ON CERTAIN CLASS OF HARMONIC FUNCTIONS DEFINED BY USING THE LINEAR OPERATOR

CHENA RAM & GARIMA AGARWAL*

Department of Mathematics and Statistics, Jai Narain Vyas University, Jodhpur (Rajasthan), India

(Received on: 22-11-12; Revised & Accepted on: 27-12-12)

ABSTRACT

Invoking the linear operator, a class of harmonic functions has been introduced. The coefficients bounds, distortion theorems, closer theorem, radii of close-to-convexity and radii of starlikeness are obtained for the same class of functions.

Key words: Harmonic functions; Hadamard product; Starlike function; close-to-convex function; Generalized hypergeometric functions; Linear operator.

INTRODUCTION

Let S_H denote the class of functions of the form $f(z) = h + \overline{g}$ which are harmonic univalent and sence-preserving in the unit disk $U = \{z: |z| < 1\}$ for which f(0) = f'(0) - 1 = 0. Analytic functions h and g may be expressed as

$$h(z) = z + \sum_{m=2}^{\infty} a_m z^m ,$$

$$g(z) = \sum_{m=1}^{\infty} b_m z^m$$
 , $(|b_1| < 1)$, and $f(z)$ is then, given by

$$f(z) = z + \sum_{m=1}^{\infty} a_m z^m + \sum_{m=1}^{\infty} b_m z^m, \quad (|b_1| < 1).$$
 (1.1)

Note that S_H reduces to the class S of normalized analytic univalent functions in U if the co-analytic part of f is identically zero. Also we denote by $S_{\overline{H}}$ the subfamily of S_H consisting the harmonic functions $f(z) = h + \overline{g}$ of the form

$$f(z) = z - \sum_{m=2}^{\infty} a_m z^m - \sum_{m=1}^{\infty} b_m z^m, \quad (|b_1| < 1).$$
 (1.2)

Cf. Silverman [4].

The Hadamard product of two power series

$$\phi(z) = z + \sum_{m=2}^{\infty} \phi_m z^m \tag{1.3}$$

and

$$\Psi(z) = z + \sum_{m=2}^{\infty} \Psi_m z^m \tag{1.4}$$

is defined by

$$(\phi * \Psi)(z) = z + \sum_{m=0}^{\infty} \phi_m \Psi_m z^m$$
(1.5)

For positive real value of $\alpha_1, ... \alpha_p$ and $\beta_1, ... \beta_q$ ($\beta_j \neq 0.-1, -2...$; j = 1, 2, ... q) the generalized hypergeometric function ${}_pF_q$ is defined by

$$_{p}F_{q}(z) = _{p}F_{q}(\alpha_{1}, \dots \alpha_{n}; \beta_{1}, \dots \beta_{q})$$

$$= \sum_{m=0}^{\infty} \frac{(\alpha_1)_m \dots (\alpha_p)_m}{(\beta_1)_m \dots (\beta_q)_m (m)!} Z^m$$
 (1.6)

 $(p \le q + 1; p, q \in \mathbb{N}_0; z \in U).$

Recently Srivastava *et. al* [5] define the linear operator $\mathcal{L}_{\lambda}^{\tau,\alpha_{p},\beta_{q}}$ as follows:

$$\mathcal{L}_{\lambda}^{0,\alpha_{p},\beta_{q}}\phi(z) = \phi(z)$$

$$\mathcal{L}_{\lambda}^{1,\alpha_{p},\beta_{q}}\phi(z) = (1-\lambda)H_{p}^{q}(\alpha_{1},\beta_{1})\phi(z) + \lambda z \left(H_{p}^{q}(\alpha_{1},\beta_{1})\phi(z)\right)'$$
(1.7)

where $H_n^q(\alpha_1, \beta_1)$ is the Dziok-Srivastava operator (see [2] and [3]).

$$\mathcal{L}_{\lambda}^{\tau,\alpha_{p},\beta_{q}}\phi(z) = \mathcal{L}_{\lambda}^{\alpha_{p},\beta_{q}}\left(\mathcal{L}_{\lambda}^{\tau-1,\alpha_{p},\beta_{q}}\right)$$

i.e.
$$\mathcal{L}_{\lambda}^{\tau,\alpha_{p},\beta_{q}}\phi(z) = z + \sum_{m=2}^{\infty} \xi_{m}^{\tau}(\alpha_{p},\beta_{q})\phi_{m}z^{m}$$
 (1.8)

where

$$\xi_m^{\tau} \left(\alpha_p, \beta_q \right) = \left[\frac{(\alpha_1)_{m-1} \dots (\alpha_p)_{m-1} [1 + \lambda(m-1)]}{(\beta_1)_{m-1} \dots (\beta_q)_{m-1} (m-1)!} \right]^{\tau}. \tag{1.9}$$

We note that when $\tau = 1$ and $\lambda = 0$, then the linear operator $\mathcal{L}_{\lambda}^{\tau,\alpha_{p},\beta_{q}}$ reduces to the Dziok-Srivastava operator (see [2] and [3]).

