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ABSTRACT 

 In this paper we obtain certain generalizations and refinements of well known Enestrom – Kakeya Theorem for a 

polynomial under much less restrictions on its coefficients. 
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1. INTRODUCTION AND STATEMENT OF RESULT: 

 

Let P(z) be a polynomial of degree, such that  
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then according to a famous result due to Enestrom and Kakeya 

[8] the polynomial P(z) does not vanish in the closed disk 
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Applying this result to the polynomial �
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z
P , we obtain the 

following more general result:  
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is a polynomial of degree n, such that for some  a > 0             
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then P(z) does not vanish in  
a

z
1

> . This is a very elegant 

result but it is equally limited in scope. The hypothesis is very 

restrictive and does not seem always useful for applications. In 

the literature ([1], [3]-[7], [9]) there already exist some 

extensions and generalizations of this result. In connection with 

Theorem A it was asked by Govil and Rahman [5] that, can we 

drop the restriction that the coefficients are all positive and 

instead assume (2) to hold for the moduli of the coefficients? As 

an answer to this question they proved: 

 ----------------------------------------------------------------------- 

����������	
���
��������������
��
��

���

����
�
��
����

������

���
���������� 
����
�
���!�
"���
�#����

$
���
�%�&�
�
�
��

THEOREM: B Let 
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be a polynomial of degree n with complex coefficients such that 

for some  a  > 0 
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then  P(z) has all its zeros in  

 

1

1
k

a
z �

�

�
�
�

�
≤  

 

where k1 is the greatest positive root of the trinomial equation.  
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Recently Aziz and Zarger [2], have relaxed the hypothesis of 

Enestrom-Kakeya Theorem in several ways and proved the 

following results: 

 

THEOREM: C   Let 
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be a polynomial of degree n such that for some   k ≥ 1.  
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then   P(z) has all its zeros in  

 

kkz ≤−+ 1  
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THEOREM: D Let 
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be a polynomial of degree n such that either 
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The following result immediately follows from Theorem C. 

 

THEOREM: E Let P(z) be a polynomial of degree n satisfying 

(4), then  P(z) has all its zeros in 
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We first prove the following result which generalises Theorem 

B to lacunary polynomials and inparticular show that its 

conclusion remains valid under much weaker hypothesis:  

 

THEOREM: 1.1 Let  
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0 ≤ p ≤ n-1, be a polynomial of degree n with complex 

coefficients such that for some t > 0 
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then  P(z) has all its zeros in the closed disk 
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where k1 is the greatest positive root of the quadrinomial 

equation  
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the bound (6) is best possible and is attained for the polynomial. 
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The following result immediately follows from Theorem 1.1, if 

we taken 1−= np  

 

 

COROLLARY 1.1 Let 
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be a polynomial of degree n with complex coefficients such that 

for some   t > 0  

 

,1,...,2,1,0, −=≥ njaat jn  

then  P(z) has all its zeros in 
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where k2 is the greatest positive root of the trinomial equation 

 

0)1(1
=++−

+
tktk

nn
 

Applying Corollary 1.1 to the polynomial �
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P , we get the 

following result which shows Theorem B remains valid under 

much weaker hypothesis:  

 

COROLLARY: 1.2.     Let 
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be a polynomial of degree n with complex coefficients, such that 

for some   a > 0 and  

t > 0, 
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then  P(z) has all its zeros in 
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where k2 is the greatest positive root of the trinomial equation.  

 

0)1(1
=++−

+
tktk

nn
 

 

The following result easily follows from Corollary 1.2 as a 

special case 

 

COROLLARY 1.3 Let 
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be a polynomial of degree n, with complex coefficients, if for 

some  a > o and t > 0 
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then   P(z) has all its zeros in 2
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where k2 is the greatest positive root of the trinomial equation.    



A. Aziz and B. A. Zargar / On the Location of Zeros of Polynomials /IJMA- 2(3),Mar.-2011, Page: 362-365 

© 2010, IJMA. All Rights Reserved                                                                                                                                                                            364                      

                           0)1(1
=++−

+
tktk

nn
                          (10) 

For   t = 1, Corollary 1.3 reduces to Theorem B. 

 

Next, we shall present the following generalization of Theorem 

D.  

 

THEOREM M: 1.2 Let 
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be a polynomial of degree n, such that for some   k ≥  1, either  
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REMARK: 2 For   k = 1 Theorem 1.2 reduces to Theorem D.  

Finally, if we apply Theorem 1.2 to the polynomial   P (tz), we 

get the following more general results:  

 

THEOREM: 1.3.   Let 
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be a polynomial of degree, such that for some   t > 0 and  k ≥ 1, 
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 if n is even then all the zeros of P(z) lie in the circle 
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REMARK: 3.   Taking k = 1 and t = 1 in Theorem 1.3, we get 

Theorem D. 

 

PROOFS OF THE THEOREMS: 

 

PROOF OF THEOREM 1.1:  We shall prove that  
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has all its zeros in ,1kz ≤ where k1 the greatest positive root 

of the equation defined by  (6). To show this, it is sufficient to 

consider the case when .1)1( >+ tp  For (p+1) t ≤  1, then on 

1>= Rz , we have  
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So we assume t (p+1)>1. In this case it can be easily seen that 

k1>1, where k1 is the greatest positive root of the equation 

defined by (6). Now for ,1>= Rz  we have  
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This implies that  
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1,0)( kzforzP >> , where k1 (>1) is the greatest 

positive root of the equation. 
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Hence all the zeros of  P(z) whose modulus is greater than 1 lie 

in 1kz ≤ , where k1 is the greatest positive root of the 

equation defined by (6). Since all those zeros whose modulus is 

less than or equal to 1 already lie in 1kz ≤ . The desired 

result follows immediately.   

 

PROOF OF THEOREM: 1.2 Consider 
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For 1>z , we have  
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therefore all the zeros of F(z) whose modulus is greater than 1 
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but those zeros of F(z) whose modulus is less or equal to 1 

already satisfy the inequality. Since all the zeros of P(z) are also 

the zeros of F(z), it follows that all the zeros of P(z) lie in the 

circle defined by (12). This proves Theorem 2.1 completely. 
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