A STRONG FORM OF COMPACT SPACES

*C. Duraisamy & **R. Vennila

*Department of Mathematics, Kongu Engineering College, Perundurai, Erode-638052, India

**Department of Mathematics, Sriguru Institute of Technology, Varathaiyangar Palayam, Coimbatore-641110, India

(Received on: 19-07-12; Accepted on: 05-08-12)

ABSTRACT

In this paper, we introduce and study the notion of \mathcal{N} - λ -open sets as a generalization of λ -open sets.

Keywords: Topological spaces, λ -open sets, λ -compact spaces.

2000 Mathematics Subject Classification: 54C10, 54D10.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper (X,τ) and (Y,σ) stand for topological spaces with no separation axioms assumed, unless otherwise stated. Maki [3] introduced the notion of Λ -sets in topological spaces. A Λ -set is a set A which is equal to its kernel, that is, to the intersection of all open super sets of A. Arenas et.al. [1] Introduced and investigated the notion of λ -closed sets by involving Λ -sets and closed sets. Let A be a subset of a topological space (X,τ) . The closure and the interior of a set A is denoted by Cl (A), Int (A) respectively. A subset A of a topological space (X,τ) is said to be λ -closed [1] if $A = B \cap C$, where B is a Λ -set and C is a closed set of X. The complement of λ -closed set is called λ -open [1]. A point $x \in X$ in a topological space (X,τ) is said to be λ -cluster point of A [2] if for every λ -open set U of X containing x, $A \cap U \neq \phi$. The set of all λ -cluster points of A is called the λ -closure of A and is denoted by Cl $_{\lambda}(A)$ [2]. A point $x \in X$ is said to be the λ -interior point of A if there exists a λ -open set U of X containing x such that $U \subset A$. The set of all λ -interior points of A is said to be the λ -interior of A and is denoted by Int $_{\lambda}(A)$. A set A is λ -closed (resp. λ -open) if and only if Cl $_{\lambda}(A) = A$ (resp. Int $_{\lambda}(A) = A$) [2]. The family of all λ -open (resp. λ -closed) sets of X is denoted by $\lambda O(X)$ (resp. $\lambda C(X)$). The family of all λ -open (resp. λ -closed) sets of a space (X,τ) containing the point $x \in X$ is denoted by $\lambda O(X)$ (resp. $\lambda C(X)$).

2. \mathcal{N} - λ -OPEN SETS

Definition 2.1: A subset A of a topological space X is said to be \mathcal{N} - λ -open if for every $x \in A$, there exists a λ -open subset $U_x \in X$ containing x such that $U_x - A$ is finite set. The complement of an \mathcal{N} - λ -open subset is said to be \mathcal{N} - λ -closed.

The family of \mathcal{N} - λ -open (resp. \mathcal{N} - λ -closed) subsets of a space (X, τ) is denoted by $\mathcal{N}\lambda O(X)$ (resp. $\mathcal{N}\lambda C(X)$).

Proposition 2.2: Every λ -open set is \mathcal{N} - λ -open. Converse not true.

Example 2.3: Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, X\}, \text{ then } \{b\} \text{ is } \mathcal{N}\text{-open but not } \mathcal{N}\text{-}\lambda \text{-open (since } X \text{ is a finite set).}$

Corollary 2.4: Every open set is \mathcal{N} - λ -open, but not conversely.

Proof: Follows from the fact that every open set is λ -open.

Corresponding author: **R. Vennila, **Department of Mathematics, Sriguru Institute of Technology, Varathaiyangar Palayam, Coimbatore-641110, India

Lemma 2.5: A subset A of a topological space X is \mathcal{N} - λ -open if and only if for every $x \in A$, there exists a λ -open subset U_x containing x and a finite subset C such that $U_x - C \subset A$.

Proof: Let A be \mathcal{N} - λ -open and $x \in A$, then there exists a λ -open subset U_x containing x such that $U_x - A$ is finite. Let $C = U_x - A = U_x \cap (X - A)$. Then $U_x - C \subseteq A$. Conversely, let $x \in A$. Then there exists a λ -open subset U_x containing x and a finite subset C such that $U_x - C \subseteq A$. Thus, $U_x - C \subseteq A$ and $U_x - A$ is a finite set.

Theorem 2.6: Let X be a topological space and $F \subseteq X$. If F is \mathcal{N} - λ -closed, then $F \subseteq K \cup C$ for some λ -closed subset K and a finite subset C.

Proof: If F is \mathcal{N} - λ -closed, then X-F is \mathcal{N} - λ -open and hence for every $x \in X-F$, there exists a λ -open set U containing x and a finite set C such that $U-C \subseteq X-F$. Thus $F \subset X-(U-C)=X-(U\cap(X-C))=(X-U)\cup C$. Let K=X-U. Then K is a λ -closed set such that $F \subset K \cup C$.

Lemma 2.7: The union of any family of \mathcal{N} - λ -open sets is \mathcal{N} - λ -open.

