International Journal of Mathematical Archive-3(9), 2012, 3330-3339

OPEN MAPPING THEOREM ON INTUITIONISTIC 2-FUZZY2-NORMED LINEAR SPACE

¹Thangaraj Beaula* & ²Lilly Esthar Rani

1&2 Department of Mathematics, TBML College, Porayar, Tamil Nadu, India

(Received on: 09-08-12; Revised & Accepted on: 04-09-12)

ABSTRACT

T he concepts of fuzzy boundedness, fuzzy continuity and on intutionistic 2-fuzzy 2-normed linear space are introduced. Using these concepts some theorems are proved and as a result the famous Open Mapping Theorem is established in intuitionistic 2fuzzy 2-normed linear space.

2010 Mathematics Subject Classification: 46B20, 46B99, 46A19,

Key words: intuitionistic2- fuzzy 2-normed linear space, Convergent and Cauchy sequences, intuitionist 2-fuzzy 2-Banach space.

1. INTRODUCTION

The theory of fuzzy sets was introduced by L. Zadeh [9] in 1965. A satisfactory theory of 2-norm on a linear space has been introduced and developed by Gahler in 1964[2]. The concepts fuzzy norm and α -norm were introduced by Bag and Samanta in 2003[1]. Jialuzhang [3] has defined fuzzy linear space in a different way. The notion of 2-fuzzy 2-normed linear space of the set of all fuzzy sets of a set was introduced by R. M. Somasundaram and Thangaraj Beaula [6]. The concept of intuitionistic 2fuzzy 2-normed linear space of the set of a set was introduced by Thangaraj Beaula and D. Lilly Esthar Rani [7].

We have introduced the concepts of fuzzy boundedness, fuzzy continuity on intutionistic 2-fuzzy 2-normed linear space. Using these concepts some theorems are proved and as a result the famous Open Mapping Theorem is established in intuitionistic 2fuzzy 2-normed linear space.

2. PRELIMINARIES

For the sake of completeness, we reproduce the following definitions due to Gahler [2], Bag and Samanta [1] and Jialuzhang [3].

Definition 2.1. [2] Let X be a real vector space of dimension greater than 1 and let $\|\bullet,\bullet\|$ be a real valued function on X x X satisfying the following conditions:

- 1. || x, y || = 0 if and only if x and y are linearly dependent,
- 2. || x, y || = || y, x ||,
- 3. $\|\alpha x, y\| = |\alpha| \|x, y\|$, where α is real,
- $4. \quad \parallel x, \, y+z \parallel \, \leq \, \parallel x \; , \, y \parallel \, + \, \parallel x \; , \, z \parallel.$

 $\| \bullet, \bullet \|$ is called a 2-norm on X and the pair (X, $\| \bullet, \bullet \|$) is called a linear 2-normed space.

Definition 2.2. [1] Let X be a linear space over K (field or real or complex numbers). A fuzzy subset N of X x R (R, the set of real numbers) is called a fuzzy norm on X if and only if for all $x, u \in X$ and $c \in K$.

(N1) for all $t \in \mathbb{R}$ with $t \le 0$, N (x, t) = 0,

(N2) for all $t \in R$ with t > 0, N (x, t) = 1, if and only if x = 0,

(N3) for all $t \in \mathbb{R}$ with t > 0, N (cx, t) = N (x, $\frac{1}{|c|}$), if $c \neq 0$,

(N4) for all s, t \in R, x, u \in X, N (x+u, s + t) \ge min {N (x,s), N (u, t) },

Corresponding author: ¹Thangaraj Beaula* 1&2 Department of Mathematics, TBML College, Porayar, Tamil Nadu, India

(N5) N (x,•) is a non decreasing function of R and lim N (x, t) =1

 $t \rightarrow \infty$

The pair (X, N) will be referred to as a fuzzy normed linear space.

Definition 2.3. [3] Let X be any non-empty set and F (X) be the set of all fuzzy sets on X. For U, $V \in F(X)$ and $k \in K$ the field of real numbers, define $U + V = \{ (x + y, \lambda \land u) | (x, \lambda) \in U, (y, \mu) \in V \},\$ $k U = \{ (kx, \lambda) | (x, \lambda) \in U \}$

. **Definition 2.4.[3]** A fuzzy linear space $\widetilde{\mathbf{X}} = \mathbf{X} \times (0, 1]$ over the number field K. where the addition and scalar

multiplication operation on \widetilde{X} are defined by

$$(x, \lambda) + (y, \mu) = (x + y, \lambda \wedge \mu),$$

k (x, λ) = (kx, λ) is a fuzzy normed space if to every (x, λ) $\in \mathbf{X}$ there is associated a non-negative real number, $|| (x, \lambda) ||$, called the fuzzy norm of (x, λ), in such a way that

- 1. $\|(x,\lambda)\| = 0$ iff x = 0 the zero element of $X, \lambda \in (0,1]$
- 2. $\| k(x,\lambda) \| = |k| \| (x,\lambda) \|$ for all $(x, \lambda) \in \widetilde{X}$ and all $k \in K$
- 3. $\|(x, \lambda) + (y,\mu)\| \le \|(x,\lambda \land \mu)\| + \|(y,\lambda \land \mu)\|$ for all (x,λ) and $(y,\mu) \in \widetilde{X}$
- 4. $\| (\mathbf{x}, \mathbf{V} \lambda_t \| = \wedge \| (\mathbf{x}, \lambda_t \| \text{ for } \lambda_t \in (0,1])$

Definition 2.5.[6] Let X be a non-empty and F(X) be the set of all fuzzy sets in X. If $f \in F(X)$ then $f = \{ (x,\mu) \mid x \in X \text{ and } \mu \in (0,1] \}$ Clearly f is a bounded function for $|f(x)| \le 1$. Let K be the space of real numbers, then F(X) is a linear space over the field K where the addition and scalar multiplication are defined by $f + g = \{ (x, \mu) + (y, \eta) \} = \{ (x + y, \mu \land \eta) / (x, \mu) \in f \text{ and } (y, \eta) \in g \}$

 $kf = \{ (kx, \mu) / (x, \mu) \in f \}$ where $k \in K$.

