INTUITIONISTIC FUZZY SUB COMMUTATIVE - IDEALS OF BCI-ALGEBRAS

N. Palaniappan, *R. Devi* and **P. S. Veerappan

Professor of Mathematics, Alagappa University, Karaikudi - 630 003, Tamilnadu, India.

*Department of Mathematics, K.S.R. College of Engineering, Tiruchengode - 637 215, Tamilnadu, India.

**Department of Mathematics, K. S. R. College of Technology, Tiruchengode – 637 215, Tamilnadu, India.

(Received on: 02-11-12; Revised & Accepted on: 13-12-12)

ABSTRACT

The notions of intuitionistic fuzzy sub commutative-ideals in BCI-algebras are introduced. The characterization properties of intuitionistic fuzzy sub commutative-ideals are obtained. We investigate the relations between intuitionistic fuzzy sub commutative-ideals and other intuitionistic fuzzy ideals, between intuitionistic fuzzy sub commutative-ideals and BCI-algebras and show that an intuitionistic fuzzy subset of a BCI-algebra is an intuitionistic fuzzy sub implicative – ideal if and only if it is both an intuitionistic fuzzy sub commutative – ideal and an intuitionistic fuzzy BCI-positive implicative ideal.

2000 Mathematics Subject classification: 06F35, 03G25, 03E72.

Key words and phrases: BCI-algebra, intuitionistic fuzzy ideal, intuitionistic fuzzy sub implicative - ideal, intuitionistic fuzzy sub commutative - ideal.

1. INTRODUCTION

BCK-algebras and BCI-algebras are two classes of logical algebras, which were initiated by K. Iseki [3, 4]. The notion of fuzzy sets, invented by L.A. Zadeh [18], has been applied to many field. In 1991, O.G. Xi [17] applied it to BCK-algebras. Since then fuzzy BCI/BCK-algebras have been extensively investigated by several researchers. For BCK-algebras, Y.B. Jun et al. [6, 9] introduced the notions of fuzzy positive implicative ideals and fuzzy commutative ideals, J. Meng et al. [14] introduced the notion of fuzzy implicative ideals. For BCI-algebras, Y.B. Jun et al. [5, 7, 8] introduced the notion of fuzzy q-ideals (i.e., fuzzy quasi-associative ideals), fuzzy p-ideals and fuzzy BCI-commutative ideals, Y. L. Liu et al. [11, 12] introduced the notions of fuzzy BCI-positive implicative ideals, fuzzy BCI-implicative ideals and fuzzy a-ideals.

The idea of "intuitionistic fuzzy set" was first published by Atanassov [1, 2] as a generalization of the notion of fuzzy sets. After that many researchers considered the intuitionistic fuzzification of ideals and subalgebras in BCK/BCI-algebras. The aim of this paper is to introduce the notions of intuitionistic fuzzy sub commutative - ideals and discuss their properties. The characterization properties of intuitionistic fuzzy sub commutative - ideals are obtained. We investigate the relations between intuitionistic fuzzy sub commutative - ideals and other intuitionistic fuzzy ideals, between intuitionistic fuzzy sub commutative - ideals and BCI-algebras and show that an intuitionistic fuzzy subset of a BCI-algebra is an intuitionistic fuzzy sub implicative - ideal if and only if it is both an intuitionistic fuzzy sub commutative - ideal and an intuitionistic fuzzy BCI-positive implicative - ideal.

2. PRELIMINARIES

Let us recall that an algebra (X, *, 0) of type (2, 0) is called a BCI-algebra if it satisfies the following conditions:

1.
$$((x * y) * (x * z)) * (z * y) = 0$$
,

2.
$$(x*(x*y))*y=0$$
,

3.
$$x * x = 0$$
,

4.
$$x * y = 0$$
 and $y * x = 0$ imply $x = y$, for all $x, y, z \in X$.

