SEMIRINGS SATISFYING THE IDENTITIES

T. Vasanthi* \& N. Sulochana
Department of Applied Mathematics, Yogi Vemana University, Kadapa - 516003(A.P), India

(Received on: 19-08-12; Revised \& Accepted on: 18-09-12)

Abstract

In this paper, we study the properties of semirings satisfying the identity $a+a b=b$ for all a, b in S. We establish that a $+b=a b=b$ for all a, b in S if (S, \cdot) is band.

Keywords: Non-negatively ordered; Non-positively ordered; PRD; IMP; Mono semiring.

2000 Mathematics Subject Classification: 20M10, 16 Y60.

1. INTRODUCTION:

A triple $(\mathrm{S},+, \cdot)$ is called a semiring if $(\mathrm{S},+$) is a semigroup; $(\mathrm{S}, \cdot \cdot)$ is semigroup; $\mathrm{a}(\mathrm{b}+\mathrm{c})=\mathrm{ab}+\mathrm{ac}$ and $(\mathrm{b}+\mathrm{c}) \mathrm{a}=\mathrm{ba}+$ ca for every a, b, c in S. A semiring ($\mathrm{S},+, \cdot$) is said to be a totally ordered semiring if the additive semigroup ($\mathrm{S},+$) and multiplicative semigroup (S, \cdot) are totally ordered semigroups under the same total order relation. An element x in a totally ordered semigroup (S, \cdot) is non-negative (non-positive) if $x^{2} \geq x\left(x^{2} \leq x\right)$. A totally ordered semigroup (S, \cdot) is said to be non-negatively (non-positively) ordered if every one of its elements is non-negative (non-positive). ($\mathrm{S}, \cdot \cdot$) is positively (negatively) ordered in strict sense if $x y \geq x$ and $x y \geq y$ ($x y \leq x$ and $x y \leq y$) for every x and y in S. A semigroup ($\mathrm{S},+$) is said to be a band if a $+\mathrm{a}=\mathrm{a}$ for all a in S . A semiring $(\mathrm{S},+, \cdot)$ is said to satisfy Integral Multiple Property (IMP) if $\mathrm{a}^{2}=$ na for all a in S where the positive integer n depends on the element a. A semiring ($\mathrm{S},+, \cdot$) with additive identity zero which is multiplicative zero is said to be zero square ring if $x^{2}=0$ for all $x \in S$. Zeroid of a semiring $(S,+, \cdot)$ is the set of all x in S such that $x+y=y$ or $y+x=y$ for some y in S. We may also term this as the zeroid of $(S,+, \cdot)$. A semiring ($\mathrm{S},+, \cdot$) is said to be a Positive Rational Domain (PRD) if and only if $(\mathrm{S}, \cdot \cdot)$ is an abelian group. A semiring ($\mathrm{S},+, \cdot$) with additive identity zero is said to be zerosumfree semiring if $\mathrm{x}+\mathrm{x}=0$ for all $\mathrm{x} \in \mathrm{S}$. A semiring $(S,+, \cdot)$ said to satisfy a mono semiring if $a+b=a b$ for every a, b in S.

2. Semirings satisfying the identity $\mathbf{a}+\mathbf{a b}=\mathbf{b}$ for $\mathbf{a l l} \mathbf{a}, \mathbf{b}$ in S :

Theorem 2.1: Let ($\mathrm{S},+, \cdot$) be a zero square semiring with additive identity 0 . If S satisfying the identity $\mathrm{a}+\mathrm{ab}=\mathrm{b}$ for all a, b in S then $S^{2}=\{0\}$.

