International Journal of Mathematical Archive-3(9), 2012, 3393-3399

SEMIRINGS SATISFYING THE IDENTITIES

T. Vasanthi* & N. Sulochana

Department of Applied Mathematics, Yogi Vemana University, Kadapa – 516003(A.P), India

(Received on: 19-08-12; Revised & Accepted on: 18-09-12)

ABSTRACT

In this paper, we study the properties of semirings satisfying the identity a + ab = b for all a, b in S. We establish that a + b = ab = b for all a, b in S if (S, \cdot) is band.

Keywords: Non-negatively ordered; Non-positively ordered; PRD; IMP; Mono semiring.

2000 Mathematics Subject Classification: 20M10, 16Y60.

1. INTRODUCTION:

A triple $(S, +, \cdot)$ is called a semiring if (S, +) is a semigroup; (S, \cdot) is semigroup; a(b + c) = ab + ac and (b + c)a = ba + ca for every a, b, c in S. A semiring $(S, +, \cdot)$ is said to be a totally ordered semigroup; if the additive semigroup (S, +) and multiplicative semigroup (S, \cdot) are totally ordered semigroups under the same total order relation. An element x in a totally ordered semigroup (S, \cdot) is non-negative (non-positive) if $x^2 \ge x(x^2 \le x)$. A totally ordered semigroup (S, \cdot) is said to be non-negatively (non-positively) ordered if every one of its elements is non-negative (non-positive). (S, \cdot) is positively (negatively) ordered in strict sense if $xy \ge x$ and $xy \ge y$ ($xy \le x$ and $xy \le y$) for every x and y in S. A semigroup (S, +) is said to be a band if a + a = a for all a in S. A semiring $(S, +, \cdot)$ is said to satisfy Integral Multiple Property (IMP) if $a^2 = na$ for all a in S where the positive integer n depends on the element a. A semiring $(S, +, \cdot)$ with additive identity zero which is multiplicative zero is said to be zero square ring if $x^2 = 0$ for all $x \in S$. Zeroid of a semiring $(S, +, \cdot)$ is the set of all x in S such that x + y = y or y + x = y for some y in S. We may also term this as the zeroid of $(S, +, \cdot)$. A semiring $(S, +, \cdot)$ is said to be a Positive Rational Domain (PRD) if and only if (S, \cdot) is an abelian group. A semiring $(S, +, \cdot)$ said to satisfy a mono semiring if a + b = ab for every a, b in S.

2. Semirings satisfying the identity a + ab = b for all a, b in S:

Theorem 2.1: Let $(S, +, \cdot)$ be a zero square semiring with additive identity 0. If S satisfying the identity a + ab = b for all a, b in S then $S^2 = \{0\}$.

Proof: consider a + ab = b for all a, b in S

 $\Rightarrow (a + ab) b = b^{2}$ $\Rightarrow ab + ab^{2} = b^{2}$ $\Rightarrow ab + a.0 = 0 \quad (since (S, +, \cdot) is a zero square semiring)$ $\Rightarrow ab + 0 = 0$ $\Rightarrow ab + 0 = 0$ $\Rightarrow ab = 0$ Also a + ab = b $\Rightarrow b(a + ab) = b^{2}$ $\Rightarrow ba + b(ab) = b^{2}$

Corresponding author: T. Vasanthi* Department of Applied Mathematics, Yogi Vemana University, Kadapa – 516003(A.P), India International Journal of Mathematical Archive- 3 (9), Sept. – 2012 $\Rightarrow ba + b.0 = 0$ $\Rightarrow ba + 0 = 0$ $\Rightarrow ba = 0$

 $\therefore ab = ba = 0$

Hence $S^2 = \{0\}$

Theorem 2.2: Let $(S, +, \cdot)$ be a semiring and satisfying the identity a + ab = b for all a, b in S. If (S, \cdot) is a band, then (i) a + ab = a + b = ab = b and a(a + b) = a(ab) = b for all a, b in S. (ii) (S, +) is band

