International Journal of Mathematical Archive-2(3), Mar. - 2011, Page: 382-384 **MA** Available online through <u>www.ijma.info</u> **ISSN 2229 - 5046**

ON PRESERVING (1, 2)*-g- CLOSED SETS IN BITOPOLOGY

¹M. L.Thivagar, ²M. Joseph Israel and ³O. Ravi

1,2. Department of Mathematics, Arul Anandar College, Karumathur, Madurai Dt., Tamil Nadu, India 3. Department of Mathematics, PMT College, Usilampatti, Madurai Dt., Tamil Nadu, India, E-mail: siingam@yahoo.com, mlthivagar@yahoo.co.in.

(Reviewed on: 04-02-11; Accepted on: 23-02-11) _____

ABSTRACT

The purpose of this paper is to introduce new weak forms of continuity and closure (which we call (1, 2)*-a-continuity and $(1, 2)^*$ -a-closure) and to use these forms to strengthen some of the bitopological results of Ravi et al. [6].

2000 Mathematics Subject Classification: 54E55.

Key words and phrases: (1, 2)*-a-continuity and (1, 2)*-a-closed function.

1. INTRODUCTION:

Generalized closed sets (or g-closed sets) were introduced by Levine in [4]. Levine established conditions under which functions and inverse functions preserve g-closed sets. In [3], Cueva improved one of Levine's results. These results have recently been generalized to bitopological spaces by Ravi et al [6]. In [2], Baker strengthened some of the topological results of Cueva and Levine. The purpose of this paper is to introduce new weak forms of continuity and closure namely $(1.2)^*$ -acontinuity and $(1,2)^*$ -a-closed functions in bitopological spaces and to use these forms to strengthen some of the bitopological results of Ravi et al [6]. We also characterize (1, 2)*-T_{1/2} spaces in terms of (1,2)*-a-continuity and (1,2)*-aclosure. Finally some of the basic properties of (1, 2)*-acontinuous functions and $(1,2)^*$ -a-closed functions are investigated.

2. PRELIMINARIES:

Throughout the paper, X, Y and Z denote bitopological spaces.

Definition: 2.1[5]

A subset S of a space (X, τ_1, τ_2) is said to be $\tau_{1,2}$ -open if S = A \cup B where A $\in \tau_1$ and B $\in \tau_2$. The complement of $\tau_{1,2}$ -open set is $\tau_{1,2}$ -closed.

The family of all $\tau_{1,2}$ -open [resp. $\tau_{1,2}$ -closed] subsets of X is denoted by $(1,2)^*-O(X)$ [resp. $(1,2)^*-C(X)$].

Note: 2.2[5]

Notice that $\tau_{1,2}$ -open subsets of X need not necessarily form a topology.

Definition: 2.3[5]

Let S be a subset of X. Then (i) The $\tau_{1,2}$ -interior of S, denoted by $\tau_{1,2}$ -int(S), is defined as \cup {FIF \subseteq S and F is $\tau_{1,2}$ -open};

*Corresponding author: O. Ravi² * *E-mail: siingam@yahoo.com

International Journal of Mathematical Archive- 2 (3), Mar. - 2011

(ii) The $\tau_{1,2}$ -closure of S, denoted by $\tau_{1,2}$ -cl(S), is defined as \cap {F|S \subseteq F and F is $\tau_{1,2}$ -closed}.

Definition: 2.4[6]

A subset S of a space (X, τ_1, τ_2) is said to be $(1,2)^*$ -g-closed if $\tau_{1,2}$ -cl(S) \subseteq U whenever S \subseteq U and U is $\tau_{1,2}$ -open in X.

The complement of $(1,2)^*$ -g-closed set is $(1,2)^*$ -g-open.

Definition: 2.5[6]

A function f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be $(1,2)^*$ -gcontinuous if $f^{-1}(F)$ is $(1,2)^*$ -g-closed set in X for every $\sigma_{1,2}$ closed set F of Y.

Theorem: 2.6[6]

A subset S of X is (1,2)*-g-closed if and only if $\tau_{1,2}$ -cl(S)-S contains no non-empty $\tau_{1,2}$ -closed set.

Theorem: 2.7[6]

If S is a $(1,2)^*$ -g-closed subset in X and if f: $(X, \tau_1, \tau_2) \rightarrow (Y,$ σ_1 , σ_2) is (1.2)*-continuous and (1.2)*-closed, then f(S) is $(1,2)^*$ -g-closed set in Y.