Proof: consider $\mathrm{a}+\mathrm{ab}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b}$ in S

$$
\begin{aligned}
& \Rightarrow(a+a b) b=b^{2} \\
& \Rightarrow a b+a b^{2}=b^{2} \\
& \Rightarrow a b+a \cdot 0=0 \quad \text { (since (S, }+, \cdot) \text { is a zero square semiring) } \\
& \Rightarrow a b+0=0 \\
& \Rightarrow a b=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Also } a+a b=b \\
& \qquad \begin{array}{l}
\Rightarrow(a+a b)=b^{2} \\
\Rightarrow b a+b(a b)=b^{2}
\end{array}
\end{aligned}
$$

T. Vasanthi* \& N. Sulochana/ SEMIRINGS SATISFYING THE IDENTITIES / IJMA- 3(9), Sept.-2012.

$$
\begin{aligned}
& \Rightarrow \mathrm{ba}+\mathrm{b} .0=0 \\
& \Rightarrow \mathrm{ba}+0=0 \\
& \Rightarrow \mathrm{ba}=0
\end{aligned}
$$

$\therefore \mathrm{ab}=\mathrm{ba}=0$
Hence $S^{2}=\{0\}$
Theorem 2.2: Let $(S,+, \cdot)$ be a semiring and satisfying the identity $a+a b=b$ for $a l l a, b$ in S. If (S, \cdot) is a band, then (i) $\mathrm{a}+\mathrm{ab}=\mathrm{a}+\mathrm{b}=\mathrm{ab}=\mathrm{b}$ and $\mathrm{a}(\mathrm{a}+\mathrm{b})=\mathrm{a}(\mathrm{ab})=\mathrm{b}$ for all a, b in S .
(ii) $(\mathrm{S},+)$ is band

Proof: (i) consider $\mathrm{a}+\mathrm{ab}=\mathrm{b}$ for all a, b in S

$$
\begin{aligned}
& \Rightarrow a^{2}+a^{2} b=b \quad \text { (since }(S, \cdot) \text { is a band) } \\
& \Rightarrow a(a+a b)=b \\
& \Rightarrow a b=b
\end{aligned}
$$

Also $\mathrm{a}+\mathrm{ab}=\mathrm{b}$

$$
\Rightarrow \mathrm{a}+\mathrm{b}=\mathrm{b}
$$

Therefore $\mathrm{a}+\mathrm{ab}=\mathrm{a}+\mathrm{b}=\mathrm{ab}=\mathrm{b}$
And also $a(a+b)=a^{2}+a b=a+a b=b$

$$
a(a b)=a^{2} b=b
$$

Therefore $\mathrm{a}(\mathrm{a}+\mathrm{b})=\mathrm{a}(\mathrm{ab})=\mathrm{b}$
(ii) Suppose $a+a . a=a$, for all a in S

$$
\begin{aligned}
& \Rightarrow \mathrm{a}+\mathrm{a}^{2}=\mathrm{a} \\
& \Rightarrow \mathrm{a}+\mathrm{a}=\mathrm{a}
\end{aligned}
$$

(since (S, \cdot) is a band)
This is evident from the following example:

Example:

+	a	b	c
a	a	b	c
b	a	b	c
	a	b	c

\bullet	a	b	c
a	a	b	c
b	a	b	c
c	a	b	c

Theorem 2.3: Let $(S,+, \cdot)$ be a semiring satisfying the identity $a+a b=b$ for $a l l a, b$ in S and let S contain multiplicative identity 1 . Assume that either a or b can be the multiplicative identity but not both. Then the following are true.
(i) $1+\mathrm{b}=\mathrm{b}$ and $\mathrm{ab}=\mathrm{b}$ for all a, b in S
(ii) S is a mono semiring
(iii) $(\mathrm{S},+$) is a commutative
(iv) (S, \cdot) is a band
(v) $a^{n}+b^{n}=a+b$ for all $n \geq 1$

Proof: (i). Given that (S, +, .) be a semiring
Let 1 is the multiplicative identity of S

Let S satisfy the condition $\mathrm{a}+\mathrm{ab}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b}$ in S
Since $1 \in S, 1+1 . b=b$, for all $b \in S$

$$
1+b=b, \text { for all } b \in S
$$

Consider $\mathrm{a}+\mathrm{ab}=\mathrm{b}$

$$
\begin{aligned}
& a(1+b)=b \\
& a b=b \quad-------->(I)
\end{aligned}
$$

$\therefore \mathrm{a}+\mathrm{ab}=\mathrm{ab}$
(ii) Consider $\mathrm{a}+\mathrm{ab}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b}$ in S

$$
\begin{aligned}
& \Rightarrow \mathrm{a}+\mathrm{a}+\mathrm{ab}=\mathrm{a}+\mathrm{b} \\
& \Rightarrow \mathrm{a}+\mathrm{a}(1+\mathrm{b})=\mathrm{a}+\mathrm{b} \\
& \Rightarrow \mathrm{a}+\mathrm{ab}=\mathrm{a}+\mathrm{b} \\
& \Rightarrow \mathrm{ab}=\mathrm{a}+\mathrm{b}
\end{aligned}
$$