The linear space F(X) is said to be normed space if to every $f \in F(X)$, there is associated a non-negative real number || f || called the norm of f in such a way that 1. || f || = 0 if and only if f = 0.

For $|| f || = 0 \Leftrightarrow \{|| (x, \mu)|| / (x, \mu) \in f\} = 0$

 \Leftrightarrow x = 0, $\mu \in (0, 1]$

 $\Leftrightarrow f = 0$

2. $||kf|| = |k| ||f||, k \in K.$

For $|| kf || = \{ ||k (x, \mu)|| / (x, \mu) \in f, k \in K \}$

$$= \{ |k| ||x, \mu|| \} | (x, \mu) \in f \}$$

```
= |k| ||f||.
```

3. $\|f + g\| \le \|f\| + \|g\|$ for every f, $g \in F(X)$

For,

 $\|f+g\,\|=\{\|\,(x,\mu)+(y,\,\eta)\|\!/\,x,\,y\in\!X,\,\mu,\,\eta\!\in\!(0,1]\}$

- $= \{ \| \, (x{+}y), \, (\mu \wedge \eta) \| \, / \, x, \, y \in \! X, \, \mu, \, \eta \! \in \! (0,1] \}$
- $\leq \left\{ \parallel x,\, \mu \wedge \eta {\parallel} + \left\| y,\, \mu \wedge \eta \right\| / (x,\mu) \in f \text{ and } (y,\,\eta) {\in} g \right\}$

 $= \|f\| + \|g\|.$ and (F(X), $\|\bullet\|$) is a normed linear space.

Definition 2.6.[6] A 2-fuzzy set on X is a fuzzy set on F(X)

Definition 2.7.[6] Let F(X) be a linear space over the real field K. A fuzzy subset N of $F(X) \times F(X) \times R$. (R, the set of real numbers) is called a 2-fuzzy 2-norm on X (or fuzzy 2-norm on F(X)) if and only if,

 $\begin{array}{l} (N1) \mbox{ for all } t \in R \mbox{ with } t \leq 0, \ N \ (f_1, f_2, t) = 0, \\ (N2) \mbox{ for all } t \in R \mbox{ with } t > 0, \ N \ (f_1, f_2, t) = 1, \mbox{ if and only if } f_1 \mbox{ and } f_2 \mbox{ are linearly dependent.} \\ (N3) \ N \ (f_1, f_2, t) \mbox{ is invariant under any permutation of } f_1, f_2. \\ (N4) \mbox{ for all } t \in R, \mbox{ with } t \geq 0, \end{array}$

N (f₁, cf₂, t) = N (f₁, f₂,
$$\frac{t}{|c|}$$
) if c ≠0, c ∈ K (field)

 $\begin{array}{l} (N5) \mbox{ for all } s,t \in R, N \ (f_1, f_2 + f_3, s + t) \ \geq \min \ \{N \ (f_1, f_2, s), N \ (f_1, f_3, t)\} \\ (N6) \ N \ (f_1, f_2, \bullet): \ (0, \infty) \rightarrow [0, 1] \ is \ continuous. \\ (N7) \ \lim N \ (f_1, f_2, t \) = 1 \\ t \rightarrow \infty \end{array}$

Then F(X), N) is a fuzzy 2-normed linear space or (X, N) is a 2-fuzzy 2-normed linear space.

Definition 2.8. A binary operation *: $[0, 1] \times [0, 1] \rightarrow [0,1]$ is a continuous t-norm if it satisfies the following conditions:

- 1. * is commutative and associative
- 2. * is continuous
- 3. a * 1 = a, for all $a \in [0,1]$
- 4. $a * b \le c * d$ whenever $a \le c$ and $b \le d$ and $a, b, c, d \in [0,1]$

Definition 2.9. A binary operation $\diamond : [0,1] \times [0,1] \rightarrow [0,1]$ is a continuous t - conorm if it satisfies the following conditions:

- 1. \diamond is commutative and associative
- 2. \diamond is continuous
- 3. $a \diamond 0 = a$, for all $a \in [0,1]$
- 4. $a \diamond b \leq c \diamond d$ whenever $a \leq c$ and $b \leq d$ and $a, b, c, d \in [0,1]$

Note 2.10.

(1) For any $r_1, r_2 \in (0,1)$ with $r_1 > r_2$ there exist $r_3, r_4 \in (0,1)$ such that $r_1 * r_3 \ge r_2$ and $r_1 \ge r_4 \diamond r_2$ (2) For any $r_5 \in (0,1)$, there exist $r_6, r_7 \in (0,1)$ such that $r_6 * r_6 \ge r_5$ and $r_7 \diamond r_7 \ge r_5$

Definition 2.11. An intuitionistic fuzzy 2- normed linear space (i.f-2-NLS) is of the form $A = \{F(X), N(f_1, f_2, t), M(f_1, f_2, t) / (f_1, f_2) \in F[(X)]^2\}$ where F(X) is a linear space over a field K, * is a continuous t-norm, \Diamond is a continuous t-conorm, N and M are fuzzy sets on $[F(X)]^2 \times (0, \infty)$ such that N denotes the degree of membership and M denotes the degree of non-membership of $(f_1, f_2, t) \in [F(X)]^2 \times (0, \infty)$ satisfying the following conditions:

$$(1) \qquad N(f_{1},f_{2},t)+M(f_{1},f_{2},t)\leq 1$$

- (2) $N(f_1, f_2, t) > 0$
- (3) $N(f_1, f_2, t) = 1$ if and only if f_1, f_2 are linearly dependent

.