The linear operator for harmonic function $f(z) = h + \overline{g}$ is defined by

$$\mathcal{L}_{\lambda}^{\tau,\alpha_{p},\beta_{q}}f(z) = \mathcal{L}_{\lambda}^{\tau,\alpha_{p},\beta_{q}}h(z) + \overline{\mathcal{L}_{\lambda}^{\tau,\alpha_{p},\beta_{q}}g(z)}$$
(1.10)

Now we introduced certain subclasses of harmonic analytic functions with negative coefficients. Let $S_{\overline{H}}(\tau; \delta; \lambda; A, B; \sum_{i=1}^{p} \alpha_i, \sum_{i=1}^{q} \beta_j)$ denote the class of functions $f(z) \in S_{\overline{H}}$ such that

$$(1 - \delta) \frac{\mathcal{L}_{\lambda}^{\tau, \alpha_{p}, \beta_{q}} f(z)}{z} + \delta \frac{\mathcal{L}_{\lambda}^{\tau, \alpha_{1}, \alpha_{p} - 1, \beta_{q}} f(z)}{z} < \frac{1 + Az}{1 + Bz} \quad (\delta \ge 0, -1 \le A < B \le 1)$$
(1.11)

For detail one can see [1].

Now we study the class $Q_{\overline{H}}\left(\tau;\delta;\lambda;A,B;\sum_{i=1}^p \alpha_i,\sum_{j=1}^q \beta_j\right)$ by using the linear operator $\mathcal{L}_{\lambda}^{\tau,\alpha_p,\beta_q}f(z)$.

Definition 1. We say that
$$f(z) \in S_{\overline{H}}$$
 is in the class $Q_{\overline{H}}\left(\tau; \delta; \lambda; A, B; \sum_{i=1}^{p} \alpha_{i}, \sum_{j=1}^{q} \beta_{j}\right)$ if and only if
$$(1 - \delta) \left(\mathcal{L}_{\lambda}^{\tau, \alpha_{p}, \beta_{q}} f(z)\right)' + \delta \left(\mathcal{L}_{\lambda}^{\tau, \alpha_{1} + 1, \alpha_{p-1}, \beta_{q}} f(z)\right)' < \frac{1 + Az}{1 + Bz},$$

$$(z \in U, \delta, \lambda \geq 0, -1 \leq A < B \leq 1, 0 < B \leq 1, \tau, p, q \in \mathbb{N}_{0}, p \leq q + 1)$$

2. COEFFICIENT ESTIMATES

Theorem 1. Let the function f(z) be defined by (1.2). Then $f(z) \in Q_{\overline{H}}\left(\tau; \delta; \lambda; A, B; \sum_{i=1}^{p} \alpha_{i}, \sum_{j=1}^{q} \beta_{j}\right)$ if and only if

$$\sum_{m=2}^{\infty} \xi_m^{\tau} \left(\alpha_p, \beta_q \right) m(a_m + b_m) (1+B) \left\{ 1 - \delta + \delta \left(\frac{\alpha_1 + m - 1}{\alpha_1} \right)^{\tau} \right\} \le \varphi(A, B), \tag{2.1}$$

where
$$\xi_m^{\tau}(\alpha_p, \beta_q)$$
 is given by (1.9) and $\varphi(A, B) = B - A - Bb_1 - b_1$ (2.2)

Proof. Let
$$f(z) \in Q_{\overline{H}}\left(\tau; \delta; \lambda; A, B; \sum_{i=1}^{p} \alpha_{i}, \sum_{j=1}^{q} \beta_{j}\right)$$
. Then
$$h(z) = (1 - \delta) \left(\mathcal{L}_{\lambda}^{\tau, \alpha_{p}, \beta_{q}} f(z)\right)' + \delta \left(\mathcal{L}_{\lambda}^{\tau, \alpha_{1} + 1, \alpha_{p-1}, \beta_{q}} f(z)\right)' = \frac{1 + A\omega(z)}{1 + B\omega(z)'},$$

$$(z \in U, \delta, \lambda \geq 0, -1 \leq A < B \leq 1, 0 < B \leq 1, \tau, p, q \in \mathbb{N}_{0}, p \leq q + 1)$$

$$(2.3)$$

From (2.3), we get

$$\omega(z) = \frac{1 - h(z)}{Bh(z) - A}$$

Therefore

$$h(z) = 1 - b_1 - \sum_{m=2}^{\infty} \xi_m^{\tau} (\alpha_p, \beta_q) m (a_m z^{m-1} + b_m \overline{z}^{m-1}) \left\{ 1 - \delta + \delta \left(\frac{\alpha_1 + m - 1}{\alpha_1} \right)^{\tau} \right\},$$