In a BCI-algebra, we can define a partial ordering " \leq " by $x \leq y$ if and only if x * y = 0. In a BCI-algebra X, the set $M = \{x \in X \mid 0 * x = 0\}$ is a subalgebra and is called the BCK-part of X. A BCI-algebra X is called proper if $X - M \neq \emptyset$, otherwise it is improper. Moreover, in a BCI-algebra the following conditions hold:

5.
$$(x * y) * z = (x * z) * y$$
,

6.
$$x * 0 = 0$$
,

7. $x \le y$ imply $x * z \le y * z$ and $z * y \le z * x$,

8.
$$0*(x*y) = (0*x)*(0*y)$$
,

9.
$$x*(x*(x*y)) = (x*y)$$
,

10.
$$(x*z)*(y*z) \le x*y$$
.

An intuitionistic fuzzy set A in a non-empty set X is an object having the form

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in X \},\$$

where the functions $\mu_A: X \to [0,1]$ and $\upsilon_A: X \to [0,1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non membership (namely $\upsilon_A(x)$) of each element $x \in X$ to the set A respectively, and $0 \le \mu_A(x) + \upsilon_A(x) \le 1$ for all $x \in X$.

Such defined objects are studied by many authors (see for Example two journals: 1. Fuzzy Sets and 2. Notes on Intuitionistic Fuzzy Sets) and have many interesting applications not only in mathematics (See Chapter 5 in the book [2]).

For the sake of simplicity, we shall use the symbol $A = \langle \mu_A, \nu_A \rangle$ for the intuitionistic fuzzy set $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in X\}$.

Throughout this paper X always means a BCI-algebra without any specification.

Definition 2.1: A non empty subset I of X is called an ideal of X if

 $(I_1) \ 0 \in I$,

 (I_2) $x * y \in I$ and $y \in I$ imply $x \in I$.

Definition 2.2 [13]: A non empty subset I of X is called an positive implicative ideal (i.e., weakly positive implicative ideal) of X if it satisfies (I_1) and (I_3) $((x*z)*z)*(y*z) \in I$ and $y \in I$ imply $x*z \in I$.

Definition 2.3 [10]: A non empty subset I of X is called an sub implicative - ideal of X if it satisfies (I_1) and $(I_4)((x*(x*y))*(y*x))*z \in I$ and $z \in I$ imply $y*(y*x) \in I$.

Definition 2.4 [10]: A non empty subset I of X is called an sub-commutative - ideal of X if it satisfies (I_1) and (I_5) $(y*(y*(x*(x*y))))*z \in I$ and $z \in I$ imply $x*(x*y) \in I$.

Definition 2.5: An IFS $A = \langle \mu_A, \nu_A \rangle$ in a BCI-algebra X is called an intuitionistic fuzzy ideal of X if it satisfies:

$$(F1) \mu_A(0) \ge \mu_A(x) \& \upsilon_A(0) \le \upsilon_A(x),$$

$$(F2) \mu_A(x) \ge \min \{ \mu_A(x * y), \mu_A(y) \},$$

$$(F3)\upsilon_A(x) \le \max\{\upsilon_A(x*y),\upsilon_A(y)\}, for all \ x,y \in X.$$

Definition 2.6: An IFS $A = \langle \mu_A, \nu_A \rangle$ in a BCI-algebra X is called an intuitionistic fuzzy positive implicative ideal of X if it satisfies (F1) and

$$(F4) \mu_A(x*z) \ge \min \{ \mu_A(((x*z)*z)*(y*z)), \mu_A(y) \},$$

$$(F5) \ \upsilon_A(x*z) \le \max \{\upsilon_A(((x*z)*z)*(y*z)), \upsilon_A(y)\}, \ for \ all \ x, y, z \in X.$$

Definition 2.7: An IFS $A = \langle \mu_A, \nu_A \rangle$ in a BCI-algebra X is called an intuitionistic fuzzy p-ideal of X if it satisfies (F1) and

$$(F6) \mu_{A}(x) \ge \min \{ \mu_{A}((x*z)*(y*z)), \mu_{A}(y) \},$$

$$(F7) \nu_{A}(x) \le \max \{ \nu_{A}((x*z)*(y*z)), \nu_{A}(y) \}, \text{ for all } x, y, z \in X.$$

Definition 2.8: Let $A = \langle \mu_A, \upsilon_A \rangle$ be an intuitionistic fuzzy set of a BCI-algebra X. For $t, s \in [0,1]$, the set $U(x;t) = \{x \in X \mid \mu_A(x) \geq t\}$ is called the upper t-level of A and the set $L(x;s) = \{x \in X \mid \upsilon_A(x) \leq s\}$ is called the lower s-level of A.