- (4) $N(f_1, f_2, t)$ is invariant under any permutation of f_1, f_2
- (5) $N(f_1, f_2, t) : (0, \infty) \rightarrow [0,1]$ is continuous in t.

(6)
$$N(f_1, cf_2, t) = N(f_1, f_2, \frac{t}{|c|}), \text{ if } c \neq 0, c \in K$$

(7) N
$$(f_1, f_2, s) * N(f_1, f_3, t) \le N(f_1, f_2 + f_3, s + t)$$

- (8) M (f_1, f_2, t) > 0
- (9) $M(f_1, f_2, t) = 0$ if and only if f_1, f_2 are linearly dependent
- (10) M (f_1 , f_2 , t) is invariant under any permutation of f_1 , f_2

$$(11) \quad M(f_{1}, cf_{2}, t) = M(f_{1}, f_{2}, \frac{t}{\mid c \mid}) \text{ if } c \neq 0, c \in k$$

(12) M (
$$f_1, f_2, s$$
) \Diamond M (f_1, f_3, t) \ge M ($f_1, f_2 + f_2, s + t$)

(13) M (f₁, f₂, t) :
$$(0, \infty) \rightarrow [0,1]$$
 is continuous in t.

3. FUZZY BOUDEDNESS AND FUZZY CONTINUITY ON INTUITIONISTIC 2- FUZZY NORMED LINEAR SPACE

Definition 3. 1. A sequence $\{f_n\}$ in an (IF 2-NLS) is said to converge to f if for given r > 0, t > 0, 0 < r < 1, there exists an integer $n_0 \in N$ such that

N $(f_n-f, g_1, t) > 1 - r, N(f_n-f, g_2, t) > 1 - r$

 $M (f_n - f, g_1, t) < r, M (f_n - f, g_2, t) < r \text{ where } g_1, g_2 \text{ are linearly independent (or) } N (f_n - f, g_i, t) \rightarrow 1 \text{ as } n \rightarrow \infty$

for i = 1, 2 and $M(f_n-f, gi, t) \rightarrow 0$ as $n \rightarrow \infty$ for i = 1, 2

Definition 3. 2. A sequence $\{f_n\}$ is a cauchy sequence if for given $\in > 0$,

 $N(f_n-f_m,g_i,t) > 1 - \epsilon$, $M(f_n-f_m,g_i,t) < \epsilon$, $0 < \epsilon < 1$, t > 0, g_i 's are linearly independent, for i = 1, 2.

Definition 3. 3. Let A = {(F(X), N (f, f_2 , t), M (f_1 , f_2 , t) / (f_1 , f_2) \in [F(X)]²)} be an intuitionistic fuzzy 2-normed linear space then

N ((
$$f_1, f_2$$
), (f'_1, f'_2), t) = N(($f_1-f'_1$), ($f_2-f'_2$), t)

 $M(f_1, f_2), (f'_1, f'_2), t) = M((f_1-f'_1), (f_2-f'_2), t)$

are intuitionistic 2-fuzzy metrics defined on A and (A, N, M, *) is an intuitionistic 2-fuzzy metric space (i-2-f-m-s).

Definition 3. 4. Let (A, N, M, *) be an intuitionistic 2-fuzzy normed linear space. For t > 0, define the openball B((f_1 , f_2), r, t) with center (f_1 , f_2) \in A and radius 0 < r < 1 as

 $B\;((f_1,\,f_2),\,r,\,t) = \{(g_1,\,g_2) \in A : N(f_1,\,g_1),\,(f_2,\,g_2),\,t) > 1 - r\;M\;(f_1 - g_1),\,(f_2 - g_2) < r\}$

Definition 3. 5. A subset $G \subset A$ is said to be open if for each $(f_1, f_2) \in G$, there exists t > 0 and 0 < r < 1 such that $B((f_1, f_2), r, t), r, t) \subset G$.

Definition 3. 6. Let \mathcal{J} be the set of all open subsets of A, then it is called the the intuitionistic 2-fuzzy topology induced by the intuitionistic 2-fuzzy norm.

Definition 3.7. Let (A, N, M, *) be an i-2-f-m-s then a subset D of A is said to be intuitionistic2- fuzzy bounded if there exists t > 0 and 0 < r < 1 such that

 $M((f_1, f_2), (g_1, g_2), t) > 1 - r, N(f_1, f_2), (g_1, g_2), t) < r \text{ for each } ((f_1, f_2), (g_1, g_2)) \in [F(X)]^2$

Definition 3.8. Let $(A, N_1, M_1, *)$ $(B, N_2, M_2, *)$ be an intuitionistic 2-fuzzy normed linear space, a mapping T: A \rightarrow B is said to be an intuitionistic fuzzy 2 - bounded if there exist constants $m_1, m_2 \in R^+$ such that for every $f \in A$ and for each t > 0,

$$N_{2}(Tf, Tg, t) > N_{1}\left(f, g, \frac{t}{m_{1}}\right)$$
$$M_{2}(Tf, Tg, t) > M_{1}\left(f, g, \frac{t}{m_{2}}\right)$$