where $\xi_m^{\tau}(\alpha_p, \beta_q)$ is defined by (1.9) and $|\omega(z)| < 1$ implies

$$\frac{\left| b_{1} + \sum_{m=2}^{\infty} \xi_{m}^{\tau} (\alpha_{p}, \beta_{q}) m \left(a_{m} z^{m-1} + b_{m} \overline{z}^{m-1} \right) \left\{ 1 - \delta + \delta \left(\frac{\alpha_{1} + m - 1}{\alpha_{1}} \right)^{\tau} \right\}}{\left| B - A - B b_{1} - B \sum_{m=2}^{\infty} \xi_{m}^{\tau} (\alpha_{p}, \beta_{q}) m \left(a_{m} z^{m-1} + b_{m} \overline{z}^{m-1} \right) \left\{ 1 - \delta + \delta \left(\frac{\alpha_{1} + m - 1}{\alpha_{1}} \right)^{\tau} \right\}} \right| < 1$$

$$(2.4)$$

$$Re\left\{\frac{b_{1}+\sum_{m=2}^{\infty}\xi_{m}^{\tau}(\alpha_{p},\beta_{q})m(a_{m}z^{m-1}+b_{m}\overline{z}^{m-1})\{1-\delta+\delta(\frac{\alpha_{1}+m-1}{\alpha_{1}})^{\tau}\}}{B-A-Bb_{1}-B\sum_{m=2}^{\infty}\xi_{m}^{\tau}(\alpha_{p},\beta_{q})m(a_{m}z^{m-1}+b_{m}\overline{z}^{m-1})\{1-\delta+\delta(\frac{\alpha_{1}+m-1}{\alpha_{1}})^{\tau}\}}\right\}<1.$$
(2.5)

We consider real value of z and \overline{z} . Taking $|z| = |\overline{z}| = r$ with $0 \le r < 1$. Then, for r = 0, the denominator (2.5) is positive and so it is positive for all r with $0 \le r < 1$. Since $\omega(z)$ is analytic for |z| < 1. Then (2.5) gives

$$\sum_{m=2}^{\infty} \xi_m^{\tau} (\alpha_p, \beta_q) m(a_m + b_m) r^{m-1} (1+B) \left\{ 1 - \delta + \delta \left(\frac{\alpha_1 + m - 1}{\alpha_1} \right)^{\tau} \right\} \le B - A - Bb_1 - b_1$$
 (2.6)

Letting $r \to 1$ in (2.6), we will get (2.1). Conversely, let $f(z) \in S_{\overline{H}}$ and satisfies (2.1). For $|z| = |\overline{z}| = r$, $0 \le r < 1$, we have (2.6) by (2.1), since $r^{m-1} < 1$. So that

$$\begin{vmatrix} b_{1} + \sum_{m=2}^{\infty} \xi_{m}^{\tau}(\alpha_{p}, \beta_{q}) m(a_{m}z^{m-1} + b_{m}\overline{z}^{m-1}) \left\{ 1 - \delta + \delta \left(\frac{\alpha_{1} + m - 1}{\alpha_{1}} \right)^{\tau} \right\} \end{vmatrix}$$

$$\leq b_{1} + \sum_{m=2}^{\infty} \xi_{m}^{\tau}(\alpha_{p}, \beta_{q}) m(a_{m} + b_{m}) r^{m-1} \left\{ 1 - \delta + \delta \left(\frac{\alpha_{1} + m - 1}{\alpha_{1}} \right)^{\tau} \right\}$$

$$\leq B - A - Bb_{1} - B \sum_{m=2}^{\infty} \xi_{m}^{\tau}(\alpha_{p}, \beta_{q}) m(a_{m} + b_{m}) r^{m-1} \left\{ 1 - \delta + \delta \left(\frac{\alpha_{1} + m - 1}{\alpha_{1}} \right)^{\tau} \right\}$$

$$\leq \begin{vmatrix} B - A - Bb_{1} - B \sum_{m=2}^{\infty} \xi_{m}^{\tau}(\alpha_{p}, \beta_{q}) m(a_{m}z^{m-1} + b_{m}\overline{z}^{m-1}) \\ \left\{ 1 - \delta + \delta \left(\frac{\alpha_{1} + m - 1}{\alpha_{1}} \right)^{\tau} \right\} \end{vmatrix}$$

which gives (2.4) and hence follows that

$$(1-\delta)\left(\mathcal{L}_{\lambda}^{\tau,\alpha_{p},\beta_{q}}f(z)\right)^{'}+\delta\left(\mathcal{L}_{\lambda}^{\tau,\alpha_{1}+1,\alpha_{p-1},\beta_{q}}f(z)\right)^{'}=\frac{_{1+A\omega(z)}}{_{1+B\omega(z)}},\\ \left(z\in U,\delta,\lambda\geq0,-1\leq A< B\leq1,0< B\leq$$

