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ABSTRACT 

In this paper, we have investigated the synchronization and anti-synchronization behaviour of two identical dynamical 
model of charge particle in the field of three plane waves evolving from different initial conditions using the active 
control technique based on the Lyapunov stability theory and Routh-Hurwitz criteria. The designed controller, with our 
own choice of the coefficient matrix of the error dynamics that satisfy the Lyapunov stability theory and the Routh-
Hurwitz criteria, are found to be effective in the stabilization of the error states at the origin, thereby, achieving 
synchronization and anti-synchronization between the states variables of two nonlinear dynamical systems under 
consideration. The results are validated by numerical simulations using mathematica. 
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1. INTRODUCTION 
In 1990, after the introduction of PC method [1] to synchronize the two identical chaotic systems with different initial 
conditions, chaos synchronization has received an increasing attention and been investigated widely due to its potential 
application in almost all areas of engineering and sciences [2–4]. Many effective control methods [5–8] have been 
proposed to achieve chaos synchronization, such as linear and nonlinear feedback controls. However, most researches 
on chaos synchronization focused on certain chaotic systems without consideration of parameter variation uncertainty 
and external disturbance perturbation. But in practical situations, many chaotic systems are inevitably affected by 
parameter variations and external disturbances. Moreover, some or all of the system parameters and external 
disturbance uncertainties are unknown or variable from time to time. Therefore, investigation of system parameter 
variations and external disturbance perturbations in synchronization between drive and response chaotic systems has 
become an interesting and important research topic in recent years. In the work [9], an adaptive control law with single-
state variable feedback was derived and applied to achieve the state synchronization of two identical Lorenz systems. 
An active sliding mode control was proposed by Zhang and Ma [10] to synchronize chaotic systems with parameter 
perturbation. Zhang et al. [11] also presented a sliding mode control to resolve the conquer synchronization problem in 
noise-perturbed chaotic systems. In the work [12], an intermittent parametric adaptive control method was studied to 
synchronize two logistic maps, and the corresponding sufficient conditions for synchronization are drawn. Based on 
Lyapunov stabilization theory, Huang et al. [13] proposed an adaptive controller with parameters identification for 
synchronizing a class of chaotic systems with unknown parameters. Park [14] developed a nonfragile controller using 
the Lyapunov functional technique combined with LMI technique to achieve synchronization problem of a class of 
chaotic systems with controller gain variations. Shahzad [15-17] has studied the synchronization and AS behavior for 
the two identical dynamical models of satellites motion using active control technique and found a robust 
synchronization as well as AS. 
 
Keeping in mind the above studies, in this article, we have applied the active control technique based on the Lyapunov 
stability theory and the Routh-Hurwitz criteria to study the synchronization and AS behavior of two identical 
dynamical models of charge particle in the field of three plane waves evolving from different initial conditions. The 
system under consideration is chaotic for some values of parameter involved in the system. In synchronization, the two 
systems (master & slave) are synchronized that starts with different initial conditions. The same problem may be 
treated as the design of control laws for full chaotic slave system using the known information of the master system so 
as to ensure that the controlled receiver synchronizes with the master system. Hence, the slave chaotic system 
completely traces the dynamics of the master system in the course of time. The aim of this study is to trace the chaotic 
dynamics of the master system under study based on synchronization and AS phenomenon. To the best of my 
knowledge nobody studied this before. 
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2. DESCRIPTION OF THE MODEL 
The interaction of charged particles with a wave packet is a basic and challenging problem appearing in astrophysics, 
plasma physics, and condensed matter physics that may yield undesirable effects in a number of technological devices 
such as the destruction of magnetic surfaces in tokamaks. The simplest mathematical model [18] to examine the 
problem of regularization of the chaotic dissipative dynamics of a charged particle in a wave packet by a small 
amplitude uncorrelated wave, which is added to the initial wave packet, is given by: 