Theorem 2.9: Every intuitionistic fuzzy ideal A of X, μ_A is order reversing and ν_A is order preserving.

Theorem 2.10: Let A be an intuitionistic fuzzy ideal of X. Then $x * y \le z$ implies $\mu_A(x) \ge \min\{\mu_A(y), \mu_A(z)\}$ and $\nu_A(x) \le \max\{\nu_A(y), \nu_A(z)\}$ for all $x, y, z \in X$.

3. INTUITIONISTIC FUZZY SUB COMMUTATIVE - IDEALS OF BCI-ALGEBRAS

Definition 3.1: An intuitionistic fuzzy subset A of X is called an intuitionistic fuzzy sub commutative - ideal (briefly, IFSC-ideal) of X if it satisfies (F1) and

$$(F8) \mu_{A}(x*(x*y)) \ge \min \{ \mu_{A}((y*(y*(x*(x*y))))*z), \mu_{A}(z) \},$$

$$(F9) \nu_{A}(x*(x*y)) \le \max \{ \nu_{A}((y*(y*(x*(x*y))))*z), \nu_{A}(z) \}, \text{ for all } x, y, z \in X.$$

Example 3.2: Let $X = \{0, 1, 2, 3\}$ be a BCI-algebra with Cayley table as follows:

				_
*	0	1	2	3
0	0	0	0	0
1	1	0	0	1
2	2	1	0	2
3	3	3	3	0

Define $A: X \to [0,1]$ by $\mu_A(0) = \mu_A(3) = 0.8$ and $\mu_A(1) = \mu_A(2) = 0.2$; $\nu_A(0) = \nu_A(3) = 0.1$ and $\nu_A(1) = \nu_A(2) = 0.7$. It is easy to check that A is an IFSC-ideal of X.

Now we give the characterization of IFSC-ideals of X.

Theorem 3.3: Let A be an intuitionistic fuzzy ideal of X. Then the following are equivalent:

(i) A is an IFSC-ideal of X,

$$\text{(ii)} \ \ \mu_{A}(x*(x*y)) \geq \mu_{A}(y*(y*(x*(x*y)))) \ , \ \upsilon_{A}(x*(x*y)) \leq \upsilon_{A}(y*(y*(x*(x*y)))) \ \text{for all} \ \ x,y \in X.$$

$$\text{(iii)} \ \ \mu_{A}(x*(x*y)) = \mu_{A}(y*(y*(x*(x*y)))), \ \ \upsilon_{A}(x*(x*y)) = \upsilon_{A}(y*(y*(x*(x*y)))) \ \text{for all } x,y \in X.$$

(iv) if
$$x \le y$$
, then $\mu_A(x) = \mu_A(y*(y*x))$

$$\nu_A(x) = \nu_A(y*(y*x)) \text{ for all } x, y \in X.$$

$$\begin{array}{c} \text{(v) if } x \leq y \text{, then } \mu_A(x) \geq \mu_A(y*(y*x)) \\ \\ \upsilon_A(x) \leq \upsilon_A(y*(y*x)) \text{ for all } x,y \in X. \end{array}$$

Proof. (i) Implies (ii) Suppose that A is an IFSC-ideal of X. by (F1), (F8) and (F9) we have

$$\mu_{A}(x*(x*y)) \ge \min \{ \mu_{A}((y*(y*(x*(x*y))))*0), \mu_{A}(0) \}$$

$$= \mu_{A}(y*(y*(x*(x*y))))$$

and
$$\upsilon_A(x*(x*y)) \le \max\{\upsilon_A((y*(y*(x*(x*y))))*0),\upsilon_A(0)\}$$