3. SOME PROPERTIES OF
$$Q_{\overline{H}}\left(\tau; \boldsymbol{\delta}; \boldsymbol{\lambda}; A, B; \sum_{i=1}^{p} \alpha_{i}, \sum_{j=1}^{q} \boldsymbol{\beta}_{j}\right)$$

Theorem 2. $Q_{\overline{H}}\left(\tau; \boldsymbol{\delta}; \boldsymbol{\lambda}; A, B; \alpha_{1} + 1, \sum_{i=2}^{p} \alpha_{i}, \sum_{j=1}^{q} \beta_{j}\right) \subset Q_{\overline{H}}\left(\tau; \boldsymbol{\delta}; \boldsymbol{\lambda}; A, B; \sum_{i=1}^{p} \alpha_{i}, \sum_{j=1}^{q} \beta_{j}\right)$
 $\left(z \in U, \delta, \boldsymbol{\lambda} \geq 0, -1 \leq A < B \leq 1, 0 <$

Proof. By Theorem 1, we have
$$\sum_{m=2}^{\infty} \xi_m^{\tau} (\alpha_p, \beta_q) m(a_m + b_m) (1+B) \left\{ 1 - \delta + \delta \left(\frac{\alpha_1 + m - 1}{\alpha_1} \right)^{\tau} \right\}$$

$$\leq \sum_{m=2}^{\infty} \xi_m^{\tau} (\alpha_p, \beta_q) m(a_m + b_m) (1+B) \left\{ 1 - \delta + \delta \left(\frac{\alpha_1 + m - 1}{\alpha_1} \right)^{\tau} \right\} \left(\frac{\alpha_1 + m - 1}{\alpha_1} \right)^{\tau}$$

$$= \sum_{m=2}^{\infty} \xi_m^{\tau} (\alpha_1 + 1, \alpha_{p-1}, \beta_q) m(a_m + b_m) (1+B) \left\{ 1 - \delta + \delta \left(\frac{\alpha_1 + m - 1}{\alpha_1} \right)^{\tau} \right\}$$

$$\leq \omega(A, B)$$

$$\sum_{m=2}^{\infty} \xi_m^{\tau} (\alpha_p, \beta_q) m(a_m + b_m) (1+B) \left\{ 1 - \delta + \delta \left(\frac{\alpha_1 + m - 1}{\alpha_1} \right)^{\tau} \right\} \leq \varphi(A, B) dA$$

where $\xi_m^{\tau}(\alpha_p, \beta_q)$ and $\varphi(A, B)$ is defined by (1.9) and (2.2) respectively. The theorem is completely proved.

where
$$\xi_m^{\mu}(\alpha_p, \beta_q)$$
 and $\varphi(A, B)$ is defined by (1.9) and (2.2) respectively. The theorem is completely proved.

Theorem 3. $Q_{\overline{H}}\left(\tau; \delta_2; \lambda; A, B; \alpha_1 + 1, \sum_{i=2}^p \alpha_i, \sum_{j=1}^q \beta_j\right) \subset Q_{\overline{H}}\left(\tau; \delta_1; \lambda; A, B; \sum_{i=1}^p \alpha_i, \sum_{j=1}^q \beta_j\right)$

$$\left(z \in U, \delta, \lambda \geq 0, -1 \leq A < B \leq 1, 0 < B \leq 1, \tau, p, q \in \mathbb{N}_0, p \leq q+1\right)$$

Proof. By Theorem 1, we have

$$\begin{split} \sum_{m=2}^{\infty} \ \xi_{m}^{\tau} \big(\alpha_{p}, \beta_{q} \big) m(a_{m} + b_{m}) (1 + B) \, \Big\{ 1 - \delta_{1} + \delta_{1} \, \Big(\frac{\alpha_{1} + m - 1}{\alpha_{1}} \Big)^{\tau} \Big\} \\ \leq & \sum_{m=2}^{\infty} \ \xi_{m}^{\tau} \big(\alpha_{p}, \beta_{q} \big) m(a_{m} + b_{m}) (1 + B) \, \Big\{ 1 - \delta_{2} + \delta_{2} \, \Big(\frac{\alpha_{1} + m - 1}{\alpha_{1}} \Big)^{\tau} \Big\} \leq \varphi(A, B), \end{split}$$

where $\varphi(A, B)$ is defined by (2.2), for

$$f(z) \in Q_{\overline{H}}\left(\tau; \delta_2; \lambda; A, B; \alpha_1 + 1, \sum_{i=2}^{p} \alpha_i, \sum_{j=1}^{q} \beta_j\right).$$
Hence $f(z) \in Q_{\overline{H}}\left(\tau; \delta_1; \lambda; A, B; \alpha_1 + 1, \sum_{i=2}^{p} \alpha_i, \sum_{j=1}^{q} \beta_j\right).$

The theorem is completely proved.