Proof: (i) consider a + ab = b for all a, b in S

 $\Rightarrow a^{2} + a^{2}b = b \qquad (since (S, \cdot) is a band)$ $\Rightarrow a(a + ab) = b$ $\Rightarrow ab = b$ Also a + ab = b $\Rightarrow a + b = b$ Therefore a + ab = a + b = ab = b

And also $a(a + b) = a^2 + ab = a + ab = b$

$$a(ab) = a^2b = b$$

Therefore a(a + b) = a(ab) = b

(ii) Suppose a + a = a, for all a in S

.

$$\Rightarrow a + a^2 = a$$
$$\Rightarrow a + a = a$$

(since (S, \cdot) is a band)

This is evident from the following example:

Example:

	a	b	с
а	l	b	с
a		b	c
1	a	b	с

Theorem 2.3: Let $(S, +, \cdot)$ be a semiring satisfying the identity a + ab = b for all a, b in S and let S contain multiplicative identity 1. Assume that either a or b can be the multiplicative identity but not both. Then the following are true.

(i) 1 + b = b and ab = b for all a, b in S

(ii) S is a mono semiring

(iii) (S, +) is a commutative

(iv) (S, \cdot) is a band

 $(\mathbf{v}) \quad a^n + b^n = a + b \text{ for all } n \geq 1$

Proof: (i). Given that $(S, +, \cdot)$ be a semiring

Let 1 is the multiplicative identity of S

© 2012, IJMA. All Rights Reserved

Let S satisfy the condition a + ab = b for all a, b in S

Since $1 \in S$, 1 + 1.b = b, for all $b \in S$

$$1 + b = b$$
, for all $b \in S$

Consider a + ab = b

a(1+b)=b

ab = b -----> (I)

 $\therefore a + ab = ab$

(ii) Consider a + ab = b for all a, b in S

 $\Rightarrow a + a + ab = a + b$ $\Rightarrow a + a(1 + b) = a + b$ $\Rightarrow a + ab = a + b$ $\Rightarrow ab = a + b$

Hence S is a mono semiring.

(iii) To show that (S, +) is commutative

Since a + ab = b for all a, b in S

 $\Rightarrow a + ab + a = b + a$ $\Rightarrow a + b + a = b + a$ $\Rightarrow ab + a = b + a$ (since S is mono semiring) $\Rightarrow a(b + 1) = b + a$ $\Rightarrow ab = b + a$ (since S is mono semiring, b.1 = b + 1, for all 1, b in S,) $\Rightarrow a + b = b + a$ (iv) Consider $a + a^2 = a(1 + a)$ = a.a $= a^2$ Taking a = b in a + ab = b, for all a, b in S $\Rightarrow a + a.a = a$, for all a in S $\Rightarrow a + a^2 = a$ $\therefore a^2 = a + a^2 = a \Rightarrow a = a^2$

Hence (S, \cdot) is a band

(v) $a^2 + b^2 = a + b$

 $\Rightarrow a^3 + b^3 = a^2 \cdot a + b^2 \cdot b = a + b$

Similarly $a^n + b^n = a + b$, for all $n \ge 1$

Note: - If both a and b is equal to 1 then S reduces to a singleton set

Theorem 2.4: Let $(S, +, \cdot)$ be a semiring and let a + ab = b for all a, b in S. If (S, +) is right cancellative then (i) (S, +) is a band (ii) (S, \cdot) is a band if S satisfies IMP

Proof: (i) Consider a + ab = b for all a, b in S $\Rightarrow a^2 + a^2b = ab$

But $a^2 + a^2b = b$ for all a^2 , b in S

 \therefore ab = b for all a, b in S

 $\Rightarrow a + ab = a + b$

 $\Rightarrow b = a + b$

$$\Rightarrow a + b = a + a + b$$

By using (S, +) is right cancellative

$$\Rightarrow$$
 a = a + a \longrightarrow (I)

 \therefore (S, +) is a band

(ii) a = a + a = 2a (* From (I))

a + a = 2a + a = 3a

Continuing like this \Rightarrow na = a \longrightarrow (II)

Implies S satisfies IMP, i.e, $a^2 = na \longrightarrow (III)$

 \therefore From (II) and (III), $a^2 = a$ for all a in S

Hence (S, \cdot) is a band

Theorem 2.5: Let $(S, +, \cdot)$ be a zerosumfree semiring with additive identity zero. Then S satisfies the identity a + ab = b for all a, b in S if and only if S is a mono semiring.

