedge \mu) \leq (SPBd_{\mathscr{C}}(\lambda) \wedge SPCl_{\mathscr{C}}(\mu)) \vee (SPBd_{\mathscr{C}}(\mu) \wedge SPCl_{\mathscr{C}}(\lambda)).$

Proof. By using Definition 3.1, we have $SPBd_{\mathscr{C}}(\lambda \wedge \mu) = SPCl_{\mathscr{C}}(\lambda \wedge \mu) \wedge SPCl_{\mathscr{C}}(\mathscr{C}(\lambda \wedge \mu))$. Since \mathscr{C} satisfies the monotonic and involutive conditions, by using Proposition 5.7(i), Proposition 5.7 (ii) in [6] and by using Lemma © 2012, IJMA. All Rights Reserved 4852

Dr. K. Bageerathi*/ On fuzzy semi-pre-boundary /IJMA- 3(12), Dec.-2012.

2.4(iv), we get $SPBd_{\mathscr{C}}(\lambda \wedge \mu) \leq (SPCl_{\mathscr{C}}(\lambda) \wedge SPCl_{\mathscr{C}}(\mu)) \wedge (SPCl_{\mathscr{C}}(\mathscr{C} \lambda) \vee SPCl_{\mathscr{C}}(\mathscr{C} \mu))$ is equal to $[SPCl_{\mathscr{C}}(\lambda) \wedge SPCl_{\mathscr{C}}(\mathscr{C} \lambda)] \wedge (SPCl_{\mathscr{C}}(\mu)) \vee [SPCl_{\mathscr{C}}(\mu) \wedge SPCl_{\mathscr{C}}(\mathscr{C} \mu)] \wedge SPCl_{\mathscr{C}}(\lambda)$. Again by using Definition 3.1, we get $SPBd_{\mathscr{C}}(\lambda \wedge \mu) \leq (SPBd_{\mathscr{C}}(\lambda) \wedge SPCl_{\mathscr{C}}(\mu)) \vee (SPBd_{\mathscr{C}}(\mu) \wedge SPCl_{\mathscr{C}}(\lambda))$.

Proposition 3.20. Let (X, τ) be a fuzzy topological space. Suppose the complement function \mathscr{C} satisfies the monotonic and involutive conditions. Then for any fuzzy subset λ of a fuzzy topological space X, we have (i) $SPBd_{\mathscr{C}}(SPBd_{\mathscr{C}}(\lambda)) \leq SPBd_{\mathscr{C}}(\lambda)$ (ii) $SPBd_{\mathscr{C}}SPBd_{\mathscr{C}}SPBd_{\mathscr{C}}\lambda \leq SPBd_{\mathscr{C}}\lambda$.

Proof. By using Definition 3.1, *SP*Bd $_{\mathscr{A}}\lambda = SPCl_{\mathscr{A}}\wedge SPCl_{\mathscr{A}}(\mathscr{C}\lambda)$.

We have $SPBd \otimes SPBd \otimes \lambda = SPCl \otimes (SPBd \otimes \lambda) \land SPCl \otimes [\otimes (SPBd \otimes \lambda)] \leq SPCl \otimes (SPBd \otimes \lambda)$. Since \mathscr{C} satisfies the monotonic and involutive conditions, by using Proposition 5.6(ii) in [6], $SPCl \otimes \lambda = \lambda$, where λ is fuzzy \mathscr{C} -pre closed.

Here $SPBd_{\mathscr{C}}\lambda$ is fuzzy \mathscr{C} -pre closed. So, $SPCl_{\mathscr{C}}(SPBd_{\mathscr{C}}\lambda) = SPBd_{\mathscr{C}}\lambda$. This implies that $SPBd_{\mathscr{C}}SPBd_{\mathscr{C}}\lambda \leq SPBd_{\mathscr{C}}\lambda$. This proves (i). (ii) Follows from (i).