4. DISTORTION THEOREMS

Theorem 4. Let the function f(z) defined by (1.2) be in the class $Q_{\overline{H}}\left(\tau;\delta;\lambda;A,B;\sum_{i=1}^{p}\alpha_{i},\sum_{i=1}^{q}\beta_{j}\right)$.

Then for $|z| = |\overline{z}| = r < 1$, we have

$$r + b_{1}r - \frac{\varphi(A,B) r^{2}}{2\xi_{2}^{\tau}(\alpha_{p},\beta_{q})(1+B)\left\{1-\delta+\delta\left(\frac{\alpha_{1}+1}{\alpha_{1}}\right)^{\tau}\right\}} \leq |f(z)|$$

$$\leq r + b_{1}r - \frac{\varphi(A,B) r^{2}}{2\xi_{2}^{\tau}(\alpha_{p},\beta_{q})(1+B)\left\{1-\delta+\delta\left(\frac{\alpha_{1}+1}{\alpha_{1}}\right)^{\tau}\right\}}.$$
(4.1)

and

$$1 + b_{1} - \frac{r\varphi(A,B)}{\xi_{2}^{\tau}(\alpha_{p},\beta_{q})(1+B)\left\{1-\delta+\delta\left(\frac{\alpha_{1}+1}{\alpha_{1}}\right)^{\tau}\right\}} \leq \left|f'(z)\right| \\ \leq 1 + b_{1} + \frac{r\varphi(A,B)}{\xi_{2}^{\tau}(\alpha_{p},\beta_{q})(1+B)\left\{1-\delta+\delta\left(\frac{\alpha_{1}+1}{\alpha_{1}}\right)^{\tau}\right\}}. \tag{4.2}$$

Proof. Since $\xi_m^{\tau}(\alpha_p, \beta_q)m\left\{1 - \delta_1 + \delta_1\left(\frac{\alpha_1 + m - 1}{\alpha_1}\right)^{\tau}\right\}$ is an increasing function of $m(m \ge 2)$ and $f(z) \in Q_{\overline{H}}\left(\tau; \delta; \lambda; A, B; \sum_{i=1}^{p} \alpha_i, \sum_{j=1}^{q} \beta_j\right)$.

By theorem 1, we have

$$2\xi_{2}^{\tau}(\alpha_{p},\beta_{q})(1+B)\left\{1-\delta+\delta\left(\frac{\alpha_{1}+1}{\alpha_{1}}\right)^{\tau}\right\}\sum_{m=2}^{\infty}\left(a_{m}+b_{m}\right)$$

$$\leq\sum_{m=2}^{\infty}\xi_{m}^{\tau}\left(\alpha_{p},\beta_{q}\right)m(a_{m}+b_{m})(1+B)\left\{1-\delta+\delta\left(\frac{\alpha_{1}+m-1}{\alpha_{1}}\right)^{\tau}\right\}\leq\varphi(A,B) \quad (4.3)$$

i.e.

$$\sum_{m=2}^{\infty} \left(a_m + b_m \right) \le \frac{\varphi(A,B)}{2\xi_2^{\tau}(\alpha_p,\beta_q)(1+B) \left\{ 1 - \delta + \delta \left(\frac{\alpha_1 + 1}{\alpha_1} \right)^{\tau} \right\}},\tag{4.4}$$

where
$$\xi_2^{\tau}(\alpha_p, \beta_q) = \left[\frac{\alpha_1 \dots \alpha_p}{\beta_1 \dots \beta_q} (1 - \lambda)\right]^{\tau}$$
. (4.5)

$$|f(z)| \le r + b_1 r + \sum_{m=2}^{\infty} (a_m + b_m) r^m$$

$$\leq r + b_1 r + \frac{\varphi(A,B) \sum_{m=2}^{\infty} r^m}{2\xi_2^{\tau}(\alpha_p,\beta_q)(1+B)\left\{1-\delta+\delta\left(\frac{\alpha_1+1}{\alpha_1}\right)^{\tau}\right\}}$$

$$\leq r + b_1 r + \frac{\varphi(A,B) r^2}{2\xi_2^{\tau}(\alpha_p,\beta_q)(1+B)\left\{1-\delta + \delta\left(\frac{\alpha_1+1}{\alpha_1}\right)^{\tau}\right\}}$$

and

$$|f(z)| \ge r + b_1 r - \frac{\varphi(A,B) r^2}{2\xi_2^{\tau}(\alpha_p,\beta_q)(1+B)\left\{1-\delta + \delta\left(\frac{\alpha_1+1}{\alpha_1}\right)^{\tau}\right\}}.$$

Hence (4.1) follows.