Definition 3.9. Let T : A \rightarrow B be a linear operator from IF 2-Banach Space A to IF 2 Banach space B. Then T is said to be an intuitionist 2 -fuzzy continuous if for each \in with $0 < \epsilon < 1$, there exists δ , $0 < \delta < 1$, such that

$$N_1$$
 (f, g, t) $\geq 1 - \delta$ and M_1 (f, g, t) $\leq \delta$,

 $\begin{array}{ll} \text{implies } N_2 \left(Tf, \,Tg, \,t\right) \geq 1 - \epsilon & \text{and } M_2 \left(Tf, \,Tg, \,t\right) \leq \epsilon \\ \textcircled{0 2012, IJMA. All Rights Reserved} \end{array}$

Theorem3.10. A linear operator T: (A, N₁, M₁, *) \rightarrow (B, N₂, M₂, *) is an intuitionistic 2- fuzzy bounded iff it is an intuitionistic 2- fuzzy continuous.

Proof. Assume T: A \rightarrow B is an intuitionistic 2-fuzzy bounded. Then there exist constants $M_1, M_2 \in R^+$ such that for every $f \in A$ and for each t > 0,

$$N_{2} (Tf, Tg, t) \ge N_{1} \left(f, g, \frac{t}{M_{1}} \right) \text{ and}$$

$$M2 (Tf, Tg, t) \le M_{1} \left(f, g, \frac{t}{M_{2}} \right)$$
(1)

Suppose for \in , with $0 < \in < 1$, choose δ , with $0 < \delta < 1$, such that $N_1(f, g, t) \ge 1 - \delta$ and $M_1(f, g, t) \le \delta$ for any t > 0

and

$$N_{1}\left(f,g,\frac{t}{M_{1}}\right) \geq 1 - \epsilon$$

$$M_{1}\left(f,g,\frac{t}{M_{2}}\right) < \epsilon \quad (\because M_{1},M_{2} > 0)$$
(2)

Using (2) in (1) we get

$$N_2$$
 (Tf, Tg, t) $\geq 1 - \in$ and M_2 (Tf, Tg, t) $\leq \in$

Hence T is an intuitionistic 2- fuzzy continuous.

 $\begin{pmatrix} t \end{pmatrix}$

Conversely, Suppose T is an intuitionistic 2- fuzzy continuous.

For \in with $0 < \in < 1$, there exists δ with $0 < \delta < 1$

such that N_1 (f, g,t) < 1 - δ , M_1 (f, g, t) < δ

implies N₂ (Tf, Tg, t) > 1 -
$$\in$$
, M₂ (Tf, Tg, t) < \in (3)

Choose $M_1, M_2 \in R^+$ such that

$$N_1\left(f, g, \frac{t}{M_1}\right) \le 1 - \epsilon$$
 for given $N_1(f, g, t) > 1 - \delta$ and

$$M_{1}\left(f,g,\frac{t}{M_{2}}\right) \geq \in \text{ for given } M_{1}(f,g,t) < \delta$$
(4)

Then applying (4) on (3) we get

$$\begin{split} &N_{2}\left(Tf,Tg,t\right)>1-\in\geq N_{1}\left(f,g,\frac{t}{M_{1}}\right)\\ &M_{2}\left(Tf,Tg,t\right)<\delta\leq M_{1}\left(f,g,\frac{t}{M_{2}}\right) \end{split}$$

Therefore T is intuitionistic 2- fuzzy bounded.

Lemma 3.11. Let (F(X), N, M, *) be an intuitionistic 2-fuzzy normed linear space. Let $T : F(X) \to F(X)$ be an intuitionistic 2- fuzzy continuous. If $f_n \to f$ then $T(f_n) \to T(f)$ as $n \to \infty$.

Proof. Given $f_n \rightarrow f$ in (F(X), N, M, *)

Then for given $\in > 0$, t > 0, 0 < t < 1 there exists an integer $n_0 \in N$ such that $N(f_n-f, gi, t) > 1 - \in$ and $M(f_n-f, g_i, t) < \in$ where g_i 's are linearly independent for all $n \ge n_0$, i = 1, 2.

Since T is is intuitionistic 2- fuzzy continuous,

 $(T(f_n\!\!-\!\!f\,),\,Tg_i,\,t)>1-\in$ and M $(T(f_n\!\!-\!\!f\,),\,Tg_i,\,t)<\in$

implies N (Tf_n –Tf, $g_i{'t}) > 1 - \varepsilon$ and M (Tf_n – Tf, $g_i{',t}) < \varepsilon$

Thus $Tf_n \rightarrow Tf$ as $n \rightarrow \infty$.

Lemma 3.12. Let (F(X), N, M, *) be an intuitionistic 2-fuzzy normed linear space then N and M are jointly continuous.

Proof. If $f_n \to f$ and $g_n \to g$ in (F(X), N, M, *) we have to prove that $N(f_n-f,g_n-g,t) > 1 - \epsilon$ and $M(f_n-f,g_n-g,t) < \epsilon$ as $n \to \infty$.