Proposition 3.21. Let λ be a fuzzy \mathscr{C} -semi-pre closed subset of a fuzzy topological space X and μ be a fuzzy \mathscr{C} -semi-pre closed subset of a fuzzy topological space Y, then $\lambda \times \mu$ is a fuzzy \mathscr{C} -semi-pre closed set of the fuzzy product space X \times Y where the complement function \mathscr{C} satisfies the monotonic and involutive conditions.

Proof. Let λ be a fuzzy \mathscr{C} -semi-pre closed subset of a fuzzy topological space X. Then by applying Lemma 2.8, $\mathscr{C}\lambda$ is fuzzy \mathscr{C} -semi-pre open set in X. Also if $\mathscr{C}\lambda$ is fuzzy \mathscr{C} -semi-pre- open set in X, then $\mathscr{C}\lambda \times 1$ is fuzzy \mathscr{C} -semi-pre- open in X × Y. Similarly let μ be a fuzzy \mathscr{C} -semi-pre closed subset of a fuzzy topological space X. Then by using Lemma 2.8, $\mathscr{C}\mu$ is fuzzy \mathscr{C} -semi-pre open set in Y. Also if $\mathscr{C}\mu$ is fuzzy \mathscr{C} -semi-pre open set in Y then $\mathscr{C}\mu \times 1$ is fuzzy \mathscr{C} -semi-pre open set in Y. Also if $\mathscr{C}\mu$ is fuzzy \mathscr{C} -semi-pre open set in Y then $\mathscr{C}\mu \times 1$ is fuzzy \mathscr{C} -semi-pre open set in X × Y. Since the arbitrary union of fuzzy \mathscr{C} -semi-pre open sets is fuzzy \mathscr{C} -semi-pre open. So, $\mathscr{C}\lambda \times 1 \lor 1 \times \mathscr{C}\mu$ is fuzzy \mathscr{C} -semi-pre open in X × Y. By using Lemma 2.13, $\mathscr{C}(\lambda \times \mu) = \mathscr{C}\lambda \times 1 \lor 1 \times \mathscr{C}\mu$, hence $\mathscr{C}(\lambda \times \mu)$ is fuzzy \mathscr{C} -semi-pre open. By using Lemma 2.8, $\lambda \times \mu$ is fuzzy \mathscr{C} -semi-pre closed of the fuzzy product space X × Y.

Theorem 3.22. Let \mathscr{C} be a complement function that satisfies the monotonic and involutive conditions. If λ is a fuzzy subset of a fuzzy topological space X and μ is a fuzzy subset of a fuzzy topological space Y, then

- (i) $SPCl_{\mathscr{C}}\lambda \times SPCl_{\mathscr{C}}\mu \geq SPCl_{\mathscr{C}}(\lambda \times \mu)$
- (ii) **SPI***nt* $_{\mathscr{C}}\lambda \times$ **SPI***nt* $_{\mathscr{C}}\mu \leq$ **SPI***nt* $_{\mathscr{C}}(\lambda \times \mu)$.

Proof. By using Definition 2.11, $(SPCl_{\mathscr{C}}\lambda \times SPCl_{\mathscr{C}}\mu)$ $(x, y) = \min\{SPCl_{\mathscr{C}}\lambda(x), SPCl_{\mathscr{C}}\mu(y)\} \ge \min\{\lambda(x), \mu(y)\} = (\lambda \times \mu)$ (x, y). This shows that $SPCl_{\mathscr{C}}\lambda \times SPCl_{\mathscr{C}}\mu \ge (\lambda \times \mu)$.