Also by theorem 1, we have

$$\xi_2^{\tau} \left(\alpha_p, \beta_q \right) (1+B) \left\{ 1 - \delta + \delta \left(\frac{\alpha_1 + 1}{\alpha_1} \right)^{\tau} \right\} \sum_{m=2}^{\infty} \left(a_m + b_m \right) m \le \varphi(A, B)$$

$$\tag{4.6}$$

Thu

$$\begin{split} |f'(z)| &\leq 1 + b_1 + \sum_{m=2}^{\infty} (a_m + b_m) m r^{m-1} \\ &\leq 1 + b_1 + \frac{r\varphi(A,B)}{\xi_2^{\tau}(\alpha_p,\beta_q)(1+B) \left\{1 - \delta + \delta \left(\frac{\alpha_1 + 1}{\alpha_1}\right)^{\tau}\right\}} \end{split}$$

and

$$|f'(z)| \ge 1 + b_1 - \frac{r\varphi(A,B)}{\xi_2^{\tau}(\alpha_p,\beta_q)(1+B)\left\{1 - \delta + \delta\left(\frac{\alpha_1+1}{\alpha_1}\right)^{\tau}\right\}}.$$

This proves the theorem completely.

5. CLOSURE THEOREM

Let the functions $f_k(z)$ be defined, for $k = 1, 2, ..., \nu$ by

$$f_k(z) = z - \sum_{m=2}^{\infty} a_{m,k} z^m - \sum_{m=1}^{\infty} b_{m,k} z^m$$
(5.1)

Theorem 5. Let the function $f_k(z)$ defined by (5.1) be in the classes $Q_{\overline{H}}\left(\tau; \delta; \lambda; A, B; \sum_{i=1}^{p} \alpha_i, \sum_{j=1}^{q} \beta_j\right)$. Then the function

h(z) defined by

$$h(z) = z - \sum_{m=2}^{\infty} a_{m,k} z^m - \sum_{m=1}^{\infty} b_{m,k} z^m$$
 (5.2)

is in the class $Q_{\overline{H}}\left(\tau;\delta;\lambda;A,B;\sum_{i=1}^{p}\alpha_{i},\sum_{j=1}^{q}\beta_{j}\right)$

where

$$A = \min_{1 \le k \le \nu} \{A_i\} \text{ and } B = \min_{1 \le k \le \nu} \{B_i\}.$$
 (5.3)

Proof. Since $f_k(z) \in Q_{\overline{H}}\left(\tau; \delta; \lambda; A, B; \sum_{i=1}^{p} \alpha_i, \sum_{j=1}^{q} \beta_j\right)$ for $k = 1, 2, ..., \nu$, by Theorem 1 we have

$$\sum_{m=2}^{\infty} \xi_m^{\tau} (\alpha_p, \beta_q) m (a_{m,k} + b_{m,k}) (1 + B_k) \left\{ 1 - \delta + \delta \left(\frac{\alpha_1 + m - 1}{\alpha_1} \right)^{\tau} \right\} \leq \varphi(A_k, B_k)$$

Hence

$$\sum_{m=2}^{\infty} \xi_{m}^{\tau} (\alpha_{p}, \beta_{q}) m (1 + B_{k}) \left\{ 1 - \delta + \delta \left(\frac{\alpha_{1} + m - 1}{\alpha_{1}} \right)^{\tau} \right\} \left\{ \frac{1}{\nu} \sum_{k=1}^{\nu} \left(a_{m,k} + b_{m,k} \right) \right\}$$

$$= \frac{1}{\nu} \sum_{k=1}^{\nu} \left[\sum_{m=2}^{\infty} \xi_{m}^{\tau} (\alpha_{p}, \beta_{q}) m (a_{m,k} + b_{m,k}) (1 + B_{k}) \left\{ 1 - \delta + \delta \left(\frac{\alpha_{1} + m - 1}{\alpha_{1}} \right)^{\tau} \right\} \right]$$

$$\leq \frac{1}{\nu} \sum_{k=1}^{\nu} B_{k} - A_{k} - B_{k} b_{1} - b_{1} \leq B - A - B b_{1} - b_{1} \tag{5.4}$$

Thus

$$\sum_{m=2}^{\infty} \xi_{m}^{\tau} (\alpha_{p}, \beta_{q}) m (1 + B_{k}) \left\{ 1 - \delta + \delta \left(\frac{\alpha_{1} + m - 1}{\alpha_{1}} \right)^{\tau} \right\} \left\{ \frac{1}{\nu} \sum_{k=1}^{\nu} \left(a_{m,k} + b_{m,k} \right) \right\} \leq B - A - Bb_{1} - b_{1}$$
(5.5)

The theorem is proved completely.