We know that $\lim_{n \to \infty} N(f_n - f, f_i', t) = 1 \text{ or } > 1 - \epsilon, \lim_{n \to \infty} N(g_n - g, f_i', t) = 1 > 1 - \epsilon \text{ and } \lim_{n \to \infty} M(f_n - f, f_i', t) = 0 < \epsilon,$ $\lim M(g_n - g, f_i', t) = 0 < \epsilon$

 $\prod_{n \to \infty} M(g_n - g, f_i', t) = 0 < \in$

 $N(f_n-f, g_n-g, t) \ge N(f_n-f, f_i', t/2) * N(g_n-g, f_i', t/2)$

$$> (1 - \epsilon) * (1 - \epsilon)$$
$$= 1 - \epsilon$$

And, $M(f_n-f, g_n-g, t) \le M(f_n-f, f'_i, t/2) \iff M(g_n-g, f'_i, t/2)$

$$< \in <> \in = \in$$

Definition 3.13. Let (F(X), N, M, *) be an intuitionistic 2-fuzzy normed linear space. A subset A of F (X) is said to be is intuitionistic 2- fuzzy bounded if

N (f, g, t) $\geq 1 - M$ and M(f, g,t) $\leq M$ where M is a positive constant.

4. OPEN MAPPING THEOREM

If T is a continuous linear operator from the intuitionistic 2-fuzzy Banach space. (F(X), N_1 , M_1 , *) onto the intuitionistic 2-fuzzy Banach space (F(Y), N_2 , M_2 , *) then T is an open mapping.

Proof. Let us prove the theorem in various steps.

Step 1. Let A be an intuitionistic 2-fuzzy neighbourhood of $\overline{0} = (0,0)$ in $[F(X)]^2$. Let us show that $\overline{0} \in (T(A))^\circ$. Let B be the intuitionistic 2-fuzzy balanced neighbourhood of $\overline{0}$ such that $B + B \subset A$.

Since T (F(X)) = F(Y) and B is absorbing, it follows that $F(Y) = \bigcap_{n} T(nB)$

There exists a positive integer n_0 such that $T(\overline{n_0B})$ has a non empty interior. Therefore $\overline{0} \in (\overline{T(B)})^0 - (\overline{T(B)})^0$

Also

$$\mathsf{T}(\overline{B})^{0} - (\mathsf{T}(\overline{B}))^{0} \subset (\mathsf{T}(\overline{B})) - \mathsf{T}(\overline{B}) \subset \mathsf{T}(\overline{A})$$

So the set T(A) includes the intuitionistic 2-fuzzy neighbourhood $(T(\overline{B}))^0 - (T(\overline{B}))^0$ of $\overline{0}$.

Step 2. Now it is shown that $\mathbf{0} \in (T(A))^0$ since $\mathbf{0} \in A$ and A is an open set there exists $0 < \alpha < 1$ and to $\in (0, \alpha)$ such that B $((0,0), \alpha, t_0) \subset A$. But for $0 < \alpha < 1$ a sequence $\{\in_n\}$ can be found such that $\in_n \to 0$ and

$$1-\alpha < lim_n \left[(1-\varepsilon_1) \ast (1-\varepsilon_2) \ast \ldots \ast (1-\varepsilon_n) \right].$$

Again, $\overline{0} \in T(B(0,0), \in_n, t_n')$ where $t'_n = \frac{1}{2^n} t_0$, so by step 1 there exists $\delta_n \in (0,1)$ and $t_n > 0$ such that $B((0,0), \delta_n, t_n) \subset T(\overline{B(0,0)}, \in_n, t_n')$

Since the set $\left\{ B(0,0), \frac{1}{n}, \frac{1}{n} \right\}$ is a countably locally base at zero and $t_n' \to 0$ as $n \to \infty$.

It is to be shown that $B((0,0), \delta_1, t_1) \subset (T(A))^0$. Suppose $(f_0, f'_0) \in B(0,0), \delta_1, t_1$. Then $(f_0, f'_0) \in T(\overline{B(0,0)}, \in_2, t_2')$ and so for $\delta_2 > 0$ and $\epsilon_2 > 0$ the ball $B(f_0, f_0'), \delta_2, t_2$ intersects $T(B(0,0), \delta_1, t')$. Therefore there exist $(f_1, f'_1) \in B(f_0, f_0'), \delta_2, t_2$)

 $(ie) \ N_2[(f_0, \ f'_0) - T(f_1, \ f'_1)] \ g_i, \ t_2) > 1 - \delta_2 \ \text{ and } \ M_2((f_0, \ f_0') - T(f_1, \ f_1'), \ g_i, \ t_2) < \delta_2 \ or \ equivalently,$

$$((f_0, f_0) - T (f_1, f'_1) \in B(0,0), \delta_2, t_2) \subset T (B(0,0), \in_1, t')$$

and by the similar argument there exists (f_2, f_2') in B(0,0), \in_2 , t'), such that

 $N_2\left(f_0,\,f'_{\,0}\right) - T[(f_1,\,f'_{\,1}) + \,(f_2,\,f'_{\,2}),\,g_i,\,t_3) = N_2\left((f_0,\,f_0{'}) - T(f_1,\,f_1{'}) - T(f_2,\,f_2{'}),\,g_i,\,t_3) > 1 - \delta_3.$

and $M_2((f_0, f_0') - T([f_1, f_1') + (f_2, f_2')], g_i, t_3) = M_2((f_0, f_0') - T(f_1, f_1') - T(f_2, f_2'), g_i, t_3) > \delta_3.$