Proof: Assume a + ab = b for all a, b in S

 \Rightarrow a + a + ab = a + b

 $\Rightarrow 0 + ab = a + b$ (since S is a zerosumfree semiring)

 $\Rightarrow ab = a + b$

∴ S is a mono semiring

Conversely

Assume S is a mono semiring

Suppose a + a = 0

 $\Rightarrow a + a + b = 0 + b$

 $\Rightarrow a + a + b = b$

 \Rightarrow a + ab = b for all a, b in S

Theorem 2.6: Let $(S, +, \cdot)$ be a zerosumfree semiring satisfying the identity a + ab = b for all a, b in S. Then S is a zero square semiring.

Proof: consider a + a.a = a for all a in S $\Rightarrow a + a + a^2 = a + a$ $\Rightarrow 0 + a^2 = 0$

 $\Rightarrow a^2 = 0$

∴S is a zero square semiring

Theorem 2.7: Let $(S, +, \cdot)$ be a PRD satisfying the identity a + ab = b for all a, b in S. Then the following are true (a) $(ab^{-1})^{-1} = ab^{-1} + a + b$

(b) $a + a = a^{-1}$ for all a in S. In particular $a = a^{-1}$ if (S, +) is a band

(c) $(1 + a^{-1}) = (1 + a) (b^{-1} + 1)$ for all, b in S

Proof: (a) Suppose a + ab = b for all a, b in S

 $\Rightarrow a^{-1} (a + ab) = a^{-1}b$ $\Rightarrow a^{-1}a + a^{-1}ab = a^{-1}b$ $\Rightarrow 1 + b = a^{-1}b \longrightarrow (I)$

Consider a + ab = b for all a, b in S $\Rightarrow (a + ab)b^{-1} = bb^{-1}$

$$\Rightarrow ab^{-1} + a = 1$$

$$\Rightarrow ab^{-1} + a + b = 1 + b$$

$$\Rightarrow ab^{-1} + a + b = a^{-1}b$$
 (`` from (I))

$$\Rightarrow ab^{-1} + a + b = (b^{-1}a)^{-1}$$

$$\Rightarrow ab^{-1} + a + b = (ab^{-1})^{-1}$$
 (since S is PRD)

Hence $(ab^{-1})^{-1} = ab^{-1} + a + b$ for all a, b in S

(**b**) Suppose a + ab = b for all a, b in S

$$\Rightarrow a^{-1}b^{-1}(a + ab) = (a^{-1}b^{-1})b$$
$$\Rightarrow b^{-1} + 1 = a^{-1} \longrightarrow (II) \qquad (since (S, \cdot) is an abelian group)$$

Also a + ab = b

$$\Rightarrow b^{-1}(a + ab) = b^{-1}b$$

$$\Rightarrow b^{-1}a + a = 1 \longrightarrow (III)$$

$$\Rightarrow b^{-1} + b^{-1}a + a = b^{-1} + 1$$

$$\Rightarrow b^{-1} + b^{-1}a + a = a^{-1} \qquad (\forall \text{ from (II)})$$

$$\Rightarrow a + a = a^{-1} \text{ for all } a \text{ in } S \qquad (\text{since } b^{-1} + b^{-1}a = a \text{ for all } b^{-1}, a \text{ in } S)$$

In particular, if (S, +) is band $\Rightarrow a + a = a$ and $a + a = a^{-1}$

 \therefore a = a⁻¹ for all in S

© 2012, IJMA. All Rights Reserved

(c) Adding (II) and (III) we have $1 + a^{-1} = b^{-1}a + a + b^{-1} + 1$

 $= ab^{-1} + a.1 + 1.b^{-1} + 1.1$ $= a(b^{-1} + 1) + 1(b^{-1} + 1)$ $= (a + 1)(b^{-1} + 1) \text{ for all } a, b \text{ in } S$

3. Ordering on a + ab = b for all a, b in S:

Theorem 3.1: If $(S, +, \cdot)$ be a totally ordered semiring satisfying the identity a + ab = b for all a, b in S and (S, +) is commutative. If (S, +) is non-negatively ordered (non-positively ordered), then (S, +) is p.t.o (n.t.o).