Theorem 6. Let the functions $f_k(z)(k=1,2,\ldots,\nu)$ defined by (5.1) be in the class $Q_{\overline{H}}\left(\tau;\delta;\lambda;A,B;\sum_{i=1}^{p}\alpha_i,\sum_{j=1}^{q}\beta_j\right)$.

Then the function h(z) defined by

$$h(z) = \sum_{k=1}^{\nu} d_k f_k(z)$$
 (5.6)

is also in the class
$$Q_{\overline{H}}\left(\tau; \delta; \lambda; A, B; \sum_{i=1}^{p} \alpha_{i}, \sum_{j=1}^{q} \beta_{j}\right)$$
, where $\sum_{k=1}^{\nu} d_{k} = 1$ (5.7)

Proof. By (5.6) and (5.1), we have

$$h(z) = z - \sum_{m=2}^{\infty} \left(\sum_{k=1}^{\nu} d_k a_{m,k} \right) z^m - \sum_{m=1}^{\infty} \left(\sum_{k=1}^{\nu} d_k b_{m,k} \right) z^m$$
 (5.8)

Since
$$f_k(z) \in Q_{\overline{H}}\left(\tau; \delta; \lambda; A, B; \sum_{i=1}^{p} \alpha_i, \sum_{j=1}^{q} \beta_j\right)$$
. Then we have

$$\sum_{m=2}^{\infty} \xi_{m}^{\tau} (\alpha_{p}, \beta_{q}) m(1+B) \left\{ 1 - \delta + \delta \left(\frac{\alpha_{1}+m-1}{\alpha_{1}} \right)^{\tau} \right\} \sum_{k=1}^{\nu} d_{k} \left(a_{m,k} + b_{m,k} \right)$$

$$= \sum_{i=1}^{\nu} d_{k} \left[\sum_{m=2}^{\infty} \xi_{m}^{\tau} (\alpha_{p}, \beta_{q}) m(1+B) \left\{ 1 - \delta + \delta \left(\frac{\alpha_{1}+m-1}{\alpha_{1}} \right)^{\tau} \right\} (a_{m,k} + b_{m,k}) \right]$$

$$\leq \sum_{i=1}^{\nu} d_{k} \varphi(A, B) = \varphi(A, B)$$

Thus h(z) is in the class $Q_{\overline{H}}\left(\tau; \delta; \lambda; A, B; \sum_{i=1}^{p} \alpha_i, \sum_{j=1}^{q} \beta_j\right)$, where $\varphi(A, B)$ is defined by (2.2). The theorem is completely proved.

6. RADII OF CLOSE-TO-CONVEXITY, STARLIKENESS AND CONVEXITY

Theorem7. Let the function f(z) defined by (1.2) be in the class $Q_{\overline{H}}\left(\tau; \delta; \lambda; A, B; \sum_{i=1}^{p} \alpha_i, \sum_{j=1}^{q} \beta_j\right)$. Then f(z) is close-to-convex of order $\rho(0 \le \rho < 1)$ in $|z| < r_1\left(\tau; \delta; \lambda; A, B; \sum_{i=1}^{p} \alpha_i, \sum_{j=1}^{q} \beta_j, \rho\right)$,

where
$$r_1\left(\tau;\delta;\lambda;A,B;\sum_{i=1}^{p}\alpha_i,\sum_{j=1}^{q}\beta_j,\rho\right) = \inf_{m}\left[\frac{\xi_m^{\tau}(\alpha_p,\beta_q)(1-\rho)(1+B)\left(1-\frac{b_1}{(1-\rho)}\right)\left\{1-\delta+\delta\left(\frac{\alpha_1+m-1}{\alpha_1}\right)^{\tau}\right\}}{\varphi(A,B)}\right]^{1/m-1}$$
 (6.1)

Proof. It is sufficient to prove that

$$\left|f'(z) - 1\right| \le 1 - \rho$$

$$\left| f'(z) - 1 \right| \le \left| \sum_{m=2}^{\infty} a_m m z^{m-1} + \sum_{m=1}^{\infty} b_m m z^{m-1} \right| \tag{6.2}$$

Hence

$$\sum_{m=2}^{\infty} a_m \left(\frac{m}{1-\rho} \right) |z|^{m-1} + \sum_{m=1}^{\infty} b_m \left(\frac{m}{1-\rho} \right) |\overline{z}|^{m-1} \le 1$$
 (6.3)