If this process is continued, it leads to a sequence $\{\{f_n, f_n')\}$ such that $(f_n, f_n') \in B$ $((0,0), \in_n, t_n')$ and N_2 $((f_0, f_0) - \sum_{i=1}^{n-1} T(f_j, f_j'), g_i, t_n) < 1 - \delta_n$,

$$M_2(f_0,\,f_0) - \, \sum_{j=1}^{n-1} T\,(f_j,\,f_j'),\,g_i,\,t_n) < \delta_n$$

Now if $n \in N$ and $\{p_n\}$ is a positive and increasing sequence, then

$$N_{1}\left(\sum_{j=1}^{n}(f_{j},f_{j}')-\sum_{j=1}^{n+p_{n}}(f_{j},f_{j}'),g_{i},t\right)=N_{1}\left(\sum_{j=1}^{n+p_{n}}(f_{j},f_{j}'),g_{i},t\right)$$
$$\geq N_{1}(f_{n+1},f_{n+1}'),g_{i},t_{1})*N_{1}(f_{n+2}',f_{n+2}'),g_{i},t_{2})*...*N_{1}(f_{n+p_{n}},f_{n+p_{n}}'),g_{i},t_{p_{n}})$$

where $t_1 + t_2 + ... + t_{p_n} = t$

$$M_{1}\left(\sum_{j=1}^{n}(f_{j},f_{j}')-\sum_{j=1}^{n+p_{n}}(f_{j},f_{j}'),g_{i},t\right)=M_{1}\left(\left(\sum_{j=n+1}^{n+p_{n}}(f_{j},f_{j}')\right),g_{i},t\right)$$

 $\leq M_1 \; ((f_{n+1},\,f_{n+1}{'}),\,g_i,\,t_1) \mathrel{\Diamond} \ldots \mathrel{\Diamond} M1 \; (f_n \! + \! p_n{'} \; f_{n+p_n}{'},\,g_i,\,t_n)$

where $t_1 + t_2 + \ldots + t_{p_n} = t$.

By putting $t_0 = \min \{t_1, t_2..., t_{pn}\}$ since $t_n' \to 0$ so there exists no such that $0 \le t_n' \le t_0$ for $n > n_0$.

Therefore,

$$N_1 ((f_{n+1}, f_{n+1}'), g_i, t_0) * \ldots * N_1(f_{n+pn}, f_{n+pn}'), g_i, t_0) \geq N_1 ((f_{n+1}, f_{n+1}'), t_{n+1}') * \ldots * N_1(f_{n+pn}, f_{n+pn}'), t_{n+pn}')$$

 $\geq (1 - \in_{n+1}) * \dots * (1 - \in_{n+pn})$

Also,

 $M_1 ((f_{n+1}, f_{n+1}'), t_0) \\ \diamond \dots \\ \diamond \\ M_1(f_{n+pn}, f_{n+pn}'), \ t_0) \\ \leq M_1 ((f_{n+1}, f_{n+1}'), t_{n+1}') \\ \diamond \dots \\ \diamond \\ M_1(f_{n+pn}, f_{n+pn}'), \ t_{n+pn}') \\ = M_1 ((f_{n+1}, f_{n+1}'), t_{n+1}') \\ \diamond \dots \\ \diamond \\ M_1(f_{n+pn}, f_{n+pn}'), \ t_{n+pn}') \\ = M_1 ((f_{n+1}, f_{n+1}'), t_{n+1}') \\ \diamond \dots \\ \diamond \\ M_1(f_{n+pn}, f_{n+pn}'), \ t_{n+pn}') \\ = M_1 ((f_{n+1}, f_{n+1}'), t_{n+1}') \\ \diamond \\ M_1(f_{n+pn}, f_{n+pn}'), \ t_{n+pn}') \\ = M_1 ((f_{n+1}, f_{n+1}'), t_{n+1}') \\ \diamond \\ M_1(f_{n+pn}, f_{n+pn}'), \ t_{n+pn}') \\ = M_1 ((f_{n+1}, f_{n+1}'), t_{n+1}') \\ = M_1 ((f_{n+pn}, f_{n+pn}, f_{n+pn}'), \ t_{n+pn}') \\ = M_1 ((f_{n+1}, f_{n+1}'), t_{n+1}') \\ = M_1 ((f_{n+pn}, f_{n+pn}, f_{n+pn}'), \ t_{n+pn}') \\ = M_1 ((f_{n+1}, f_{n+1}'), t_{n+1}') \\ = M_1 ((f_{n+pn}, f_{n+pn}, f_{n+pn}'), \ t_{n+pn}') \\ = M_1 ((f_{n+pn}, f_{n+pn}'), \ t_{n+pn}') \\ = M_1 ((f_{n+$

$$\leq t_{n+1} \Diamond \dots \Diamond \in_{n+pn}$$

Hence
$$\lim_{n \to \infty} N_1 \left(\sum_{j=n+1}^{n+p_n} (f_j, f_j'), t \right) \ge \lim_{n \to \infty} ((1 - \epsilon_{n+1})^* \dots^* (1 - \epsilon_{n+pn}) = 1$$

That is $N_1 \left(\sum_{j=n+1}^{n+p_n} (f_j, f_j'), t \right) \rightarrow 1$ for all t>0
and $\lim_{n \to \infty} M_1 \left(\sum_{j=n+1}^{n+p_n} (f_j, f_j'), t \right) \le \lim_{n \to \infty} \epsilon_{n+1} \diamond \dots \diamond \epsilon_{n+pn}$
=1
That is $M_1 \left(\sum_{j=n+1}^{n+p_n} (f_j, f_j'), t \right) \rightarrow 1$ for all t>0

So the sequence $\{\sum_{j=1}^{n} (f_j, f_j')\}\$ is said to be a Cauchy sequence and consequently $\sum_{j=1}^{\infty} (f_j, f_j')\$ converges to some point $(f, f') \in F(X)$, because F(X) is complete.