( ) ( ) ( )0 0 0sin sin sinc c c s s s
ex x E k x t E k x t E k x t
m

γ ω ω ω + = − − + − + − −Ψ   .            (2.1) 

where the amplitudes 0E , cE , sE , wave numbers 0k , ck , sk , and frequencies 0ω , cω , sω  correspond to the main, 

chaos-inducing, and chaos-suppressing waves, respectively, Ψ  is an initial phase, e and m are the charge and mass of 
the particle, respectively, and where weak dissipation ( 1γ  ) and non-uniform amplitudes ( , 0/ 1c sE E < ) are 
assumed. 
 
3. SYNCHRONIZATION VIA ACTIVE CONTROL  
For a system of two coupled chaotic dynamical systems:  
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where ( ) nx t ∈ℜ  & ( ) ny t ∈ℜ are the phase space (state variables), ( , )f x t  & ( , )g y t  are the corresponding 
nonlinear functions and ( )u t  are the control functions to be determined, synchronization in a direct sense implies 

lim ( ) ( ) 0
t

x t y t
→∞

− → . When this occurs the coupled systems are said to be completely synchronized. Since chaos 

synchronization is related to the observer problem in control theory [19], the problem may be treated as the design of 
control laws for full chaotic slave system using the known information of the master system so as to ensure that the 
controlled receiver synchronizes with the master system and hence, the slave chaotic system completely traces the 
dynamics of the master in the course of time. 
 
In order to formulate the active controllers, we write the system (2.1) in two first order differential equations as shown 
below: 
 
Let      1x x=  and 1 2x x= , then we have 

1 2x x= , 

( ) ( ) ( )2 2 0 0 1 0 1 1sin sin sinc c c s s s
ex x E k x t E k x t E k x t
m

γ ω ω ω = − − − + − + − −Ψ  .            (3.3) 

 
Let us define another system 

1 2 1( ),y y u t= +  

( ) ( ) ( )2 2 0 0 1 0 1 1 2sin sin sin ( )c c c s s s
ey y E k y t E k y t E k y t u t
m

γ ω ω ω = − − − + − + − −Ψ +  .       (3.4) 

 
Where (3.3) and (3.4) are called the master and slave systems respectively and in slave system, 1( )u t  and 2 ( )u t  are 

control functions to be determined. Let ( ) ( ) ( )i i ie t y t x t= −  be the synchronization errors such that lim ( ) 0it
e t

→∞
→  

for 1, 2i = . From (3.3) and (3.4), we have 

1 2 1( ) ( ) ( ),e t e t u t= +  

( ) ( ) ( ) ( )0
2 2 0 1 0 0 1 0 1 1( ) sin sin sin sinc

c c c c
eE eEe t e k y t k x t k y t k x t
m m

γ ω ω ω ω   = − − − − − − − − −   

         
( ) ( )1 1 2sin sin ( )s

s s s s
eE k y t k x t u t
m

ω ω − − −Ψ − − −Ψ +  .              (3.5)
 



Mohammad Shahzad*/ Synchronization & Anti-synchronization of charged particle in the field of three plane waves via Active 
Control/ IJMA- 3(11), Nov.-2012. 

© 2012, IJMA. All Rights Reserved                                                                                                                                                                    3937  

 
In order to express (3.5) as only linear terms in 1( )e t  and 2 ( )e t , we redefine the control functions as follows: 

 1 1( ) ( ),u t v t=  

( ) ( ) ( ) ( )0
2 0 1 0 0 1 0 1 1( ) sin sin sin sinc

c c c c
eE eEu t k y t k x t k y t k x t
m m

ω ω ω ω   = − − − + − − −   
 

         
( ) ( )1 1 2sin sin ( )s

s s s s
eE k y t k x t v t
m

ω ω + − −Ψ − − −Ψ +  .              (3.6)
 

 
From (3.5) and (3.6), we have  

1 2 1( ) ( ) ( ),e t e t v t= +  

2 2 2( ) ( ).e t e v tγ= − +                     (3.7) 
 
