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ABSTRACT 

Several new inequalities concerning q-gamma functions are proved. 
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1. INTRODUCTION:  

The Euler gamma function )(xΓ is defined for  0>x   by 
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The  psi or digamma function, the logarithmic derivative of the gamma function is defined by  
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The q-analogue of  )(xΓ is called  q-gamma function,   was introduced by  Jackson  in 1904 and defined for  

0>x   and  10 << q  by 
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The q-gamma function satisfies the following  
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The q-analogue of  )(xψ  is called the q-psi function defined by 

  

                                                    
)(

)(
)(

x

x
x

q

q

q
Γ

Γ′
=ψ  .                                                                                               (1.6) 

 

------------------------------------------------------------------------------------------------------------------------------------------- 

����������	
���
����������������

�
��������

����

	���

�
������

������
Department of Computer Engineering, College of Engineering University of Mosul, Iraq 



*W. T. Sulaiman / Some inequalities concerning Q-gamma functions / IJMA- 2(3), Mar.-2011, Page: 351-355 

© 2010, IJMA. All Rights Reserved                                                                                                                                              352 

                                                                                                      

�
From (1.3) and (1.6) it follows that 
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It is well-known that  qψ ′   is strictly completely monotonic on ),0( ∞  that is (see [1,page260] ) 
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   Concerning q-gamma functions, the following results were achieved 

 

 Theorem: 1.1[3].  Let  dcbaqx ,,0),1,0(],1,0[ >≥∈∈  positive real numbers with 0>> adbc  and  

.0)( >+ axbqψ Then 
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   Theorem: 1.2[2].  Let  ,0,10 ≤<< Aq  and   .0≥b  Then the function 
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decreases with respect to  .0>x  

 

 

The object of the present paper is to give several new inequalities concerning the q-gamma functions.  

 

 

 2. RESULTS: 

 

The following generalizes theorem 1.2. 

 

Theorem: 2.1.  Let f be a non-negative real function such that 00 ≥′′<′ fandf .  Let ,10 << q  
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 and  .0≥b  Then the function 
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decreases with respect to  .0>x  

 

Proof:  We have,   
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By setting   ,/1 yx =  we have 
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Differentiating the above leads to  
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Therefore  g  is non-increasing.  As  ,0)0( =g   then   )(yg  and hence ,0)( 1 <−
xg which implies 0)( <′ xF .  

That is  F is decreasing. 

 

Remark: 1 It may be mentioned that   theorem 1.2 follows from theorem 2.1 by putting   .0,)( ≤= Axxf
A

In a 

similar way as the Beta function,  we define the  q-beta function by 
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Lemma: 2.2 Let   ,0,0,10 nsmttsq +≤+<≤<<<  then 
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Proof:   We have 
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hence the result. 

                                     

Theorem: 2.3 Let   .0,,, >αbax  Then the function  ( )axbbxaBq ++ αα ,  is non-increasing in  x. 

 

Proof:  Let      

                                            ( )axbbxaBxf q ++= αα ,)( , 

then, we have   
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Now,  making use of lemma 2.  With 
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and then  exchang   a and b,  we get   ,0)(/)( ≤′ xfxf  which implies  0)( ≤′ xf . 

 

Therefore  )(xf  is non-increasing.  The proof is complete. 

  

Theorem: 2.4 Let ,10,,,,0,,,,0 22 <<>><>> qdbcaNdMbNMdcx 0>f  and 

0<′′f (that is  f ′ is decreasing).  Then the function 
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Proof:   We have 
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Since  ,0)( <′′ xqψ  then  qψ ′   is decreasing.  Therefore 0)( ≤′ xG ,  which implies ,0)( ≤′ xL  and hence   

)(xL  is decreasing. 

 

 

 Theorem: 2.5 Let ,1)(,,,0,,10,0, ≥Γ≥≥><<> adbcadcqyx q 0)( ≥+ dxcqψ .  Then the 

function 
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is non- decreasing  for  .0>x  

 

Proof:  Since  ,0>′
qψ  then  qψ  is increasing and therefore )()( dxcbxa +≥+ ψψ .Then we have 
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Therefore  g  is non-decreasing.  Since  ,0)0( ≥g  then  ,0)( ≥xg  and hence .0)( ≥′ xH   
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 Making use of (1.7), we have 
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Therefore  0)( ≥′ xh  and  h  is non-decreasing. 

 

Remark: 2 Theorem 1.1 follows from theorem 2.6 by putting 

 

         ,10,)(,)( ≤≤+=+= xaxbxgbxaxf    and replacing  ba,  by dc, respectively. 
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