By fixing t>0, there exists n_0 such that t>t_n for $n>n_0$, because $t_n \rightarrow 0$, it follows

$$\begin{split} N_{2}((f_{0},f_{0}^{'})-T(\sum_{j=1}^{n-1}T(f_{j},f_{j}^{'}),g_{i},t) &\geq N_{2}((f_{0},f_{0}^{'})-T(\sum_{j=1}^{n-1}T(f_{j},f_{j}^{'}),g_{i},t_{n}) \\ &\geq 1-\delta_{n} \\ Thus N_{2}((f_{0},f_{0}^{'})-T(\sum_{j=1}^{n-1}T(f_{j},f_{j}^{'}),g_{i},t) \to 1 \\ Also M_{2}((f_{0},f_{0}^{'})-T(\sum_{j=1}^{n-1}T(f_{j},f_{j}^{'}),g_{i},t) &\leq M_{2}((f_{0},f_{0}^{'})-T(\sum_{j=1}^{n-1}T(f_{j},f_{j}^{'}),g_{i},t_{n}) \leq \delta_{n} \\ Therefore M_{2}((f_{0},f_{0}^{'})-T(\sum_{j=1}^{n-1}T(f_{j},f_{j}^{'}),g_{i},t) \to 1 \text{ as } n \to \infty \\ Hence (f_{0},f_{0}^{'}) &= \lim_{n\to\infty}T(\sum_{j=1}^{n-1}T(f_{j},f_{j}^{'}) =T(f,f') \\ But N_{1}((f,f'),g_{i},t_{0}) &\geq \limsup N_{1}(\sum_{j=1}^{n}(f_{j},f_{j}),g_{i},t_{0}) \\ &= 1-\alpha \\ and M_{1}((f,f'),g_{i},t_{0}) \leq \liminf M_{1}(\sum_{j=1}^{n}(f_{j},f_{j}),g_{i},t_{0}) \\ &\leq \liminf (\delta_{1} \delta \dots \delta_{n}) \\ n = \alpha \end{split}$$

Hence $(f, f') \in B((0, 0), \alpha, t_0)$

Step 3. Let G be an open subset of $[F(X)]^2$ and $(f, f') \in G$. Then

 $T(G) = T(f, f')+T((-f, f')+G) \supset T(f, f')+(T(-(f, f')+G))^0$ Hence T(G) would be open because it includes a neighbourhood of each of its points.

Definition4.2. A fuzzy 2-linear functional F is a real valued function on A \times B where A and B are subspaces of (F(X), N) such that

(i) F(f+h, g+h') = F(f, g) + F(f, h') + F(h, g) + F(h, h')(ii) $F(\alpha f, \beta g) = \alpha \beta F(f, g), \alpha \beta \in [0, 1]$

F is said to be bounded with respect to α -2-norm if there exists a constant $k \in [0,1]$ such that $|F(f,g)| \le k ||(f,g)||_{\alpha}$ $||F|| = g l b \{k : |F(f, g)| \le k ||(f, g)|| \alpha \text{ for every } (f,g) \in A \times B \}$

Theorem 4.3. Let T be an intuitionistic 2-fuzzy linear operator from intuitionistic fuzzy 2-Banach space (F(X), N_1 , M_1 , *) to intuitionistic fuzzy 2- Banach space (F(Y), N₂, M₂,*). Suppose for every $\{f_n, f_n'\} \in (F(X), N_1, M_1)$ such that (f_n, f_n') \rightarrow (f, f') and (Tf_n, Tf_n') \rightarrow (g, g') for some f, f' \in F(X), g, g' \in F(Y) follows T(f, f') = (g, g'). Then T is continuous.

Proof. N and M on $(F(X), N_1, M_1, *) X (F(Y), N_2, M_2, *)$ is given by N ((f_1, f_2), (g_1, g_2), t) = min {N₁ (f_1, f_2, t), N₂(g_1, g_2, t)}

$$= N_1 (f_1, f_2, t) * N_2 (g_1, g_2, t)$$

M ((f_1, f_2), (g_1, g_2), t) = max N₁ (f_1, f_2, t), M (f_1, f_2, t)}

where * is the usual continuous t-norm and <> is the usual continuous t-conorm. With this norm and conorm (F(X), N₁, M₁, *) X (F(Y), N2, M2, *) is a complete intuitionistic 2-fuzzy normed linear space.

For each $(f_1, f_2), (f_1', f_2') \in F(X)$ and $(g_1, g_2), (g_1', g_2') \in F(Y)$ and t, s > 0 it follows that

$$\begin{split} N(f_{1}, f_{2}), (g_{1}, g_{2}), t) &* N(f_{1}', f_{2}'), (g_{1}', g_{2}'), s) = [N_{1}(f_{1}, f_{2}, t) * N_{2}(g_{1}, g_{2}, t)] * [N_{1}(f_{1}', f_{2}', s) * N_{2}(g_{1}', g_{2}', s)] \\ &= [N_{1}(f_{1}, f_{2}, t) * N_{1}(f_{1}', f_{2}', s)] * [N_{2}(g_{1}, g_{2}, t) * N_{2}(g_{1}', g_{2}', s)] \\ &\leq N_{1}(f_{1} + f_{1}', f_{2} + f_{2}', s + t) * N_{2}(g_{1} + g_{1}', g_{2} + g_{2}', t + s) \\ &= N((f_{1} + f_{1}', f_{2} + f_{2}'), (g_{1} + g_{1}', g_{2} + g_{2}'), s + t)) \end{split}$$

