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ABSTRACT 
In this paper, we made an attempt to study the algebraic nature of an intuitionistic L-fuzzy subhemiring of a hemiring 
under homomorphism and anti-homomorphism.  
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INTRODUCTION 
 
There are many concepts of universal algebras generalizing an associative ring (R ; + ; . ). Some of them in particular, 
nearrings and several kinds of semirings have been proven very useful. An algebra (R ; +, .) is said to be a semiring if 
(R ; +) and (R ; .) are semigroups satisfying a. ( b+c ) = a. b+a. c and (b+c) .a =  b. a+c. a for all a, b and c in R. A 
semiring R is said to be additively commutative if a+b = b+a for all a, b in R. A semiring R may have an identity 1, 
defined by 1. a = a = a. 1 and a zero 0, defined by 0+a = a = a+0 and a.0 = 0 = 0.a for all a in R. A semiring R is 
said to be a hemiring if it is an additively commutative with zero. After the introdution of fuzzy sets by L.A.Zadeh[17], 
several researchers explored on the generalization of the notion of fuzzy set. The concept of intuitionistic L-fuzzy 
subset was introduced by K.T.Atanassov[6,7], as a generalization of the notion of fuzzy set. The notion of 
homomorphism and anti-homomorphism of fuzzy and anti-fuzzy ideal of a ring was introduced by N.Palaniappan & 
K.Arjunan[11]. Some properties of intuitionistic fuzzy subgroups was introduced by Palaniappan. N & K.Arjunan[13]. 
In this paper, we introduce the some Theorems in intuitionistic L-fuzzy subhemiring of a hemiring under 
homomorphism and anti-homomorphism.  
 
1. PRELIMINARIES: 
 
1.1 Definition: Let X be a non-empty set and L = (L, ≤) be a lattice with least element 0 and greatest element 1. A L-
fuzzy subset A of X is a function A: X → L. 
 
1.2 Definition:  Let (R, + , . )  be a hemiring. A L-fuzzy subset A of R is said to be a L-fuzzy subhemiring 
(LFSHR) of R if it satisfies the following conditions: 
(i)   µA(x+y) ≥ µA(x) ∧µA(y), 
(ii)  µA(xy) ≥ µA(x) ∧ µA(y), for all x and y in R. 
 
1.3 Definition:  Let ( R , + , . )  be a hemiring. A L-fuzzy subset A of R is said to be an anti L-fuzzy subhemiring 
(ALFSHR) of R if it satisfies the following conditions: 
(i)  µA(x+y) ≤ µA(x) ∨µA(y), 
(ii) µA(xy) ≤ µA(x) ∨ µA(y), for all x and y in R. 
 
1.4 Definition: Let (L, ≤) be a complete lattice with an involutive order reversing operation N : L → L. A intuitionistic 
L-fuzzy subset (ILFS) A in X is defined as an object of the form A={< x, µA(x), νA(x) > / x in X }, where µA : X → L 
and νA : X → L define the degree of membership and the degree of non-membership of the element x∈X respectively 
and for every x∈X satisfying  µA(x) ≤ N( νA(x) ). 
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1.5 Definition: Let (R, +, . )  be a hemiring. An intuitionistic L-fuzzy subset A of R is said to be an intuitionistic 
L-fuzzy subhemiring (ILFSHR) of R if it satisfies the following conditions: 
(i)   µA(x + y) ≥ µA(x)∧ µA(y), 
(ii)  µA(xy) ≥ µA(x) ∧ µA(y),  
(iii) νA(x + y) ≤ νA(x) ∨ νA(y), 
(iv) νA(xy) ≤ νA(x) ∨ νA(y), for all x and y in R. 
 
2. PROPERTIES OF INTUITIONISTIC L-FUZZY SUBHEMIRINGS  
 
2.1 Theorem: Let (R, +, . ) and ( R׀, +, .) be any two hemirings. The homomorphic image of an intuitionistic L-
fuzzy subhemiring of R is an intuitionistic L-fuzzy subhemiring of R׀. 
 
Proof: Let (R, +,  . ) and (R׀, +, . ) be any two hemirings. Let f: R → R׀ be a homomorphism. Then, f (x+y) = f(x) 
+ f(y) and f(xy) = f(x) f(y), for all x and y in R. Let V = f(A), where A is an intuitionistic L-fuzzy subhemiring of 
R. We have to prove that V is an intuitionistic L-fuzzy subhemiring of R׀. Now, for f(x), f(y) in R׀, µv( f(x) + f(y))  
= µv( f(x+y) ) ≥ µA(x + y) ≥ µA(x) ∧µA(y), which implies that µv( f(x) + f(y))  ≥ µv( f(x) ) ∧ µv( f(y) ). Again, µv( 
f(x)f(y) ) =  µv( f(xy)) ≥ µA(xy) ≥ µA(x) ∧ µA(y), which implies that  µv( f(x)f(y) ) ≥ µv( f(x) ) ∧ µv( f(y) ). Now, for 
f(x), f(y) in R׀, νv(f(x) + f(y)) = νv( f(x+y) ) ≤ νA(x+ y) ≤ νA(x) ∨ νA(y), which implies that νv(f(x) + f(y)) ≤ νv( 
f(x)) ∨ νv( f(y) ). Again, νv( f(x)f(y) ) =  νv( f(xy) ) ≤ νA(xy) ≤ νA(x) ∨ νA(y), which implies that  νv( f(x)f(y) ) ≤  
νv( f(x) ) ∨ νv( f(y) ). 
 