Hence S is a mono semiring.
(iii) To show that $(\mathrm{S},+)$ is commutative

Since $a+a b=b$ for $a l l a, b$ in S

$$
\begin{aligned}
& \Rightarrow \mathrm{a}+\mathrm{ab}+\mathrm{a}=\mathrm{b}+\mathrm{a} \\
& \Rightarrow \mathrm{a}+\mathrm{b}+\mathrm{a}=\mathrm{b}+\mathrm{a} \\
& \Rightarrow \mathrm{ab}+\mathrm{a}=\mathrm{b}+\mathrm{a} \quad \text { (since } \mathrm{S} \text { is mono semiring) } \\
& \Rightarrow \mathrm{a}(\mathrm{~b}+1)=\mathrm{b}+\mathrm{a} \\
& \Rightarrow \mathrm{ab}=\mathrm{b}+\mathrm{a} \quad \text { (since } \mathrm{S} \text { is mono semiring, } \mathrm{b} .1=\mathrm{b}+1 \text {, for all } 1, \mathrm{~b} \text { in } \mathrm{S}, \text {) } \\
& \Rightarrow \mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a}
\end{aligned}
$$

(iv) Consider $\mathrm{a}+\mathrm{a}^{2}=\mathrm{a}(1+\mathrm{a})$

$$
\begin{aligned}
& =\mathrm{a} \cdot \mathrm{a} \\
& =\mathrm{a}^{2}
\end{aligned}
$$

Taking $\mathrm{a}=\mathrm{b}$ in $\mathrm{a}+\mathrm{ab}=\mathrm{b}$, for all a, b in S

$$
\begin{aligned}
& \Rightarrow a+a \cdot a=a, \text { for all } a \text { in } S \\
& \Rightarrow a+a^{2}=a
\end{aligned}
$$

$\therefore \mathrm{a}^{2}=\mathrm{a}+\mathrm{a}^{2}=\mathrm{a} \Rightarrow \mathrm{a}=\mathrm{a}^{2}$
Hence ($\mathrm{S}, \cdot \cdot$) is a band
(v) $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{a}+\mathrm{b}$
$\Rightarrow \mathrm{a}^{3}+\mathrm{b}^{3}=\mathrm{a}^{2} \cdot \mathrm{a}+\mathrm{b}^{2} \cdot \mathrm{~b}=\mathrm{a}+\mathrm{b}$

T. Vasanthi* \& N. Sulochana/ SEMIRINGS SATISFYING THE IDENTITIES / IJMA- 3(9), Sept.-2012.

Similarly $a^{n}+b^{n}=a+b$, for all $n \geq 1$
Note: - If both a and b is equal to 1 then S reduces to a singleton set
Theorem 2.4: Let $(\mathrm{S},+, \cdot)$ be a semiring and let $\mathrm{a}+\mathrm{ab}=\mathrm{b}$ for all a, b in S . If $(\mathrm{S},+$) is right cancellative then (i) $(\mathrm{S},+$) is a band
(ii) $(\mathrm{S}, \cdot \cdot$) is a band if S satisfies IMP

Proof: (i) Consider $\mathrm{a}+\mathrm{ab}=\mathrm{b}$ for all a, b in S
$\Rightarrow a^{2}+a^{2} b=a b$
But $a^{2}+a^{2} b=b$ for all a^{2}, b in S
$\therefore \mathrm{ab}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b}$ in S
$\Rightarrow \mathrm{a}+\mathrm{ab}=\mathrm{a}+\mathrm{b}$
$\Rightarrow \mathrm{b}=\mathrm{a}+\mathrm{b}$
$\Rightarrow \mathrm{a}+\mathrm{b}=\mathrm{a}+\mathrm{a}+\mathrm{b}$
By using $(S,+)$ is right cancellative