Proof: If $\{U_i: i \in I\}$ is a collection of \mathcal{N} - λ -open subsets of X and $x \in \bigcup_{i=1}^n U_i$. Then $x \in U_j$ for some $j \in I$. This

implies that there exists a λ -open subset V of X containing x such that $V - U_j$ is finite. Since $V - \bigcup_{i=1}^n U_i \subseteq V - U_j$,

then
$$V - \bigcup_{i=1}^n U_i$$
 is finite. Therefore, $\bigcup_{i=1}^n U_i \in \mathcal{N}\!\lambda O(X)$.

The intersection of all \mathcal{N} - λ -closed sets of X containing A is called the \mathcal{N} - λ -closure of A and is denoted by $\mathcal{N}Cl_{\lambda}A$). And the union of all \mathcal{N} - λ -open sets of X contained in A is called the \mathcal{N} - λ -interior and is denoted by $\mathcal{N}Int_{\lambda}(A)$.

The proof of the following lemma is obvious and hence omitted.

Lemma 2.8: Let A be a subset of a topological space (X, τ) . Then

- (i) $x \in \mathcal{N}Cl_1(A)$ if and only if $A \cap U \neq \emptyset$ for every $U \in \mathcal{N}AO(X, x)$;
- (ii) A is \mathcal{N} - λ -closed if and only if $A = \mathcal{N}Cl_1(A)$;
- (iii) $\mathcal{N}Cl_{\lambda}(A)$ is $\mathcal{N}-\lambda$ -closed.

Corollary 2.9: The intersection of an \mathcal{N} - λ -open set with an open set is \mathcal{N} - λ -open.

Question: Does there exist an example for the intersection of \mathcal{N} - λ -open sets is \mathcal{N} - λ -open?

3. λ - COMPACT SPACES

Definition 3.1: A collection $\{U_{\alpha} : \alpha \in \Delta\}$ of λ -open sets in a topological space X is called a λ -open cover of a subset B of X if $B \subset \{U_{\alpha} : \alpha \in \Delta\}$ holds.

Definition 3.2: A topological space X is said to be λ - compact if every λ -open cover of X has a finite subcover. A subset A of a topological space X is said to be λ -compact relative to X if every cover of A by λ -open sets of X has a finite subcover.

Theorem 3.3: If X is a topological space such that every λ -open subset is λ -compact relative to X, then every subset is λ -compact relative to X.

Proof: Let B be an arbitrary subset of X and let $\{U_i:i\in I\}$ be the cover of B by λ -open sets of X. Then the family $\{U_i:i\in I\}$ is a λ -open cover of the λ -open set $\cup \{U_i:i\in I\}$. Hence by hypothesis there is a finite subfamily $\{U_{i_j}:j\in N_0\}$ which covers $\cup \{U_i:i\in I\}$. This subfamily is also a cover of the set B.

Theorem 3.4: A subset A of a topological space is λ -compact relative to X if and only if for any cover $\{V_\alpha:\alpha\in\Delta\}$ of A by \mathcal{N} - λ -open sets of X, there exists a finite subset Δ_0 of Δ such that $A\subseteq\cup\{V_\alpha:\alpha\in\Delta_0\}$.

Proof: Let $\{V_{\alpha}: \alpha \in \Delta\}$ be a cover of A and $V_{\alpha} \in \mathcal{N} \lambda O(X)$. For each $x \in A$, there exists $\alpha(x) \in \Delta$ such that $x \in V_{\alpha(x)}$. Since $V_{\alpha(x)}$ is $\mathcal{N} - \lambda$ -open, there exist a λ -open set $U_{\alpha(x)}$ such that $x \in U_{\alpha(x)}$ and $U_{\alpha(x)} - V_{\alpha(x)}$ is finite. The family $\{U_{\alpha(x)}: x \in A\}$ is a λ -open cover of A. Since A is λ -compact relative to X, there exists a finite subset $x_1, x_2, ... x_n$, such that $A \subseteq \bigcup \{U_{\alpha(x_i)}: i \in F\}$, where $F = \{1, 2, ... n\}$. Now, we have, $A \subseteq \bigcup_{i \in F} ((U_{\alpha(x_i)} - V_{\alpha(x_i)}) \cup V_{\alpha(x_i)}) = \bigcup_{i \in F} (U_{\alpha(x_i)} - V_{\alpha(x_i)}) \cup \bigcup_{i \in F} V_{\alpha(x_i)}$. For each x_i , $U_{\alpha(x_i)} - V_{\alpha(x_i)}$ is a finite set and there exists a finite subset $\Delta(x_i)$ of Δ such that $(U_{\alpha(x_i)} - V_{\alpha(x_i)}) \cap A \subseteq \bigcup \{V_{\alpha}: \alpha \in \Delta(x_i)\}$. Therefore, we have $A \subseteq \bigcup_{i \in F} ((U_{\alpha(x_i)} - V_{\alpha(x_i)})) \cup \bigcup_{i \in F} (U_{\alpha(x_i)} - V_{\alpha(x_i)}) \cap A \subseteq \bigcup \{V_{\alpha}: \alpha \in \Delta(x_i)\}$. Therefore, we have $A \subseteq \bigcup_{i \in F} ((U_{\alpha(x_i)} - V_{\alpha(x_i)})) \cup \bigcup_{i \in F} (U_{\alpha(x_i)} - V_{\alpha(x_i)}) \cap A \subseteq \bigcup \{V_{\alpha(x_i)}: \alpha \in \Delta(x_i)\}$. Therefore, we have $A \subseteq \bigcup_{i \in F} ((U_{\alpha(x_i)} - V_{\alpha(x_i)})) \cup \bigcup_{i \in F} (U_{\alpha(x_i)} - V_{\alpha(x_i)})$. Hence A is λ -compact relative to X.