Hence V is an intuitionistic L-fuzzy subhemiring of R׀. 
 
2.2 Theorem: Let (R, +, . ) and (R׀, +, . ) be any two hemirings. The homomorphic preimage of an intuitionistic 
L-fuzzy subhemiring of R׀ is a intuitionistic L-fuzzy subhemiring of R. 
 
Proof: Let (R, +, . ) and (R׀, +, . ) be any two hemirings. Let f: R → R׀ be a homomorphism. Then, f(x+y) = f(x) 
+ f(y) and f(xy) = f(x) f(y), for all x and y in R.  Let V = f(A), where V is an intuitionistic L-fuzzy subhemiring of 
R׀. We have to prove that A is an intuitionistic L-fuzzy subhemiring of R. Let x and y in R. Then, µA(x + y)  =  
µv(f(x + y)) = µv(f(x) + f(y)) ≥ µv(f(x)) ∧ µv(f(y)) = µA(x) ∧ µA(y), which implies that µA(x+y) ≥ µA(x) ∧ µA(y). 
Again, µA(xy)= µv(f(xy)) = µv(f(x)f(y))  ≥ µv(f(x)) ∧ µv( f(y)) = µA(x) ∧ µA(y), which implies that µA(xy)  ≥ µA(x) 
∧µA(y). 
 
Let x and y in R.  Then, νA(x+ y)  = νv( f(x + y) )= νv( f(x)+f(y)) ≤ νv( f(x))∨ νv(f(y))= νA(x) ∨ νA(y), which 
implies that νA(x+ y) ≤ νA(x) ∨ νA(y). Again, νA(xy) = νv(f(xy) ) = νv( f(x)f(y) ) ≤ νv( f(x) ) ∨ νv( f(y)) = νA(x) ∨ 
νA(y), which implies that νA(xy) ≤ νA(x) ∨ νA(y). Hence A is an intuitionistic L-fuzzy subhemiring of R. 
 
2.3 Theorem: Let (R, +, . ) and (R׀, +, . ) be any two hemirings. The anti-homomorphic image of an intuitionistic 
L-fuzzy subhemiring of R is an intuitionistic L-fuzzy subhemiring of R׀. 
 
Proof: Let (R, +, . ) and (R׀, +, . ) be any two hemirings. Let f: R → R׀ be an anti-homomorphism. Then, f (x+y) 
= f (y) + f (x) and  f(xy) = f(y) f(x), for all x and y in R. Let V = f(A), where A is an intuitionistic L-fuzzy 
subhemiring of R. We have to prove that V is an intuitionistic L-fuzzy subhemiring of R׀. Now, for f(x), f(y) in 
R׀, µv( f(x) + f(y)) =  µv( f(y + x) ) ≥ µA(y + x) ≥ µA(y) ∧ µA(x) = µA(x) ∧ µA(y), which implies that µv(f(x) + f(y))  
≥ µv( f(x) ) ∧ µv(f(y) ). Again, µv(f(x)f(y)) =  µv( f(yx) ) ≥ µA( yx) ≥ µA(y)∧µA(x)= µA(x)∧ µA(y), which implies 
that  µv( f(x)f(y)) ≥ µv( f(x) ) ∧ µv(f(y)). Now, for f(x), f(y) in R׀, νv( f(x) + f(y))  =  νv(f(y + x) )≤   νA(y + x ) ≤ 
νA(y) ∨ νA(x) = νA(x) ∨ νA(y), which implies that νv( f(x)+f(y)) ≤ νv( f(x)) ∨ νv( f(y)). Again, νv( f(x)f(y) ) = νv( 
f(yx) ) ≤ νA(yx) ≤ νA(y) ∨ νA(x) = νA(x) ∨ νA(y), which implies that  νv( f(x)f(y) ) ≤ νv( f(x) )  ∨ νv(f(y)). Hence V 
is an intuitionistic L-fuzzy subhemiring of R׀. 
 
2.4 Theorem: Let (R, +,  . ) and (R׀, +, . ) be any two hemirings. The anti-homomorphic preimage of an 
intuitionistic L-fuzzy subhemiring of R׀ is an intuitionistic L-fuzzy subhemiring of R. 
 