Theorem: 2.8[6]

A subset A of X is $(1,2)^*$ -g-open in X if and only if $F \subseteq \tau_{1,2}$ int(A) whenever F is $\tau_{1,2}$ -closed set and F \subseteq A.

Theorem:2.9[6]

If f: X \rightarrow Y is (1,2)*-g-continuous and (1,2)*-closed and if G is a $(1,2)^*$ -g-open (or $(1,2)^*$ -g-closed) subset of Y, then $f^1(G)$ is $(1,2)^*$ -g-open (or $(1,2)^*$ -g-closed) in X.

Theorem: 2.10[6]

Suppose that $A \subseteq B \subseteq X$, A is a (1,2)*-g-closed set relative to B and that B is a $(1,2)^*$ -g-closed subset of X. Then A is $(1, 2)^*$ -g-closed relative to X.

Definition: 2.11[6]

¹M. L. Thivagar et al. / On preserving (1, 2)*-g- closed sets in bitopology / IJMA- 2(3), Mar.-2011, Page: 382-384

A space X is said to be a $(1,2)^*$ -T_{1/2} space if every $(1,2)^*$ -gclosed subset of X is $\tau_{1,2}$ -closed in X.

3. (1, 2)*-a-CLOSED AND (1, 2)*-a-CONTINUOUS FUNCTIONS:

Definition: 3.1

A function f: $X \rightarrow Y$ is said to be approximately $(1,2)^*$ -closed (or $(1,2)^*$ -a-closed) if $f(F) \subseteq \sigma_{1,2}$ -int(A) whenever F is a $\tau_{1,2}$ closed subset of X, A is a $(1,2)^*$ -g-open subset of Y and $f(F) \subseteq A$.

Definition: 3.2

A function f: $X \to Y$ is said to be approximately $(1,2)^*$ continuous (or $(1,2)^*$ -a-continuous) if $\tau_{1,2}$ -cl(A) \subseteq f¹(V) whenever V is an $\sigma_{1,2}$ -open subset of Y, A is a $(1,2)^*$ -g-closed subset of X, and A \subseteq f¹(V).

Clearly, $(1, 2)^*$ -closed functions are $(1, 2)^*$ -a-closed and $(1,2)^*$ -continuous functions are $(1,2)^*$ -a-continuous. The following example shows the converse implications do not hold.

Example: 3.3

Consider the Sierpinski space $X = \{a,b\}$ with the topologies $\tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X\}$. Define the function f: $X \to X$ by f(a) = b and f(b) = a. Clearly, f is neither (1,2)*-closed nor (1,2)*-continuous. However, since the image of every $\tau_{1,2}$ -closed set is $\sigma_{1,2}$ -open, f is (1,2)*-a-closed. Similarly, since the inverse image of every $\sigma_{1,2}$ -open set is $\tau_{1,2}$ -closed, f is (1,2)*-a-continuous.

Theorem: 3.4 If f: $X \to Y$ is a bijection, then f is $(1,2)^*$ -a-closed if and only if f^{-1} is $(1,2)^*$ -a-continuous.

Proof: The proof of this result is a straight forward argument using complements and is omitted.

4. PRESERVING (1, 2)*-g-CLOSED SETS:

The following theorem strengthens Theorem 2.9 by replacing the closure requirement with $(1,2)^*$ -a-closure.

Theorem: 4.1 If f: $X \rightarrow Y$ is $(1,2)^*$ -g-continuous and $(1,2)^*$ -a-closed, then $f^1(A)$ is $(1,2)^*$ -g-closed $((1,2)^*$ -g-open) whenever A is a $(1,2)^*$ -g-closed $((1,2)^*$ -g-open) subset of Y.