By using Proposition 5.6 in [6], $SPCl_{\mathscr{C}}(\lambda \times \mu) \leq SPCl_{\mathscr{C}}(SPCl_{\mathscr{C}}\lambda \times SPCl_{\mathscr{C}}\mu) = SPCl_{\mathscr{C}}\lambda \times SPCl_{\mathscr{C}}\mu$. By using Definition 2.11, $(SPInt_{\mathscr{C}}\lambda \times SPInt_{\mathscr{C}}\mu)$ (x, y) = min $\{SPInt_{\mathscr{C}}\lambda(x), SPInt_{\mathscr{C}}\mu(y)\} \leq min \{\lambda(x), \mu(y)\} = (\lambda \times \mu)(x, y)$. This shows that $SPInt_{\mathscr{C}}\lambda \times SPInt_{\mathscr{C}}\mu \leq (\lambda \times \mu)$. By using Proposition 5.2 in [6], $SPInt_{\mathscr{C}}(SPInt_{\mathscr{C}}\lambda \times SPInt_{\mathscr{C}}\mu) \leq SPInt_{\mathscr{C}}(\lambda \times \mu)$, that implies $SPInt_{\mathscr{C}}\lambda \times SPInt_{\mathscr{C}}\mu \leq SPInt_{\mathscr{C}}(\lambda \times \mu)$.

Theorem 3.23. Let X and Y be \mathscr{C} -product related fuzzy topological spaces. Then for a fuzzy subset λ of X and a fuzzy subset μ of Y,

(i) $SPCl_{\mathscr{C}}(\lambda \times \mu) = SPCl_{\mathscr{C}}\lambda \times SPCl_{\mathscr{C}}\mu$

(ii) **SPI** $nt_{\mathscr{C}}(\lambda \times \mu) = SPInt_{\mathscr{C}}\lambda \times SPInt_{\mathscr{C}}\mu$.

Proof. By using Theorem 3.22, it is sufficient to show that $SPCl_{\mathscr{C}}(\lambda \times \mu) \ge SPCl_{\mathscr{C}}\lambda \times SPCl_{\mathscr{C}}\mu$. By using Definition 5.4 in [6], we have $SPCl_{\mathscr{C}}(\lambda \times \mu) = \inf\{\mathscr{C}(\lambda_{\alpha} \times \mu_{\beta}): \mathscr{C}(\lambda_{\alpha} \times \mu_{\beta}) \ge \lambda \times \mu \text{ where } \lambda_{\alpha} \text{ and } \mu_{\beta} \text{ are fuzzy } \mathscr{C}\text{-semi-pre open}\}$. By using Lemma 2.11,

we have
$$SPCl_{\mathscr{C}}(\lambda \times \mu) = \inf \{ \mathscr{C}\lambda_{\alpha} \times 1 \lor 1 \times \mathscr{C}\lambda_{\beta} : \mathscr{C}\lambda_{\alpha} \times 1 \lor 1 \times \mathscr{C}\mu_{\beta} \ge \lambda \times \mu \}$$

= $\inf \{ \mathscr{C}\lambda_{\alpha} \times 1 \lor 1 \times \mathscr{C}\mu_{\beta} : \mathscr{C}\lambda_{\alpha} \ge \lambda \text{ or } \mathscr{C}\mu_{\beta} \ge \mu \}$
= $\min (\inf \{ \mathscr{C}\lambda_{\alpha} \times 1 \lor 1 \times \mathscr{C}\mu_{\beta} : \mathscr{C}\lambda_{\alpha} \ge \lambda \}, \inf \{ \mathscr{C}\lambda_{\alpha} \times 1 \lor 1 \times \mathscr{C}\mu_{\beta} : \mathscr{C}\mu_{\beta} \ge \}).$