Again

 $M((f_{1}, f_{2}), (g_{1}, g_{2}), t) \Diamond M((f_{1}', f_{2}'), (g_{1}', g_{2}'), s) = [M_{1}(f_{1}, f_{2}, t) \Diamond M_{2}(g_{1}, g_{2}, t)] \Diamond [M_{1}(f_{1}', f_{2}', s) \Diamond M_{2}(g_{1}', g_{2}', s)]$

$$= [M_1 \ (f_1, f_2, t) \Diamond M_1(f_1', f_2', s)] \Diamond [M_2 \ (g_1, g_2, t) \Diamond M_2 \ (g_1', g_2', s)]$$

$$\geq M_1 (f_1 + f_1', f_2 + f_2', s + t) \diamond M_2 (g_1 + g_1', g_2 + g_2', t + s)$$

= M ((f_1 + f_1', f_2 + f_2') (g_1 + g_1', g_2 + g_2') s + t)

Now if $\{(f_n, f_n'), (g_n, g_n')\}$ is a cauchy sequence in

 $(F(X) \times F(X) \times F(Y) \times F(Y), N, M, *)$ then there exists $n_0 \in N$ such that

 $N ((f_n, f_n'), (g_n, g_n') - (f_m, f_m'), (g_m, g_m'), t) > 1 - \in$

 $M \; ((f_n, \, f_n^{\;\prime}), \, (g_n, \, g_n^{\;\prime}) - ((f_m, \, f_m^{\;\prime}), \, (g_m, \, g_m^{\;\prime}), \, t) < \in \; for \; every \; \epsilon > 0 \; and \; t > 0$

For m, $n > n_0$

$$\begin{split} N_1(f_n-f_m,\,f_n'-f_m',\,t)\,*\,N_2\,(g_n-g_m,\,g_n',\,g_m',\,t) &= N((f_n-f_m,\,f_n'\,-f_m'),\,(g_n-g_m,\,g_n'-g_m'),\,t) \\ &= N\,((f_n,\,f_n'),\,(g_n,\,g_n'),\,(f_m,\,f_m'),\,(g_m,\,g_m'),\,t) \\ &> 1- \in \end{split}$$

$$\begin{split} M_1 & (f_n - f_m, \, f_n' - f_m', \, t) \diamond M_2 \, (g_n - g_m, \, g_n' - g_m', \, t) = M \, ((f_n - f_m, \, f_n' - f_m'), \, (g_n - g_m, \, g_n' - g_m'), \, t) \\ & = M \, ((f_n, \, f_n'), \, (g_n, \, g_n'), \, (f_m, \, f_m'), \, (g_m, \, g_m'), \, t) \\ & < \varepsilon \end{split}$$

Therefore $\{(f_n, f_n')\}$ and $\{(g_n, g_n')\}$ are cauchy sequences in $(F(X), N_1, M_1, *)$ and $(F(Y), N_2, M_2, *)$ respectively and there exists $f \in F(X)$ and $g \in F(Y)$ such that $(f_n, f_n') \rightarrow (f, f')$ and $(g_n, g_n') \rightarrow (g, g')$ and consequently $\{(f_n, f_n'), (g_n, g_n')\}$ converges in the intuitionistic 2-fuzzy normed linear space. Hence

 $(F(X) \times F(X) \times F(Y) \times F(Y), N, M, *)$ is a complete intuitionistic 2-fuzzy normed linear space.

Here let $G = \{(f_n, f_n), T(f_n, f_n)\}$ for every $(f_n, f_n') \in F(X) \times F(X)$ be the graph of the fuzzy 2-linear operator T.

Suppose $(f_n, f_n') \rightarrow (f, f')$ and $T(f_n, f_n') \rightarrow (g, g')$.

Then from previous argument,

 $\{(f_n, f_n'), (Tf_n, Tf_n')\}$ converges to ((f, f'), (g, g')) which belongs to G.

Therefore, T (f, f') = (g, g'). Thus T is continuous.

REFERENCES

[1] T. Bag and S.K. Samanta, Finite dimensional fuzzy normed linear space, J. Fuzzy Math. 11(2003) no. 3, 687 - 705.

[2] S. Gahler, Lineare 2 - normierte Raüme, Math. Nachr. 28 (1964) 1-43.

[3] Jialu Zhang, The continuity and Bounded ness of Fuzzy linear operators in Fuzzy normed space, *J. Fuzzy Math.* 13 (2005), no. 13, 519 – 536.

[4] A.R. Meenakshi and R. Cokilavany, On fuzzy 2- normed linear spaces, J. Fuzzy Math. 9 (2001) No. 2 pp. 345 – 351.

[5] R. Saadati and S.M. Vaezpour, Some results on Fuzzy Banach spaces, *J. Appl. Math & computing* Vol. 17 (2005) No. 1-2, pp. 475 – 484.

[6] RM. Somasundaram and Thangaraj Beaula, Some Aspects of 2-Fuzzy 2-Normed Linear Spaces, *Bulletin of Malaysian Mathematical Society* Vol.32 (2009) No. 2 pp.211-222.

[7] Thangaraj Beaula and Lilly Esthar Rani Some Aspects of Intuitionistic 2-Fuzzy 2-Normed Linear Spaces, J. Fuzzy Math. 20 (2012) No. 2 pp. 371 – 378.

[8] A. White, 2-Banach spaces, Math. Nachr 42(1969) 43-60.

[9] A. Zadeh, Fuzzy sets Inform and control. 8 (1965) 338.

Source of support: Nil, Conflict of interest: None Declared