Proof: Assume that A is a $(1,2)^*$ -g-closed subset of Y and let $f^1(A) \subseteq U$, where U is an $\tau_{1,2}$ -open subset of X. Taking complements we obtain X–U $\subseteq f^1(Y-A)$ or $f(X-U) \subseteq Y-A$. Since f is $(1, 2)^*$ -a-closed, $f(X-U) \subseteq \sigma_{1,2}$ -int(Y–A) = Y– $\sigma_{1,2}$ -cl(A). It follows that X–U $\subseteq X - f^1(\sigma_{1,2}$ -cl(A)) and hence f ${}^1(\sigma_{1,2}$ -cl(A)) $\subseteq U$. Since f is $(1, 2)^*$ -g-continuous, $f^1(\sigma_{1,2}$ -cl(A)) is $(1,2)^*$ -g-closed. Thus we have $\tau_{1,2}$ -cl($f^1(A)$) $\subseteq \tau_{1,2}$ -cl($f^1(\sigma_{1,2}$ -cl(A))) $\subseteq U$ which implies that $f^1(A)$ is $(1,2)^*$ -g-closed.

It is shown that inverse images of $(1, 2)^*$ -g-open sets are $(1, 2)^*$ -g-open by applying complementation to the result just obtained and using the fact that f^1 preserves complements.

The following theorem strengthens Theorem 2.7 by replacing the continuity requirement with $(1, 2)^*$ -a-continuity.

Theorem: 4.2 If f: X \rightarrow Y is (1,2)*-a-continuous and (1,2)*closed, then f(A) is (1,2)*-g-closed in Y whenever A is a (1,2)*-g-closed subset of X.

Proof: Assume that $A \subseteq X$ is $(1,2)^*$ -g-closed and that $f(A) \subseteq V$, where V is an $\sigma_{1,2}$ -open subset of Y. Then $A \subseteq f^1(V)$ and, since f is $(1,2)^*$ -a-continuous, $\tau_{1,2}$ -cl $(A) \subseteq f^1(V)$. Then $f(\tau_{1,2}$ -cl $(A)) \subseteq V$ and since f is $(1,2)^*$ -closed, we have $\sigma_{1,2}$ -cl $(f(A)) \subseteq \sigma_{1,2}$ -cl $(f(\tau_{1,2}$ -cl $(A))) = f(\tau_{1,2}$ -cl $(A)) \subseteq V$. Therefore $\tau_{1,2}$ -cl $(f(A)) \subset V$ and hence f(A) is $(1,2)^*$ -g-closed.

5. PROPERTIES OF (1, 2)*-a-CLOSED AND (1, 2)*-a-CONTINUOUS FUNCTIONS:

In this section, we use $(1, 2)^*$ -a-closed and $(1, 2)^*$ -acontinuous functions to characterize $(1,2)^*$ -T_{1/2} spaces. Also we establish sufficient conditions for a function to be $(1, 2)^*$ a-closed or $(1, 2)^*$ -a-continuous. Finally we investigate some of the properties of these functions involving restriction and composition.

Theorem: 5.1 A space X is a $(1, 2)^*$ -T_{1/2} space if and only if, for every space Y and every function f: X \rightarrow Y, f is $(1,2)^*$ -a-continuous.

Proof: The necessity follows from the definition of $(1,2)^*$ -acontinuity. For the sufficiency, let A be a non-empty $(1,2)^*$ -gclosed subset of X and let Y be the set X with topologies $\sigma_1 = \{\phi, Y, A\}, \sigma_2 = \{\phi, Y\}$. Finally let f: X \rightarrow Y be the identity mapping. By assumption f is $(1,2)^*$ -a-continuous. Since A is $(1,2)^*$ -g-closed in X and $\sigma_{1,2}$ -open in Y, and A \subseteq f¹(A), it follows that $\tau_{1,2}$ -cl(A) \subseteq f¹(A) = A. Hence A is $\tau_{1,2}$ closed in X and therefore X is $(1,2)^*$ -T_{1/2} space.

An analogous argument proves the following result for $(1, 2)^*$ -a-closed functions.

Theorem: 5.2 A space Y is a $(1, 2)^*$ -T_{1/2}-space if and only if, for every space X and every function f: X \rightarrow Y, f is $(1,2)^*$ -a-closed.

The next two results follow easily from the definitions. These results were used in Example 3.3.

Theorem: 5.3. If f: $X \to Y$ is a function for which f(F) is $\sigma_{1,2}$ open in Y for every $\tau_{1,2}$ -closed subset F of X, then f is $(1,2)^*$ a-closed.

Theorem: 5.4 If f: $X \to Y$ is a function for which $f^{-1}(V)$ is $\tau_{1,2}$ -closed in X for every $\sigma_{1,2}$ -open subset V of Y, then f is $(1,2)^*$ -a-continuous.