$$
\Rightarrow \mathrm{a}=\mathrm{a}+\mathrm{a} \longrightarrow(\mathrm{I})
$$

$\therefore(\mathrm{S},+)$ is a band
(ii) $\mathrm{a}=\mathrm{a}+\mathrm{a}=2 \mathrm{a}(\because$ From (I) $)$

$$
a+a=2 a+a=3 a
$$

Continuing like this

$$
\Rightarrow \mathrm{na}=\mathrm{a} \longrightarrow(\mathrm{II})
$$

Implies S satisfies IMP, i.e, $\mathrm{a}^{2}=\mathrm{na} \longrightarrow$ (III)
\therefore From (II) and (III), $\mathrm{a}^{2}=\mathrm{a}$ for all a in S
Hence ($\mathrm{S}, \cdot \cdot$) is a band
Theorem 2.5: Let $(S,+, \cdot)$ be a zerosumfree semiring with additive identity zero. Then S satisfies the identity $a+a b=$ b for all a, b in S if and only if S is a mono semiring.

Proof: Assume $a+a b=b$ for all a, b in S
$\Rightarrow \mathrm{a}+\mathrm{a}+\mathrm{ab}=\mathrm{a}+\mathrm{b}$
$\Rightarrow 0+\mathrm{ab}=\mathrm{a}+\mathrm{b} \quad$ (since S is a zerosumfree semiring)
$\Rightarrow \mathrm{ab}=\mathrm{a}+\mathrm{b}$
$\therefore \mathrm{S}$ is a mono semiring
Conversely
Assume S is a mono semiring
Suppose $\mathrm{a}+\mathrm{a}=0$
$\Rightarrow \mathrm{a}+\mathrm{a}+\mathrm{b}=0+\mathrm{b}$
$\Rightarrow \mathrm{a}+\mathrm{a}+\mathrm{b}=\mathrm{b}$
$\Rightarrow \mathrm{a}+\mathrm{ab}=\mathrm{b}$ for all a, b in S

Theorem 2.6: Let $(S,+, \cdot)$ be a zerosumfree semiring satisfying the identity $a+a b=b$ for $a l l a, b$ in S. Then S is a zero square semiring.

Proof: consider $\mathrm{a}+\mathrm{a} . \mathrm{a}=\mathrm{a}$ for all a in S
$\Rightarrow \mathrm{a}+\mathrm{a}+\mathrm{a}^{2}=\mathrm{a}+\mathrm{a}$
$\Rightarrow 0+\mathrm{a}^{2}=0$
$\Rightarrow \mathrm{a}^{2}=0$
$\therefore \mathrm{S}$ is a zero square semiring
Theorem 2.7: Let $(\mathrm{S},+, \cdot)$ be a PRD satisfying the identity $\mathrm{a}+\mathrm{ab}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b}$ in S . Then the following are true
(a) $\quad\left(a b^{-1}\right)^{-1}=a b^{-1}+a+b$
(b) $\mathrm{a}+\mathrm{a}=\mathrm{a}^{-1}$ for all a in S . In particular $\mathrm{a}=\mathrm{a}^{-1}$ if $(\mathrm{S},+)$ is a band
(c) $\quad\left(1+a^{-1}\right)=(1+a)\left(b^{-1}+1\right)$ for all, b in S

Proof: (a) Suppose $a+a b=b$ for all a, b in S
$\Rightarrow \mathrm{a}^{-1}(\mathrm{a}+\mathrm{ab})=\mathrm{a}^{-1} \mathrm{~b}$
$\Rightarrow a^{-1} a+a^{-1} a b=a^{-1} b$
$\Rightarrow 1+\mathrm{b}=\mathrm{a}^{-1} \mathrm{~b} \longrightarrow(\mathrm{I})$
Consider $\mathrm{a}+\mathrm{ab}=\mathrm{b}$ for all a, b in S

$$
\begin{aligned}
& \Rightarrow(a+a b) b^{-1}=b b^{-1} \\
& \Rightarrow a b^{-1}+a=1 \\
& \Rightarrow a b^{-1}+a+b=1+b \\
& \Rightarrow a b^{-1}+a+b=a^{-1} b \\
& \Rightarrow a b^{-1}+a+b=\left(b^{-1} a\right)^{-1} \\
& \Rightarrow a b^{-1}+a+b=\left(a b^{-1}\right)^{-1}
\end{aligned} \quad(\because \text { from (I)) } \quad \text { (since } S \text { is PRD) }
$$