= $\upsilon_A(y*(y*(x*(x*y)))).$

(ii) implies (iii) Since $y*(y*(x*(x*y))) \le x*(x*y)$, we have

$$\mu_A(y*(y*(x*(x*y)))) \ge \mu_A(x*(x*y))$$

and
$$\upsilon_{A}(y*(y*(x*(x*y)))) \le \upsilon_{A}(x*(x*y)).$$

Combining (ii) we obtain

$$\mu_{A}(x*(x*y)) = \mu_{A}(y*(y*(x*(x*y))))$$

$$\nu_{A}(x*(x*y)) = \nu_{A}(y*(y*(x*(x*y)))).$$

(iii) implies (iv) If $x \le y$, then x * y = 0. By (iii) we have

$$\mu_A(x) = \mu_A(y * (y * x))$$

and
$$\upsilon_A(x) = \upsilon_A(y * (y * x)).$$

(iv) implies (v) Trivial.

(v) implies (i) Since $x * (x * y) \le y$, by (v) we have

$$\mu_{A}(x*(x*y)) \ge \mu_{A}(y*(y*(x*(x*y))))$$

$$\ge \min\{\mu_{A}((y*(y*(x*(x*y))))*z), \mu_{A}(z)\}$$

and

and

$$\begin{aligned} \upsilon_{A}(x*(x*y)) &\leq \upsilon_{A}(y*(y*(x*(x*y)))) \\ &\leq \max \{\upsilon_{A}((y*(y*(x*(x*y))))*z), \upsilon_{A}(z)\}. \end{aligned}$$

Hence A is an IFSC-ideal of X, completing the proof.

Next we investigate the relation between IFSC-ideals and other intuitionistic fuzzy ideals.

Lemma 3.4: An intuitionistic fuzzy ideal A of X is an intuitionistic fuzzy p-ideal of X if and only if $\mu_A(x) \ge \mu_A(0*(0*x)),$ $\nu_A(x) \le \nu_A(0*(0*x)),$ for all $x \in X$.

Theorem 3.5: Any intuitionistic fuzzy p-ideal is an IFSC-ideal, but the converse is not true.

Proof. Let *A* be an intuitionistic fuzzy p-ideal of *X*. Then *A* is an intuitionistic fuzzy ideal. Because
$$[0*(0*(x*(x*y)))]*[y*(y*(x*(x*y)))] = [0*(y*(y*(x*(x*y))))]*[0*(x*(x*y))] \\ = [(0*y)*((0*y)*(0*(x*(x*y))))]*[0*(x*(x*y))] \\ \leq [0*(x*(x*y))]*[0*(x*(x*y))] = 0,$$

We have

$$0*(0*(x*(x*y))) \leq y*(y*(x*(x*y))), \text{ and so } \mu_{A}(0*(0*(x*(x*y)))) \geq \mu_{A}(y*(y*(x*(x*y))))$$
 and
$$\upsilon_{A}(0*(0*(x*(x*y)))) \leq \upsilon_{A}(y*(y*(x*(x*y)))).$$

By Lemma 3.4,

$$\mu_A(x*(x*y)) \ge \mu_A(y*(y*(x*(x*y))))$$
 and $\nu_A(x*(x*y)) \le \nu_A(y*(y*(x*(x*y))))$.

Hence A is an IFSC-ideal of X as Theorem 3.3 (ii).

To show the last half part, we see Example 3.2. It has known that A is an IFSC-ideal of X. But it is not an intuitionistic fuzzy p-ideal of X since

$$\mu_A(x) = 0.2 < 0.8 = \mu_A(0*(0*2))$$

and $\upsilon_A(x) = 0.7 > 0.1 = \upsilon_A(0*(0*2)).$

This completes the proof.