Proof: Assume (S, +) is non-negatively ordered $\Rightarrow a + a \ge a$ $\Rightarrow a + a + ab \ge a + ab$ $\Rightarrow a + b \ge b \longrightarrow (I)$ Suppose a + b < a $\Rightarrow a + b + ab \le a + ab$ $\Rightarrow a + ab + b \le b$ (since (S, +) is commutative) $\Rightarrow b + b \le b$

Which is a contradiction to (S, +) is non-negatively ordered

Therefore $a + b \ge a \longrightarrow (II)$

From (I) and (II) we have, $a + b \ge a$ and $a + b \ge b$

Therefore (S, +) is p.t.o

Similarly, we can prove that (S, +) is n.t.o if (S, +) is non-positively ordered

Theorem 3.2: If $(S, +, \cdot)$ be a totally ordered semiring satisfying the identity a + ab = b for all a, b in S and (S, +) is commutative. If (S, \cdot) is non-negatively ordered (non-positively ordered), then (S, \cdot) is p.t.o (n.t.o).

Proof: Suppose ab < a $\Rightarrow ab^2 \le ab < a$ $\Rightarrow ab^2 \le a$

 $\Rightarrow ab^{2} + ab \le a + ab$ $\Rightarrow (ab + a)b \le b$ $\Rightarrow b^{2} \le b \qquad (since (S, +) is commutative)$

Which is contradiction to (S, \cdot) non-negatively ordered Therefore $ab \ge a \longrightarrow (I)$

Also b = a + ab

Implies $ab = a^2 + a^2b = b$ for all a^2 , b in S

Therefore ab = b

Obviously $ab \ge b \longrightarrow (II)$

© 2012, IJMA. All Rights Reserved

From (I) and (II) we have, (S, \cdot) is p.t.o

Similarly, we can prove that (S, \cdot) is n.t.o if (S, \cdot) is non-positively ordered

Theorem 3.3: If $(S, +, \cdot)$ be a t.o semiring satisfying the identity a + ab = b for all a, b in S and (S, +) is band. If (S, \cdot) is p.t.o(n.t.o), then (S, +) is p.t.o(n.t.o).

Proof: Suppose (S, +) is band

Consider a + ab = b for all a, b in S

 \Rightarrow a + (a + a) b = b

 \Rightarrow a + ab + ab = b

 \Rightarrow b + ab = b \longrightarrow (I)

Assume (S, \cdot) is p.t.o

Which implies $ab \ge a$

 $\Rightarrow a + ab \ge a + a$

 $\Longrightarrow b \ge a + a$

 \Rightarrow a + b \geq a + (a + a)

 \Rightarrow a + b \ge a + a (since (S, +) is band)

 $\Rightarrow a + b \ge a \longrightarrow (II)$

Now $a + b \ge a$

 $\Rightarrow a + b + ab \ge a + ab$

 $\Rightarrow a + b \ge b \longrightarrow (III) \qquad (\stackrel{\text{``from }}{} from (I))$

From (II) and (III) we have (S, +) is p.t.o

REFERENCES

- [1] Arif Kaya and M. Satyanarayana, "Semirings satisfying properties of distributive type", Proceeding of the American Mathematical Society, Volume 82, Number 3, July 1981.
- [2] Jonathan S. Golan, "Semirings and their Applications", Kluwer Academic Publishers, Dordrecht, 1999.
- [3] T. Vasanthi, "Semirings with IMP", Southeast Asian Bulletin of Mathematics, (2008), pp.995-998.
- [4] Vasanthi. T, Monikarchana. Y, Manjula.K, "Structure of Semirings", Southeast Asian Bulletin of Mathematics. Vol.35, (2011), PP.149-156.

Source of support: Nil, Conflict of interest: None Declared