Equation (3.7) is the error dynamics, which can be interpreted as a control problem where the system, to be controlled 
is a linear system with control inputs ( )( ) ( ), ( )i i i iv t v e t e t=

 
for 1, 2i = . As long as these feedbacks stabilize the 

system, lim ( ) 0it
e t

→∞
→  for 1, 2i = . This simply implies that the two systems (3.3) and (3.4) evolving from different 

initial conditions are synchronized. As functions of 1( )e t  and 2 ( )e t , we choose 1( )v t  and 2 ( )v t  as follows: 

 1 1

2 2

  ( )   ( )
( ) ( )

v t e t
D

v t e t
   

=   
   

                    (3.8) 

where 
a b

D
c d
 

=  
 

, is a 2 2×  constant feedback matrix to be determined. Hence the error system (3.7) can be 

written as: 

 1 1

2 2

( )   ( )
( ) ( )

e t e t
C

e t e t
   

=   
   





                    (3.9) 

where 
1a b

C
c d γ

+ 
=  − 

, is the coefficient matrix.  

 
According to the Lyapunov stability theory and the Routh-Hurwitz criteria, if 
 0,a d γ+ − <  

 ( ) ( )1 0c b a d γ+ − − < .                  (3.10) 
 
then the eigen values of the coefficient matrix of error system (3.7) must be real or complex with negative real parts 
and, hence, stable synchronized dynamics between systems (3.3) and (3.4) is guaranteed. Let 
 ( ) ( )1a d c b a d Eγ γ+ − = + − − = − ,                (3.11) 
 
Where 0E >  is a real number which is usually set equal to 1. There are several ways of choosing the constant 
elements a, b, c, d of matrix D in order to satisfy the Lyapunov stability theory and the Routh-Hurwitz criteria (3.10). 
 
4. ANTI-SYNCHRONIZATION VIA ACTIVE CONTROL  
Anti-synchronization (AS) of two coupled systems given by (3.1) and (3.2) means lim ( ) ( ) 0

t
x t y t

→∞
+ → . This 

phenomenon has been investigated both experimentally and theoretically in many physical systems [15, 20-25]. In a 
recent study of Shahzad [15], it has been found that the AS phenomenon was working faster than synchronization. 
 
In order to formulate the active controllers for AS, we need to redefine the error functions as ( ) ( ) ( )i i ie t y t x t= + , 

where ( )ie t  are called the AS errors such that lim ( ) 0it
e t

→∞
→  for 1, 2i = . From (3.3) and (3.4), error dynamics can 

be written as: 
 

1 2 1( ) ( ) ( ),e t e t u t= +
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( ) ( ) ( ) ( )0
2 2 0 1 0 0 1 0 1 1( ) sin sin sin sinc

c c c c
eE eEe t e k y t k x t k y t k x t
m m

γ ω ω ω ω   = − − − + − − − + −   

         
( ) ( )1 1 2sin sin ( )s

s s s s
eE k y t k x t u t
m

ω ω − − −Ψ + − −Ψ +  .                  (4.1) 

 
In order to express (4.1) as only linear terms in 1( )e t  and 2 ( )e t , we redefine the control functions as follows: 

 1 1( ) ( ),u t v t=  

( ) ( ) ( ) ( )0
2 0 1 0 0 1 0 1 1( ) sin sin sin sinc

c c c c
eE eEu t k y t k x t k y t k x t
m m

ω ω ω ω   = − + − + − + −   
 

         
( ) ( )1 1 2sin sin ( )s

s s s s
eE k y t k x t v t
m

ω ω + − −Ψ + − −Ψ +  .               (4.2) 

 
From (4.1) and (4.2), we have  

1 2 1( ) ( ) ( ),e t e t v t= +  

2 2 2( ) ( ) ( ).e t e t v tγ= − +                     (4.3) 
 