Definition 3.6: An intuitionistic fuzzy subset A of X is called an intuitionistic fuzzy sub implicative-ideal (briefly, IFSI-ideal) of X if it satisfies (F1) and

$$(F10) \mu_A(y*(y*x)) \ge \min \{ \mu_A(((x*(x*y))*(y*x))*z), \mu_A(z) \},$$

$$(F11) \nu_A(y*(y*x)) \le \max \{ \nu_A(((x*(x*y))*(y*x))*z), \nu_A(z) \}, \text{ for all } x, y, z \in X.$$

Lemma 3.7: Let A be an intuitionistic fuzzy ideal of X. Then the following are equivalent:

- (i) A is an IFSI-ideal of X,
- (ii) $\mu_{\Delta}(y*(y*x)) \ge \mu_{\Delta}((x*(x*y))*(y*x))$,

$$U_A(y*(y*x)) \le U_A((x*(x*y))*(y*x)), \text{ for all } x, y \in X.$$

(iii)
$$\mu_A(y*(y*x)) = \mu_A((x*(x*y))*(y*x))$$

 $\upsilon_A(y*(y*x)) = \upsilon_A((x*(x*y))*(y*x))$, for all $x, y \in X$.

Theorem 3.8: Any IFSI-ideal is an intuitionistic fuzzy BCI-positive implicative ideal, but the converse is not true.

Theorem 3.9: Any IFSI-ideal is an IFSC-ideal, but the converse is not true.

Theorem 3.10: Any IFSC-ideal is an intuitionistic fuzzy ideal, but the converse does not hold.

Lemma 3.11: An intuitionistic fuzzy ideal A of X is an intuitionistic fuzzy BCI-positive implicative ideal of X if and only if

$$\begin{split} & \mu_A(x*y) \geq \mu_A(((x*y)*y)*(0*y)), \\ & \upsilon_A(x*y) \leq \upsilon_A(((x*y)*y)*(0*y)), \text{ for all } x,y \in X. \end{split}$$

Now we give the characterization of intuitionistic fuzzy BCI-positive implicative ideals of X, which is needed in the sequel.

Theorem 3.12: An intuitionistic fuzzy ideal A of X is an intuitionistic fuzzy BCI-positive implicative ideal if and only if for all $x, y \in X$,

$$(F12)\,\mu_{A}(x*(x*(y*(y*x)))) \geq \mu_{A}((x*(x*y))*(y*x)),$$

$$(F13)\,\upsilon_{A}(x*(x*(y*(y*x)))) \leq \upsilon_{A}((x*(x*y))*(y*x)).$$

Proof. Let A be an intuitionistic fuzzy ideal satisfying (F12) and (F13). Since

$$((x*y)*((x*y)*x))*(x*(x*y)) = ((x*(x*(x*y)))*y)*((x*y)*x)$$
$$= ((x*y)*y)*(0*y),$$

We have

$$\mu_A[((x*y)*((x*y)*x))*(x*(x*y))] = \mu_A(((x*y)*y)*(0*y))$$
 and
$$\upsilon_A[((x*y)*((x*y)*x))*(x*(x*y))] = \upsilon_A(((x*y)*y)*(0*y)).$$

Substituting x * y for x and x for y in (F12) and (F13), we have

$$\mu_{A}[(x*y)*((x*y)*(x*(x*(x*y))))] \ge \mu_{A}(((x*y)*y)*(0*y))$$

$$\nu_{A}[(x*y)*((x*y)*(x*(x*(x*y))))] \le \nu_{A}(((x*y)*y)*(0*y)).$$

Since

$$(x*y)*((x*y)*(x*(x*(x*y)))) = (x*y)*((x*y)*(x*y))$$

= $x*y$

We have

$$\mu_A(x*y) \ge \mu_A(((x*y)*y)*(0*y))$$
 and
$$\nu_A(x*y) \le \nu_A(((x*y)*y)*(0*y)).$$

By Lemma 3.11, A is an intuitionistic fuzzy BCI-positive implicative ideal of X.

Conversely, let A be an intuitionistic fuzzy BCI-positive implicative ideal of X. Since

$$\begin{aligned} [((y*(y*x))*(y*x))*(x*y)]*[(x*(x*y))*(y*x)] \\ &= [((y*(y*x))*(x*y))*(y*x)]*[(x*(x*y))*(y*x)] \\ &\leq [(y*(y*x))*(x*y)]*(x*(x*y)) \\ &\leq (y*(y*x))*x = 0, \end{aligned}$$

we have

$$\mu_A[((y*(y*x))*(y*x))*(x*y)] \ge \mu_A[(x*(x*y))*(y*x)]$$
 and
$$\upsilon_A[((y*(y*x))*(y*x))*(x*y)] \le \upsilon_A[(x*(x*y))*(y*x)].$$