Now inf { $\mathscr{C}\lambda_{\alpha} \times 1 \lor 1 \times \mathscr{C}\mu_{\beta}$: $\mathscr{C}\lambda_{\alpha} \ge \lambda$ } \ge inf { $\mathscr{C}\lambda_{\alpha} \times 1$: $\mathscr{C}\lambda_{\alpha} \ge \lambda$ } = inf { $\mathscr{C}\lambda_{\alpha} : \mathscr{C}\lambda_{\alpha} \ge \lambda$ } $\times 1$

$$= (SPCl_{\mathcal{C}}\lambda) \times 1.$$

Also inf { $\mathscr{C}\lambda_{\alpha} \times 1 \lor 1 \times \mathscr{C}\mu_{\beta}$: $\mathscr{C}\mu_{\beta} \ge \mu$ } \ge inf { $1 \times \mathscr{C}\mu_{\beta}$: $\mathscr{C}\mu_{\beta} \ge \mu$ } = $1 \times \inf \{ \mathscr{C}\mu_{\beta} : \mathscr{C}\mu_{\beta} \ge \mu \}$ = $1 \times SPCl_{\ll}\mu$.

The above discussions imply that

 $\begin{aligned} \boldsymbol{SPCl}_{\boldsymbol{\mathscr{C}}}(\boldsymbol{\lambda} \times \boldsymbol{\mu}) &\geq \min \left(\boldsymbol{SPCl}_{\boldsymbol{\mathscr{C}}} \boldsymbol{\lambda} \times \boldsymbol{1}, \, \boldsymbol{1} \times \boldsymbol{SPCl}_{\boldsymbol{\mathscr{C}}} \boldsymbol{\mu} \right) \\ &= \boldsymbol{SPCl}_{\boldsymbol{\mathscr{C}}} \boldsymbol{\lambda} \times \boldsymbol{SPCl}_{\boldsymbol{\mathscr{C}}} \boldsymbol{\mu}. \end{aligned}$

(ii) follows from (i) and using Proposition 5.5 in [6].

Theorem 3.24. Let X_i , i = 1, 2, ..., n, be a family of \mathscr{C} -product related fuzzy topological spaces. If λ_i is a fuzzy subset of X_i , and the complement function \mathscr{C} satisfies the monotonic and involutive conditions, then

$$\boldsymbol{SP}Bd_{\mathscr{C}}(\prod_{i=1}^{n}\lambda_{1}^{i}) = [\boldsymbol{SP}Bd_{\mathscr{C}}\lambda_{1} \times \boldsymbol{SP}Cl_{\mathscr{C}}\lambda_{2} \times \ldots \times \boldsymbol{SP}Cl_{\mathscr{C}}\lambda_{n}] \vee [\boldsymbol{SP}Cl_{\mathscr{C}}\lambda_{1} \times \boldsymbol{SP}Bd_{\mathscr{C}}\lambda_{2} \times \ldots \times \boldsymbol{SP}Cl_{\mathscr{C}}\lambda_{n}] \vee \ldots \vee [\boldsymbol{SP}Cl_{\mathscr{C}}\lambda_{1} \times \boldsymbol{SP}Cl_{\mathscr{C}}\lambda_{2} \times \ldots \times \boldsymbol{SP}Cl_{\mathscr{C}}\lambda_{n}].$$

Proof. It suffices to prove this for n = 2. By using Proposition 3.14,

we have
$$SPBd_{\mathscr{C}}(\lambda_{1} \times \lambda_{2}) = SPCl_{\mathscr{C}}(\lambda_{1} \times \lambda_{2}) \wedge \mathscr{C}(SPInt_{\mathscr{C}}(\lambda_{1} \times \lambda_{2}))$$

$$= (SPCl_{\mathscr{C}}\lambda_{1} \times SPCl_{\mathscr{C}}\lambda_{2}) \wedge \mathscr{C}(SPInt_{\mathscr{C}}\lambda_{1} \times SPInt_{\mathscr{C}}\lambda_{2})$$
[by using Theorem 3.23]

$$= (SPCl_{\mathscr{C}}\lambda_{1} \times SPCl_{\mathscr{C}}\lambda_{2}) \wedge \mathscr{C} [(SPInt_{\mathscr{C}}\lambda_{1} \wedge SPCl_{\mathscr{C}}\lambda_{1}) \times (SPInt_{\mathscr{C}}\lambda_{2} \wedge SPCl_{\mathscr{C}}\lambda_{2})]$$