Equation (4.3) is the error dynamics, which can be interpreted as a control problem where the system, to be controlled 
is a linear system with control inputs ( )( ) ( ), ( )i i i iv t v e t e t=

 
for 1, 2i = . As long as these feedbacks stabilize the 

system, lim ( ) 0it
e t

→∞
→  for 1, 2i = . This simply implies that the two systems (3.3) and (3.4) evolving from different 

initial conditions are anti-synchronized. As functions of 1( )e t  and 2 ( )e t , we choose 1( )v t  and 2 ( )v t  as follows: 

 1 1

2 2

  ( )   ( )
( ) ( )

v t e t
D

v t e t
   

=   
   

                    (4.4) 

where 
a b

D
c d
 

=  
 

, is a 2 2×  constant feedback matrix to be determined. Hence the error system (4.3) can be 

written as: 

 1 1

2 2

( )   ( )
( ) ( )

e t e t
C

e t e t
   

=   
   





                    (4.5) 

where 
1a b

C
c d γ

+ 
=  − 

, is the coefficient matrix.  

 
According to the Lyapunov stability theory and the Routh-Hurwitz criteria, if 
 0,a d γ+ − <  

 ( ) ( )1 0c b a d γ+ − − < .                    (4.6) 
 
then the eigen values of the coefficient matrix of error system (4.3) must be real or complex with negative real parts 
and, hence, stable anti-synchronized dynamics between systems (3.3) and (3.4) is guaranteed. Let 
 ( ) ( )1a d c b a d Eγ γ+ − = + − − = − .                  (4.7) 

Where 0E >  is a real number which is usually set equal to 1. There are several ways of choosing the constant 
elements a, b, c, d of matrix D in order to satisfy the Lyapunov stability theory and the Routh-Hurwitz criteria (4.6). 
 
5. NUMERICAL SIMULATION 
For the constant elements of feedback matrix, choosing 0.5a d= = −  and for the parameters involved in system 
under investigation, 0.1γ = , 0 1ω = , 2.26cω = , 0.5sω = , 0 1k = , 1.22ck = , 0.75sk =  0 0.3E = , 

0.3cE = , 0.3sE = , 0.4e = , / 3πΨ = , 0.4m =  together with the initial conditions for synchronization are  

[ ] [ ]1 1(0), (0) 0,0x y =  and [ ] [ ]2 2(0), (0) 0.1,1.5x y = , and for AS are [ ] [ ]1 1(0), (0) 0,0x y =  and 

[ ] [ ]2 2(0), (0) 0.1,1x y = , we have simulated the system under consideration using mathematica for both 
synchronization as well as AS phenomenon. The results obtained show that the system under consideration achieved  
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synchronization & AS. Phase plots, time series analysis and error analysis diagrams are the witness of achieving robust 
synchronization as well as AS between master and slave system given by (3.3) & (3.4). Further, it also has been 
confirmed by the convergence of the synchronization and AS quality defined by 

 

2 2
1 2( ) ( ) ( )e t e t e t= +                      (5.1)  

 
Figure (7) confirms that the convergence quality in both synchronization and AS phenomenon which is almost same 
and sure for the simulated dynamical models of charge particle in the field of three plane waves. 
 

     
 

   
 

   

 
 
6. CONCLUSION 
In this paper, we have investigated the synchronization and AS behaviour of the two identical dynamical models of 
charge particle in the field of three plane waves evolving from different initial conditions via the active control  
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technique based on the Lyapunov stability theory and the Routh-Hurwitz criteria. The results were validated by 
numerical simulations using mathematica. For the errors in synchronization and AS behavior of the system under 
study, we have observed that the rate of convergence of errors is almost same and sure in synchronization as well AS 
phenomenon that have been clearly seen in figure (7). We can conclude that the two identical dynamical models of 
charge particle in the field of three plane waves have achieved a robust synchronization as well as AS. 
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