Let
$$s = y * x \text{ in } ((y * (y * x)) * (y * x)) * (x * y)$$
. Then

$$(a_1)$$
 $\mu_A[((y*s)*s)*(x*y)] \ge \mu_A((x*(x*y))*(y*x))$

$$(a_2)$$
 $\upsilon_A[((y*s)*s)*(x*y)] \le \upsilon_A((x*(x*y))*(y*x)).$

Let
$$t = x * (y * (y * x)) = x * (y * s)$$
. Because

$$[(((y*t)*s)*s)*(0*s)]*[((y*s)*s)*(x*y)] = [(((y*s)*s)*(0*s))*(((y*s)*s)*(x*y))]*t$$

$$\leq ((x*y)*(0*s))*t$$

$$= ((x*t)*y)*(0*s)$$

$$= ((x*(x*(y*s)))*y)*(0*s)$$

$$\leq ((y*s)*y)*(0*s)$$

$$= (0*s)*(0*s) = 0,$$

we have

$$\begin{split} &\mu_A[(((y*t)*s)*s)*(0*s)] \geq \mu_A[((y*s)*s)*(x*y)] \\ \text{and} &\quad & \upsilon_A[(((y*t)*s)*s)*(0*s)] \leq \upsilon_A[((y*s)*s)*(x*y)]. \end{split}$$

By Lemma 3.11, we have

$$(b_1)$$
 $\mu_A((y*t)*s) \ge \mu_A[((y*s)*s)*(x*y)]$

$$(b_2)$$
 $v_4((y*t)*s) \le v_4[((y*s)*s)*(x*y)].$

Since

$$[((x*t)*t)*(0*t)]*((y*t)*s) = [((x*t)*((y*s)*t)]*(0*t)$$

$$\leq ((x*t)*(y*s))*(0*t)$$

$$= [(x*(x*(y*s)))*(y*s)]*(0*t)$$

$$\leq ((y*s)*(y*s))*(0*t)$$

$$= 0*(0*t),$$

and

$$0 * t = 0 * (x * (y * (y * x)))$$

$$\leq 0 * (x * x) = 0,$$

We have 0 * (0 * t) = 0, and so

$$\mu_A[((x*t)*t)*(0*t)] \ge \mu_A((y*t)*s)$$
 and
$$\upsilon_A[((x*t)*t)*(0*t)] \le \upsilon_A((y*t)*s).$$

By Lemma 3.11 again, we have

$$(c_1)$$
 $\mu_A(x*t) \ge \mu_A((y*t)*s)$

$$(c_2)$$
 $\upsilon_A(x*t) \le \upsilon_A((y*t)*s).$

Combining $(a_1), (a_2), (b_1), (b_2)$ and $(c_1), (c_2)$ we obtain

$$\mu_{A}(x*t) \ge \mu_{A}((x*(x*y))*(y*x))$$

and
$$U_A(x*t) \le U_A((x*(x*y))*(y*x)),$$

i.e.,
$$\mu_A(x*(x*(y*(y*x)))) \ge \mu_A((x*(x*y))*(y*x)),$$

 $\upsilon_A(x*(x*(y*(y*x)))) \le \upsilon_A((x*(x*y))*(y*x)).$

The proof is complete.

The following theorem shows the close relations among IFSI-ideals, IFSC-ideals and intuitionistic fuzzy BCI-positive implicative ideals.

Theorem 3.13: Let A be an intuitionistic fuzzy subset of X. Then A is an IFSI-ideal if and only if it is both an IFSC-ideal and an intuitionistic fuzzy BCI-positive implicative ideal.