$$= (SPCl_{\mathscr{C}}\lambda_{1} \times SPCl_{\mathscr{C}}\lambda_{2}) \wedge [\mathscr{C}(SPInt_{\mathscr{C}}\lambda_{1} \wedge SPCl_{\mathscr{C}}\lambda_{1}) \times 1 \vee 1 \times \mathscr{C}(SPInt_{\mathscr{C}}\lambda_{2} \wedge SPCl_{\mathscr{C}}\lambda_{1})].$$

[By Lemma 2.13]. Since *C* satisfies the monotonic and involutive conditions, by using Proposition 5.5(i), Proposition 5.5(i) in [6] and also by using Lemma 2.11,

$$\begin{aligned} \boldsymbol{SP} Bd_{\mathscr{C}}(\lambda_{1} \times \lambda_{2}) &= (\boldsymbol{SP} Cl_{\mathscr{C}} \lambda_{1} \times \boldsymbol{SP} Cl_{\mathscr{C}} \lambda_{2}) \wedge [(\boldsymbol{SP} Cl_{\mathscr{C}} \mathscr{C} \lambda_{1} \vee \boldsymbol{SP} Int_{\mathscr{C}} \mathscr{C} \lambda_{1}) \times 1 \vee 1 \times (\boldsymbol{SP} Cl_{\mathscr{C}} \mathscr{C} \lambda_{2} \vee \boldsymbol{SP} Int_{\mathscr{C}} \mathscr{C} \lambda_{2})] \\ &= (\boldsymbol{SP} Cl_{\mathscr{C}} \lambda_{1} \times \boldsymbol{SP} Cl_{\mathscr{C}} \lambda_{2}) \wedge [\boldsymbol{SP} Cl_{\mathscr{C}} \mathscr{C} \lambda_{1} \times 1 \vee 1 \times \boldsymbol{SP} Cl_{\mathscr{C}} \mathscr{C} \lambda_{2}] \\ &= [(\boldsymbol{SP} Cl_{\mathscr{C}} \lambda_{1} \times \boldsymbol{SP} Cl_{\mathscr{C}} \lambda_{2}) \wedge (\boldsymbol{SP} Cl_{\mathscr{C}} (\mathscr{C} \lambda_{1}) \times 1)] \vee [(\boldsymbol{SP} Cl_{\mathscr{C}} (\lambda_{1}) \times \boldsymbol{SP} Cl_{\mathscr{C}} \lambda_{2}) \wedge (1 \times \boldsymbol{SP} Cl_{\mathscr{C}} (\mathscr{C} \lambda_{2}))] \end{aligned}$$

Again by using Lemma 2.9, we get

$$SPBd_{\mathscr{C}}(\lambda_{1} \times \lambda_{2}) = [(SPCl_{\mathscr{C}}\lambda_{1} \wedge SPCl_{\mathscr{C}}(\mathscr{C}\lambda_{1})) \times (1 \wedge SPCl_{\mathscr{C}}\lambda_{2})] \vee [(SPCl_{\mathscr{C}}\lambda_{2} \wedge SPCl_{\mathscr{C}}(\mathscr{C}\lambda_{2})) \times (1 \wedge SPCl_{\mathscr{C}}\lambda_{1})]$$

$$= [(SPCl_{\mathscr{C}}(\lambda_{1}) \wedge SPCl_{\mathscr{C}}(\mathscr{C}\lambda_{1})) \times SPCl_{\mathscr{C}}(\lambda_{2})] \vee [(SPCl_{\mathscr{C}}(\lambda_{2}) \wedge SPCl_{\mathscr{C}}(\mathscr{C}\lambda_{2})) \times SPCl_{\mathscr{C}}(\lambda_{1})]$$