By Theorem 1, we have

$$\frac{\sum_{m=2}^{\infty} \xi_m^{\tau} (\alpha_p, \beta_q) m(1+B) \left\{ 1 - \delta + \delta \left(\frac{\alpha_1 + m - 1}{\alpha_1} \right)^{\tau} \right\} (a_m + b_m)}{\varphi(A,B)} \le 1$$

$$(6.4)$$

$$\frac{\left(\frac{m}{1-\rho}\right)|z|^{m-1}}{1-\left(\frac{b_1}{1-\rho}\right)} \leq \frac{\xi_m^\tau(\alpha_p,\beta_q)m(1+B)\left\{1-\delta+\delta\left(\frac{\alpha_1+m-1}{\alpha_1}\right)^t\right\}}{\varphi(A,B)}$$

$$|z| = \left[\frac{\xi_m^{\tau}(\alpha_p, \beta_q)(1-\rho)(1+B)\left(1-\frac{b_1}{(1-\rho)}\right)\left\{1-\delta+\delta\left(\frac{\alpha_1+m-1}{\alpha_1}\right)^{\tau}\right\}}{\varphi(A,B)} \right]^{1/m-1} \quad (m \ge 2).$$

The Theorem is completely proved.

Theorem 8. Let the function f(z) defined by (1.2) be in the class $Q_{\overline{H}}\left(\tau;\delta;\lambda;A,B;\sum_{i=1}^{p}\alpha_{i},\sum_{j=1}^{q}\beta_{j}\right)$. Then f(z) is

starlike of order
$$\rho(0 \le \rho < 1)$$
 in $|z| < r_2\left(\tau; \delta; \lambda; A, B; \sum_{i=1}^{p} \alpha_i, \sum_{j=1}^{q} \beta_j, \rho\right)$

where
$$r_2\left(\tau; \delta; \lambda; A, B; \sum_{i=1}^{p} \alpha_i, \sum_{j=1}^{q} \beta_j, \rho\right) = \inf_{m} \left[\frac{\xi_m^{\tau}(\alpha_p, \beta_q)(1-\rho)m(1+B)(1-b_1)\left\{1-\delta+\delta\left(\frac{\alpha_1+m-1}{\alpha_1}\right)^{\tau}\right\}}{\varphi(A,B)(m-\rho)}\right]^{1/m-1}$$
 (6.5)

Proof. It is sufficient to prove that

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \le 1 - \rho$$

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \le \left| \sum_{m=2}^{\infty} a_m m z^{m-1} + \sum_{m=1}^{\infty} b_m m z^{m-1} \right|$$
(6.6)

Hence

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \le \frac{\sum_{m=2}^{\infty} a_m (m-1)|z|^{m-1} + \sum_{m=1}^{\infty} b_m (m-1)|\overline{z}|^{m-1}}{1 - \sum_{m=2}^{\infty} a_m |z|^{m-1} b_m |\overline{z}|^{m-1}}$$

$$(6.7)$$

Thus

$$\frac{(m-\rho)}{(1-\rho)(1-b_1)}(a_m+b_m)|z|^{m-1} \le 1$$

By using (6.4) and (6.8)

$$\frac{(m-\rho)}{(1-\rho)(1-b_1)}|z|^{m-1} \leq \frac{\xi_m^{\tau}(\alpha_p,\beta_q)m(1+B)\left\{1-\delta+\delta\left(\frac{\alpha_1+m-1}{\alpha_1}\right)^{\tau}\right\}}{\varphi(A,B)}$$

$$|z| \leq \left[\frac{\xi_m^{\tau}(\alpha_p, \beta_q)m(1+B)(1-\rho)(1-b_1)\left\{1-\delta+\delta\left(\frac{\alpha_1+m-1}{\alpha_1}\right)^{\tau}\right\}}{\varphi(A, B)(m-\rho)}\right]^{1/m-1}$$

The theorem is completely proved.

REFERENCES

- [1] A.A. Attiya and M.K. Aouf (2007): A study on certain class of analytic functions defined by Ruscheweyh Derivative, J. Soochow journal of mathematics., 33, No. 2, pp. 273-289.
- [2] J. Dziok and H.M. Srivastava (2003): Certain subclasses of analytic functions associated with the generalized hypergeometric functions, Integral Ttransform Spec. funct., 14, pp. 7-18.
- [3] J.Dziok and R.K. Raina (2004): Familiar of analytic functions associated with the wright generalized hypergeometric function, Demonstration Math., 37, No. 3, pp. 533-542.
- [4] H.Silverman (1998): Harmonic univalent functions with negative coefficients, J. Math Anal. Appl., 220, pp. 283-289.
- [5] H.M. Srivastava, Shu-Hai Li and Huo Tang (2009): Certain classes of k-uniformly close-to-convex functions and other related functions defined by using the Dziok-Srivastava operator, Bull. Math. Anal. Appl., 1(3), pp. 49-63.

Source of support: Nil, Conflict of interest: None Declared