Proof: If A is an IFSI-ideal, by Theorem 3.8 and 3.9, A is both an IFSC-ideal and an intuitionistic fuzzy BCI-positive implicative ideal. Conversely, if A is both an IFSC-ideal and an intuitionistic fuzzy BCI-positive implicative ideal, by Theorem 3.10, A is an intuitionistic fuzzy ideal. For any $x, y \in X$, by Theorem 3.3 (ii) and Theorem 3.12, we have

$$\begin{split} \mu_A(y*(y*x)) &\geq \mu_A(x*(x*(y*(y*x)))) \geq \mu_A((x*(x*y))*(y*x)) \\ \upsilon_A(y*(y*x)) &\leq \upsilon_A(x*(x*(y*(y*x)))) \leq \upsilon_A((x*(x*y))*(y*x)). \end{split}$$
 and

Hence A is an IFSI-ideal of X as Lemma 3.7(ii). The proof is complete.

Next we investigate the relation between IFSC-ideals and BCI-algebras.

Definition 3.14 [16]: A BCI-algebra is said to be commutative if and only if x*(x*y) = (y*(y*(x*(x*y)))).

If
$$A$$
 is an intuitionistic fuzzy ideal of X , let $\mu_{A^*} = \mu_{\mu_A(0)} = \left\{x \in X \mid \mu_A(x) = \mu_A(0)\right\}$, $\upsilon_{A^*} = \upsilon_{\upsilon_A(0)} = \left\{x \in X \mid \upsilon_A(x) = \upsilon_A(0)\right\}$ and $B(X) = \left\{x \in X \mid 0 \le x\right\}$.

Theorem 3.15: Let A be an intuitionistic fuzzy ideal of X. If $\langle X/\mu_A, X/\upsilon_A \rangle$ is an commutative BCI-algebra, then A is an IFSC - ideal of X. Conversely, if A is an IFSC - ideal with $\langle \mu_{A^*}, \upsilon_{A^*} \rangle \supseteq B(X)$, then $\langle X/\mu_A, X/\upsilon_A \rangle$ is a commutative BCI-algebra.

Proof. If $\langle X / \mu_A, X / \upsilon_A \rangle$ is an commutative BCI-algebra, then for any $x, y \in X$, we have

$$(\mu_y * (\mu_y * (\mu_x * (\mu_x * \mu_y)))) = (\mu_x * (\mu_x * \mu_y))$$

and
$$(\upsilon_{v} * (\upsilon_{v} * (\upsilon_{v} * (\upsilon_{v} * (\upsilon_{v} * \upsilon_{v}))))) = (\upsilon_{v} * (\upsilon_{v} * \upsilon_{v})).$$

Namely $\mu_{(y*(y*(x*(x*y))))} = \mu_{(x*(x*y))}$ and $\nu_{(y*(y*(x*(x*y))))} = \nu_{(x*(x*y))}$.

Hence

$$\mu_A[(x*(x*y))*((y*(y*(x*(x*y))))] = \mu_A(0)$$
 and
$$\upsilon_A[(x*(x*y))*((y*(y*(x*(x*y))))] = \upsilon_A(0).$$

Thus
$$\mu_A(x*(x*y)) \ge \min \{ \mu_A((x*(x*y))*((y*(y*(x*(x*y)))), \mu_A((y*(y*(x*(x*y))))) \}$$

= $\mu_A((y*(y*(x*(x*y)))), \mu_A((y*(y*(x*(x*y))))) \}$

and
$$\upsilon_A(x*(x*y)) \le \max\{\upsilon_A((x*(x*y))*((y*(y*(x*(x*y)))),\upsilon_A((y*(y*(x*(x*y)))))\}$$

= $\upsilon_A((y*(y*(x*(x*y)))).$

Therefore A is an IFSC-ideal of X.

Conversely, assume that
$$A$$
 is an IFSC-ideal with $\langle \mu_{A^*}, \nu_{A^*} \rangle \supseteq B(X)$. For any $x, y \in X$, since $(x*(x*y))*((y*(y*(x*(x*y)))) \ge (x*(x*y))*(x*(x*y)) = 0$,

we have
$$(x*(x*y))*((y*(y*(x*(x*y)))) \in B(X) \subseteq \langle \mu_{A^*}, \nu_{A^*} \rangle$$
, and so
$$\mu_A[(x*(x*y))*((y*(y*(x*(x*y))))] = \mu_A(0)$$
 and
$$\nu_A[(x*(x*y))*((y*(y*(x*(x*y))))] = \nu_A(0).$$