Since the identity mapping on any space is both $(1, 2)^*$ -a-continuous and $(1, 2)^*$ -a-closed, it is clear the converses of Theorems 5.3 and 5.4 do not hold.

Theorem: 5.5 In a bitopological space X, $(1, 2)^*$ -O(X) = $(1,2)^*$ -C(X) if and only if every subset of X is a $(1,2)^*$ -g-closed set.

Proof: Suppose that $(1, 2)^*-O(X) = (1,2)^*-C(X)$ and that $A \subseteq U \in (1,2)^*-O(X)$. Then $\tau_{1,2}$ -cl(A) $\subseteq \tau_{1,2}$ -cl(U) = U and A is $(1,2)^*$ -g-closed. Conversely, suppose that every subset of X is $(1, 2)^*$ -g-closed. Let $U \in (1, 2)^*-O(X)$. Then since $U \subseteq U$ and

¹M. L. Thivagar et al. / On preserving (1, 2)*-g- closed sets in bitopology / IJMA- 2(3), Mar.-2011, Page: 382-384

U is $(1, 2)^*$ -g-closed, we have $\tau_{1,2}$ -cl(U) \subseteq U and U $\in (1,2)^*$ -C(X). Thus $(1, 2)^*$ -O(X) $\subseteq (1, 2)^*$ -C(X). If F $\in (1, 2)^*$ -C(X), then X–F $\in (1, 2)^*$ -O(X) $\subseteq (1,2)^*$ -C(X) and hence F $\in (1,2)^*$ -O(X). Finally, $(1, 2)^*$ -O(X) = $(1, 2)^*$ -C(X).

Theorem: 5.6 If the $\sigma_{1,2}$ -open and $\sigma_{1,2}$ -closed sets of Y coincide, then a function f: $X \rightarrow Y$ is $(1,2)^*$ -a-closed if and only if f(F) is $\sigma_{1,2}$ -open for every $\tau_{1,2}$ -closed subset F of X.

Proof: Assume f is $(1,2)^*$ -a-closed. By Theorem 5.5, all subsets of Y are $(1, 2)^*$ -g-closed (and hence all are $(1,2)^*$ -g-open). So, for any $\tau_{1,2}$ -closed subset F of X, f(F) is $(1,2)^*$ -g-open in Y. Since f is $(1, 2)^*$ -a-closed, f(F) $\subseteq \sigma_{1,2}$ -int(f(F)). Therefore f(F) = $\sigma_{1,2}$ -int (f(F)), ie., f(F) is $\sigma_{1,2}$ -open. The converse can be easily shown.

Corollary: 5.7

If the $\sigma_{1,2}$ -open and $\sigma_{1,2}$ -closed sets of Y coincide, then a function f: $X \rightarrow Y$ is $(1,2)^*$ -a-closed if and only if it is $(1,2)^*$ -closed.

The proofs of the following results for $(1, 2)^*$ -a-continuous functions are analogous and are omitted.

Theorem: 5.8

If the $\tau_{1,2}$ -open and $\tau_{1,2}$ -closed sets of X coincide, then a function f: X \rightarrow Y is (1,2)*-a-continuous if and only if f¹(V) is $\tau_{1,2}$ -closed for every $\sigma_{1,2}$ -open subset V of Y.

Corollary: 5.9

If the $\tau_{1,2}$ -open and $\tau_{1,2}$ -closed sets of X coincide, then a function f: $X \rightarrow Y$ is $(1,2)^*$ -a-continuous if and only if it is $(1,2)^*$ -continuous.

Compositions of $(1, 2)^*$ -a-continuous $((1, 2)^*$ -a-closed) functions are not, in general, $(1,2)^*$ -a-continuous $((1,2)^*$ -a-closed). However, the following results do hold.

Theorem: 5.10 If f: $X \rightarrow Y$ is $(1, 2)^*$ -closed and g: $Y \rightarrow Z$ is $(1, 2)^*$ -a-closed, then gof: $X \rightarrow Z$ is $(1, 2)^*$ -a-closed.

Proof: Let F be a $\tau_{1,2}$ -closed subset of X and A a $(1,2)^*$ -gopen subset of Z for which gof (F) \subseteq A. Since f is $(1, 2)^*$ closed, f(F) is $\sigma_{1,2}$ -closed in Y. Because g is $(1,2)^*$ -a-closed, g(f(F)) $\subseteq \eta_{1,2}$ -int(A).