 $SPBd_{\mathscr{C}}(\lambda_{1} \times \lambda_{2}) = [SPBd_{\mathscr{C}}(\lambda_{1}) \times SPCl_{\mathscr{C}}(\lambda_{2})] \vee [SPCl_{\mathscr{C}}(\lambda_{1}) \times SPBd_{\mathscr{C}}(\lambda_{2})].$

Theorem 3.25. Let f: $X \rightarrow Y$ be a fuzzy continuous function. Suppose the complement function \mathscr{C} satisfies the monotonic and involutive conditions. Then

 $SPBd_{\mathscr{C}}(f^{-1}(\mu)) \leq f^{-1} (SPBd_{\mathscr{C}}(\mu)), \text{ for any fuzzy subset } \mu \text{ in } Y.$

Proof. Let f be a fuzzy continuous function and μ be a fuzzy subset in Y. By using Definition 3.1, we have $SPBd_{\mathscr{C}}(f^{-1}(\mu)) = SPCl_{\mathscr{C}}(f^{-1}(\mu)) \wedge SPCl_{\mathscr{C}}(f^{-1}(\mu))$. By using Lemma 2.10, $SPBd_{\mathscr{C}}(f^{-1}(\mu)) = SPCl_{\mathscr{C}}(f^{-1}(\mu)) \wedge SPCl_{\mathscr{C}}(f^{-1}(\mathscr{C}(\mu)))$.

Since f is fuzzy continuous and $f^{-1}(\mu) \leq f^{-1}(SPCl_{\mathscr{C}}(\mu))$, it follows that $SPCl_{\mathscr{C}}(f^{-1}(\mu)) \leq f^{-1}(SPCl_{\mathscr{C}}(\mu))$. This together with the above imply that $SPBd_{\mathscr{C}}(f^{-1}(\mu)) \leq f^{-1}(SPCl_{\mathscr{C}}(\mu)) \wedge f^{-1}(SPCl_{\mathscr{C}}(\mathscr{C}(\mu)))$. By using Lemma 2.12, $SPBd_{\mathscr{C}}(f^{-1}(\mu)) \leq f^{-1}(SPCl_{\mathscr{C}}(\mu))$. That is $SPBd_{\mathscr{C}}(f^{-1}(\mu)) \leq f^{-1}(SPBd_{\mathscr{C}}(\mu))$.

REFERENCES

- M. Athar and B. Ahmad, Fuzzy boundary and Fuzzy semi boundary, *Advances in Fuzzy systems* (2008), Article ID 586893, 9 pages.
- [2] M. Athar and B. Ahmad, Fuzzy sets, fuzzy S-open and fuzzy S-closed mappings, *Advances in Fuzzy systems* (2009), Article ID 303042, 5 pages.

© 2012, IJMA. All Rights Reserved

Dr. K. Bageerathi*/ On fuzzy semi-pre-boundary /IJMA- 3(12), Dec.-2012.

- [3] K.K. Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, *J. Math. Anal .Appl.* 82(1) (1981), 14-32.
- [4] K.Bageerathi, G. Sutha, P. Thangavelu, A generalization of fuzzy closed sets, *International Journal of fuzzy* systems and rough systems, 4(1) (2011), 1-5.
- [5] K. Bageerathi, P. Thangavelu, A generalization of fuzzy Boundary, *International Journal of Mathematical* Archive 1(3)(2010), 73-80.
- [6] K. Bageerathi, A generalization of fuzzy semi-pre open sets (submitted)
- [7] C.L. Chang, Fuzzy topological space, J.Math.Anal.Appl.24 (1968), 182-190.
- [8] George J. Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic Theory and Applications, Prentice Hall, Inc, 2005.
- [9] K. Katsaras and D.B. Liu, Fuzzy vector spaces and fuzzy topological vector spaces, J.Math.Anal.Appl. 8 (3) (1978), 459-470.

Source of support: Nil, Conflict of interest: None Declared