Proof: Let (R, +, . ) and (R׀, +, . ) be any two hemirings. Let f: R → R׀ be an anti-homomorphism. Then, f (x+y) 
= f (y) + f (x) and f(xy) = f(y) f(x), for all x and y in R. Let V = f(A), where V is an intuitionistic L-fuzzy 
subhemiring of R׀. We have to prove that A is an intuitionistic L-fuzzy subhemiring of R. Let x and y in R. Then, 
µA(x + y) = µv( f(x + y))=  µv(f(y) + f(x) ) ≥ µv( f(y) ) ∧  µv( f(x)) = µv(f(x) ) ∧ µv( f(y) )= µA(x) ∧ µA(y), which 
implies that µA(x + y) ≥ µA(x) ∧ µA(y). Again,  µA(xy)  =  µv(f(xy) )= µv(f(y)f(x)) ≥ µv(f(y)) ∧µv(f(x) )= µv( f(x)) ∧ 
µv( f(y)) = µA(x)∧µA(y), which implies that µA(xy) ≥ µA(x)∧µA(y). Then, νA(x+y)=νv(f(x+y)) =  νv(f(y) + f(x) )≤ 
νv( f(y) ) ∨ νv( f(x))= νv(f(x) ) ∨ νv( f(y)) = νA(x) ∨ νA(y), which implies that νA(x + y)  ≤ νA(x) ∨ νA(y).  
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Again, νA(xy) = νv(f(xy) ) = νv( f(y)f(x)) ≤ νv(f(y) ) ∨ νv( f(x)) = νv( f(x) ) ∨ νv( f(y)) = νA(x) ∨νA(y), which 
implies that νA(xy) ≤ νA(x) ∨ νA(y). Hence A is an intuitionistic L-fuzzy subhemiring of R.  
 
2.5 Theorem: Let A be an intuitionistic L-fuzzy subhemiring of a hemiring H and f is an isomorphism from a 
hemiring R onto H. Then A◦f is an intuitionistic L-fuzzy subhemiring of R. 
 
Proof: Let x and y in R and A be an intuitionistic L-fuzzy subhemiring of a hemiring H. Then we have, (µA◦f 
)(x+y) = µA(f(x+y)) = µA(f(x)+ f(y)) ≥ µA(f(x)) ∧ µA(f(y)) = (µA◦f)(x) ∧ (µA◦f )(y), which implies that  (µA◦f 
)(x+y) ≥ (µA◦f )(x) ∧ (µA◦f )(y). And, (µA◦f)(xy) = µA( f(xy)) = µA( f(x)f(y)) ≥ µA( f(x)) ∧ µA( f(y)) = (µA◦f )(x) ∧ 
(µA◦f )(y), which implies that (µA◦f )(xy) ≥ (µA◦f )(x) ∧ (µA◦f )(y). Then we have, ( νA◦f )(x+y) = νA( f(x+y)) = νA( 
f(x)+ f(y)) ≤ νA(f(x) ) ∨ νA( f(y)) = (νA◦f)(x) ∨ (νA◦f )(y), which implies that (νA◦f )(x+y) ≤ (νA◦f )(x) ∨ (νA◦f )(y). 
And (νA◦f )(xy) = νA(f(xy)) = νA( f(x)f(y)) ≤ νA( f(x)) ∨ νA(f(y)) = (νA◦f )(x) ∨ (νA◦f )(y), which implies that  (νA◦f 
)(xy) ≤ (νA◦f )(x) ∨ (νA◦f)(y). Therefore ( A◦f ) is an intuitionistic L-fuzzy subhemiring of a hemiring R. 
 
2.6 Theorem: Let A be an intuitionistic L-fuzzy subhemiring of a hemiring H and f is an anti-isomorphism from 
a hemiring R onto H. Then A◦f is an intuitionistic L-fuzzy subhemiring of R. 
 
Proof: Let x and y in R and A be an intuitionistic L-fuzzy subhemiring of a hemiring H. Then we have, (µA◦f) 
(x+y) = µA(f(x+y)) = µA(f(y)+f(x)) ≥ µA( f(x)) ∧ µA(f(y)) = (µA◦f )(x) ∧ (µA◦f )(y), which implies that (µA◦f)(x+y) 
≥ (µA◦f)(x) ∧ (µA◦f)(y). And, (µA◦f)(xy) = µA(f(xy)) = µA(f(y)f(x)) ≥ µA(f(x))∧ µA(f(y))= (µA◦f)(x) ∧ (µA◦f)(y), 
which implies that ( µA◦f )(xy) ≥ (µA◦f)(x) ∧ (µA◦f)(y). Then we have, (νA◦f )(x+y ) = νA(f(x+y)) = νA(f(y)+f(x)) ≤ 
νA(f(x)) ∨ νA(f(y)) = (νA◦f )(x) ∨(νA◦f )(y), which implies that (νA◦f)( x+y ) ≤ (νA◦f )(x) ∨ (νA◦f )(y). And, (νA◦f ) 
(xy) = νA( f(xy)) = νA( f(y)f(x)) ≤ νA(f(x)) ∨ νA(f(y)) = (νA◦f)(x) ∨ (νA◦f )(y), which implies that (νA◦f )(xy) ≤ 
(νA◦f ) (x) ∨ (νA◦f ) (y).  
 
Therefore A◦f is an intuitionistic L-fuzzy subhemiring of the hemiring R. 
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