Theorem: 5.11 If f: $X \to Y$ is $(1,2)^*$ -a-closed and g: $Y \to Z$ is $(1,2)^*$ -open and inversely preserves $(1,2)^*$ -g-open sets, then gof: $X \to Z$ is $(1,2)^*$ -a-closed.

Proof: Let F be a $\tau_{1,2}$ -closed subset of X and A a $(1,2)^*$ -gopen subset of Z for which gof (F) \subseteq A. Then f(F) \subseteq g⁻¹(A). Since g⁻¹(A) is $(1,2)^*$ -g-open and f is $(1,2)^*$ -a-closed, f(F) \subseteq $\sigma_{1,2}$ -int (g⁻¹(A)). Thus gof (F) = g(f(F)) \subseteq g($\sigma_{1,2}$ -int (g⁻¹(A))) \subseteq $\eta_{1,2}$ -int (g(g⁻¹(A))) \subseteq $\eta_{1,2}$ -int(A). **Theorem: 5.12** If f: $X \to Y$ is $(1, 2)^*$ -a-continuous and g: $Y \to Z$ is $(1,2)^*$ -continuous, then gof: $X \to Z$ is $(1,2)^*$ -a-continuous.

Proof: Assume A is a $(1,2)^*$ -g-closed subset of X and V is an $\eta_{1,2}$ -open subset of Z for which $A \subseteq (gof)^{-1}$ (V). Since g is $(1, 2)^*$ -continuous, $g^{-1}(V)$ is $\sigma_{1,2}$ -open. Because f is $(1, 2)^*$ -a-continuous, $\tau_{1,2}$ -cl(A) $\subseteq (gof)^{-1}(V) = f^{-1}(g^{-1}(V))$.

Corollary: 5.13

Let $f_{\alpha}: X \to Y_{\alpha}$ be a function for each $\alpha \in \mathcal{A}$ and $f: X \to \prod Y_{\alpha}$ the product map given by $f(x) = (f_{\alpha}(x))$. If f is $(1, 2)^*$ -acontinuous, then f_{α} is $(1,2)^*$ -a-continuous for each α .

Proof: For each β let p_{β} : $\Pi Y_{\alpha} \rightarrow Y_{\beta}$ be the projection function. Then $f_{\beta} = p_{\beta}$ o f where p_{β} is $(1, 2)^*$ -continuous and f is $(1,2)^*$ -a-continuous.

Theorem: 5.14 If f: $X \to Y$ is $(1,2)^*$ -a-continuous and B is a $(1,2)^*$ -g-closed subset of X, then f/B: $B \to Y$ is $(1,2)^*$ -a-continuous.

Proof: Assume A is a $(1, 2)^*$ -g-closed subset of B and V is an $\sigma_{1,2}$ -open subset of Y for which $A \subseteq (f/B)^{-1}$ (V). Then $A \subseteq f^{-1}(V) \cap B$. By Theorem 2.10, A is $(1,2)^*$ -g-closed relative to X. Since f is $(1,2)^*$ -a-continuous. $\tau_{1,2}$ -cl(A) $\subseteq f^{-1}(V)$. Then $\tau_{1,2}$ -cl(A) $\cap B \subseteq f^{-1}(V) \cap B$ and hence $\tau_{1,2}$ -cl_B(A) $\subseteq (f/B)^{-1}$. Thus f/B: $B \to Y$ is $(1, 2)^*$ -a-continuous.

ACKNOWLEDGEMENT: we thank the referee for his valuable suggestions.

REFERENCES:

- 1. K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi. Univ., 12 (1991), 5-13.
- C.W. Baker, On preserving g-closed sets, Kyungpook Math. J. 36 (1996), No.1, 195-199.
- 3. M. Cueva, On g-closed sets and g-continuous mappings. Kyungpook Math. J., 33 (1993), 205-209.
- 4. M. Levine, Generalized closed sets in topology, Rend Circ. Mat. Palermo. 19 (1970), 89-96.
- 5. O. Ravi and M.L. Thivagar, On stronger forms of (1, 2)*quotient mappings in bitopological spaces, Internat. J. Math. Game Theory and Algebra, Vol.14, No.6 (2004), 481-492.
- 6. O. Ravi, M. L. Thivagar and Jinjinli, Remarks on extentions of (1, 2)*-g-closed mappings (submitted).