Hence $\left(a b^{-1}\right)^{-1}=a b^{-1}+a+b$ for all a, b in S
(b) Suppose $\mathrm{a}+\mathrm{ab}=\mathrm{b}$ for all a, b in S

$$
\begin{aligned}
& \Rightarrow a^{-1} b^{-1}(a+a b)=\left(a^{-1} b^{-1}\right) b \\
& \left.\Rightarrow b^{-1}+1=a^{-1} \longrightarrow \text { (II) } \quad \text { (since (S, } \cdot\right) \text { is an abelian group) }
\end{aligned}
$$

Also $\mathrm{a}+\mathrm{ab}=\mathrm{b}$

$$
\begin{aligned}
& \Rightarrow b^{-1}(a+a b)=b^{-1} b \\
& \Rightarrow b^{-1} a+a=1 \longrightarrow(\text { III }) \\
& \Rightarrow b^{-1}+b^{-1} a+a=b^{-1}+1 \\
& \Rightarrow b^{-1}+b^{-1} a+a=a^{-1} \quad(\because \text { from (II) }) \\
& \Rightarrow a+a=a^{-1} \text { for all a in } S \quad\left(\text { since } b^{-1}+b^{-1} a=a \text { for all } b^{-1}, a \text { in } S\right)
\end{aligned}
$$

In particular, if $(\mathrm{S},+$) is band

$$
\Rightarrow \mathrm{a}+\mathrm{a}=\mathrm{a} \text { and } \mathrm{a}+\mathrm{a}=\mathrm{a}^{-1}
$$

$\therefore \mathrm{a}=\mathrm{a}^{-1}$ for all in S
(c) Adding (II) and (III) we have
$1+a^{-1}=b^{-1} a+a+b^{-1}+1$

$$
\begin{aligned}
& =a b^{-1}+a \cdot 1+1 \cdot b^{-1}+1.1 \\
& =a\left(b^{-1}+1\right)+1\left(b^{-1}+1\right) \\
& =(a+1)\left(b^{-1}+1\right) \text { for all } a, b \text { in } S
\end{aligned}
$$

3. Ordering on $\mathbf{a}+\mathbf{a b}=\mathbf{b}$ for all \mathbf{a}, \mathbf{b} in S :

Theorem 3.1: If $(S,+, \cdot)$ be a totally ordered semiring satisfying the identity $a+a b=b$ for $a l l a, b$ in S and $(S,+)$ is commutative. If ($\mathrm{S},+$) is non-negatively ordered (non-positively ordered), then ($\mathrm{S},+$) is p.t.o (n.t.o).

Proof: Assume ($\mathrm{S},+$) is non-negatively ordered

$$
\begin{aligned}
& \Rightarrow a+a \geq a \\
& \Rightarrow a+a+a b \geq a+a b \\
& \Rightarrow a+b \geq b \longrightarrow \text { (I) }
\end{aligned}
$$

Suppose $\mathrm{a}+\mathrm{b}<\mathrm{a}$

$$
\begin{aligned}
& \Rightarrow \mathrm{a}+\mathrm{b}+\mathrm{ab} \leq \mathrm{a}+\mathrm{ab} \\
& \Rightarrow \mathrm{a}+\mathrm{ab}+\mathrm{b} \leq \mathrm{b} \\
& \Rightarrow \mathrm{~b}+\mathrm{b} \leq \mathrm{b}
\end{aligned}
$$

Which is a contradiction to $(\mathrm{S},+$) is non-negatively ordered
Therefore $\mathrm{a}+\mathrm{b} \geq \mathrm{a} \longrightarrow$ (II)
From (I) and (II) we have, $\mathrm{a}+\mathrm{b} \geq \mathrm{a}$ and $\mathrm{a}+\mathrm{b} \geq \mathrm{b}$
Therefore (S, +) is p.t.o
Similarly, we can prove that $(\mathrm{S},+$) is n.t.o if $(\mathrm{S},+)$ is non-positively ordered
Theorem 3.2: If $(S,+, \cdot)$ be a totally ordered semiring satisfying the identity $a+a b=b$ for $a l l a, b$ in S and $(S,+)$ is commutative. If (S, \cdot) is non-negatively ordered (non-positively ordered), then ($\mathrm{S}, \cdot \cdot$) is p.t.o (n.t.o).