On the other hand,

$$(y*(y*(x*(x*y))))*(x*(x*y)) \leq (x*(x*y))*(x*(x*y)) = 0,$$
 so
$$\mu_A[(y*(y*(x*(x*y))))*(x*(x*y))] = \mu_A(0)$$
 and
$$\upsilon_A[(y*(y*(x*(x*y))))*(x*(x*y))] = \upsilon_A(0).$$

Thus we obtain $\mu_{(v*(v*(x*(x*v))))} = \mu_{(x*(x*v))}$ and $\nu_{(v*(v*(x*(x*v))))} = \nu_{(x*(x*v))}$.

Namely
$$(\mu_y * (\mu_x * (\mu_x * (\mu_x * \mu_y)))) = (\mu_x * (\mu_x * \mu_y))$$

and $(\nu_y * (\nu_x * (\nu_x * (\nu_x * \nu_y)))) = (\nu_x * (\nu_x * \nu_y)).$

It means that $\left\langle X \, / \, \mu_{\!\scriptscriptstyle A}, X \, / \, \upsilon_{\!\scriptscriptstyle A} \right
angle$ is an commutative BCI-algebra. The proof is complete.

REFERENCES

- [1] K.T. Atanassov, Intuitionistic Fuzzy sets, Fuzzy Sets and systems, 20(1986), 87-96.
- [2] K.T. Atanassov, Intuitionistic fuzzy sets. Theory and Applications, Studies in Fuzziness and Soft Computing, 35. Heidelberg; Physica-Verlag. 1999.
- [3] K. Iseki, On BCI-algebras, Math. Sem. Notes Kobe Univ. 8 (1980), no. 1, 125-130.
- [4] K. Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1978/79), no. 1, 1-26.
- [5] Y. B. Jun, Fuzzy quasi-associative ideals in BCI-algebras, J. Fuzzy Math. 4 (1996), no. 3, 567-581.
- [6] Y. B. Jun, S. M. Hong, J. Meng and X. L. Xin, Characterizations of fuzzy positive implicative ideals in BCK-algebras, Math. Japon. 40 (1994), no. 3, 503-507.
- [7] Y. B. Jun and J. Meng, Fuzzy p-ideals in BCI-algebras, Math. Japon. 40 (1994), no. 2, 271-282.
- [8] Y. B. Jun and J. Meng, Fuzzy commutative ideals in BCI-algebras, Commun, Korean Math. Soc. 9 (1994), no. 1, 19-25.

- [9] Y. B. Jun and E. H. Roh, Fuzzy commutative ideals of BCK-algebras, Fuzzy Sets and Systems 64 (1994), no. 3, 401-405.
- [10] Y. L. Liu and J. Meng, Sub-implicative ideals and sub-commutative ideals of BCI-algebras, Soochew J. Math. 26 (2000), no. 4, 441-453.
- [11] Y. L. Liu and J. Meng, Fuzzy ideals in BCI-algebras, Fuzzy Sets and System 123 (2001), no. 2, 227-237.
- [12] Y. L. Liu and X. H. Zhang, Fuzzy a-ideals of BCI-algebras, Adv. Math. (China) 31 (2002), no. 1, 65-73.
- [13] Y. L. Liu and X. H. Zhang, Characterization of weakly positive implicative BCI-algebras, J. Hanzhong Teachers College (1) (1994), 4-8.
- [14] J. Meng, Y. B. Jun and H. S. Kim, Fuzzy implicative ideals of BCK-algebras, Fuzzy Set and Systems 89 (1997), no. 2, 243-248.
- [15] J. Meng, Y. B. Jun and H. S. Kim, Implicative BCI-algebras, Pure Appl. Math. 8 (1992), no. 2, 99-103.
- [16] J. Meng and X. L. Xin, Commutative BCI-algebras, Math. Japon. 37 (1992), no. 3, 562-572.
- [17] O. G. Xi, Fuzzy BCK-algebras, Math. Japon. 36 (1991), no. 5, 935-942.
- [18] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353.

Source of support: Nil, Conflict of interest: None Declared