Proof: Suppose $\mathrm{ab}<\mathrm{a}$

$$
\begin{aligned}
& \Rightarrow \mathrm{ab}^{2} \leq \mathrm{ab}<\mathrm{a} \\
& \Rightarrow \mathrm{ab}^{2} \leq \mathrm{a} \\
& \Rightarrow \mathrm{ab}^{2}+\mathrm{ab} \leq \mathrm{a}+\mathrm{ab} \\
& \Rightarrow(\mathrm{ab}+\mathrm{a}) \mathrm{b} \leq \mathrm{b} \\
& \Rightarrow \mathrm{~b}^{2} \leq \mathrm{b}
\end{aligned} \text { (since (S,+) is commutative) }
$$

Which is contradiction to (S, •) non-negatively ordered
Therefore $\mathrm{ab} \geq \mathrm{a} \longrightarrow$ (I)
Also $\mathrm{b}=\mathrm{a}+\mathrm{ab}$
Implies $a b=a^{2}+a^{2} b=b$ for all a^{2}, b in S
Therefore $a b=b$
Obviously $\mathrm{ab} \geq \mathrm{b} \longrightarrow$ (II)

From (I) and (II) we have, (S, •) is p.t.o
Similarly, we can prove that (S, \cdot) is n.t.o if (S, \cdot) is non-positively ordered
Theorem 3.3: If $(S,+, \cdot)$ be a t.o semiring satisfying the identity $a+a b=b$ for $a l l a, b$ in S and $(S,+)$ is band. If (S, \cdot) is p.t.o(n.t.o), then ($\mathrm{S},+$) is p.t.o(n.t.o).

Proof: Suppose $(S,+)$ is band
Consider $\mathrm{a}+\mathrm{ab}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b}$ in S

$$
\begin{aligned}
& \Rightarrow a+(a+a) b=b \\
& \Rightarrow a+a b+a b=b \\
& \Rightarrow b+a b=b \longrightarrow(I)
\end{aligned}
$$

Assume ($\mathrm{S}, \cdot \cdot$) is p.t.o
Which implies $\mathrm{ab} \geq \mathrm{a}$

$$
\begin{aligned}
& \Rightarrow \mathrm{a}+\mathrm{ab} \geq \mathrm{a}+\mathrm{a} \\
& \Rightarrow \mathrm{~b} \geq \mathrm{a}+\mathrm{a} \\
& \Rightarrow \mathrm{a}+\mathrm{b} \geq \mathrm{a}+(\mathrm{a}+\mathrm{a}) \\
& \Rightarrow \mathrm{a}+\mathrm{b} \geq \mathrm{a}+\mathrm{a} \\
& \Rightarrow \mathrm{a}+\mathrm{b} \geq \mathrm{a} \longrightarrow
\end{aligned} \quad \text { (since (S, +) is band) }
$$

Now $\mathrm{a}+\mathrm{b} \geq \mathrm{a}$
$\Rightarrow a+b+a b \geq a+a b$
$\Rightarrow \mathrm{a}+\mathrm{b} \geq \mathrm{b} \longrightarrow$ (III) $\quad(\because$ from (I))
From (II) and (III) we have ($\mathrm{S},+$) is p.t.o

REFERENCES

[1] Arif Kaya and M. Satyanarayana, "Semirings satisfying properties of distributive type", Proceeding of the American Mathematical Society, Volume 82, Number 3, July 1981.
[2] Jonathan S. Golan, " Semirings and their Applications", Kluwer Academic Publishers, Dordrecht, 1999.
[3] T. Vasanthi, "Semirings with IMP", Southeast Asian Bulletin of Mathematics, (2008), pp.995-998.
[4] Vasanthi. T, Monikarchana. Y, Manjula.K, "Structure of Semirings", Southeast Asian Bulletin of Mathematics. Vol.35, (2011), PP.149-156.

Source of support: Nil, Conflict of interest: None Declared