Corollary 3.5: For any topological space X, the following properties are equivalent:

- (i) X is λ -compact.
- (ii) Every \mathcal{N} - λ -open cover of X admits a finite subcover.

Theorem 3.6: A topological space X is λ -compact if and only if every proper \mathcal{N} - λ -closed set is λ -compact with respect to X.

Proof: Let A be a proper \mathcal{N} - λ -closed subset of X. Let $\left\{ U_{\alpha} : \alpha \in \Delta \right\}$ be a cover of A by λ -open sets of X. Now for each $x \in X - A$, there is a λ -open set V_x such that $V_x - A$ is finite. Then $\left\{ U_{\alpha} : \alpha \in \Delta \right\} \cup \left\{ V_x : x \in X - A \right\}$ is a λ -open cover of X. Since X is λ -compact, there exist a finite subset Δ_1 of Δ and a finite number of points, say, $x_1, x_2, ... x_n$ in X - A such that $X = \left(\bigcup \left\{ U_{\alpha} : \alpha \in \Delta_1 \right\} \right) \cup \left(\bigcup \left\{ V_{x_i} : 1 \leq i \leq n \right\} \right)$ hence $A \subset \left(\bigcup \left\{ U_{\alpha} : \alpha \in \Delta_1 \right\} \right) \cup \left(\bigcup \left\{ A \cap V_{x_i} : 1 \leq i \leq n \right\} \right)$ since $A \cap V_{x_i}$ is finite for each i, there exists a finite subset Δ_2 of Δ such that $\left(\bigcup \left\{ A \cap V_{x_i} : 1 \leq i \leq n \right\} \right) \subset \left\{ U_{\alpha} : \alpha \in \Delta \right\}$. Therefore, we obtain $A \subset \bigcup \left\{ U_{\alpha} : \alpha \in \Delta_1 \cup \Delta_2 \right\}$. This shows that A is λ -compact relative to X. Conversely let $\left\{ V_{\alpha} : \alpha \in \Delta \right\}$ be any λ -open cover of X. We choose and fix one $\alpha_0 \in \Delta$. Then $\bigcup \left\{ V_{\alpha} : \alpha \in \Delta - \left\{ \alpha_0 \right\} \right\}$ is a λ -open cover of a \mathcal{N} - λ -closed set $X - V_{\alpha_0} \subset \bigcup \left\{ V_{\alpha} : \alpha \in \Delta_0 \right\}$.

Therefore, $X=\cup\{V_\alpha:\alpha\in\Delta_0\cup\{\alpha_0\}\}$. This shows that X is λ -compact.

Theorem 3.7: Let (X, τ) be a topological space such that . Then is λ -compact if and only if is compact.

Proof: Let $\{V_{\alpha}: \alpha \in \Delta\}$ be any λ -open cover of $(X, \mathcal{N}\lambda O(X))$. For each $x \in X$, there exists $\alpha(x) \in \Delta$ such that $x \in V_{\alpha(x)}$. Since $V_{\alpha(x)}$ is \mathcal{N} - λ -open, there exist a λ -open set $U_{\alpha(x)}$ such that $x \in U_{\alpha(x)}$ and $U_{\alpha(x)} - V_{\alpha(x)}$ is finite. The family $\{U_{\alpha(x)}: x \in X\}$ is a λ -open cover of (X, τ) . Since (X, τ) is λ -compact, there exists a finite

subset $x_1, x_2, ... x_n$, such that $X = \bigcup \{U_{\alpha(x_i)} : i \in F\}$, where $F = \{1, 2, ... n\}$. Now, we have $X = \bigcup_{i \in F} ((U_{\alpha(x_i)} - V_{\alpha(x_i)}) \cup V_{\alpha(x_i)}) = \bigcup_{i \in F} (U_{\alpha(x_i)} - V_{\alpha(x_i)}) \cup \bigcup_{i \in F} V_{\alpha(x_i)}$. For each x_i , $U_{\alpha(x_i)} - V_{\alpha(x_i)}$ is a finite set and there exists a finite subset $\Delta(x_i)$ of Δ such that $(U_{\alpha(x_i)} - V_{\alpha(x_i)}) \cap X \subseteq \bigcup \{V_\alpha : \alpha \in \Delta(x_i)\}$. Therefore, we have $X = (\bigcup_{i \in F} (\cup \{V_\alpha : \alpha \in \Delta(x_i)\})) \cup (\bigcup_{i \in F} V_{\alpha(x_i)})$. Hence $\mathcal{M} \cup (X)$ is compact. Conversely, let U be a λ -open cover of (X, τ) . Then $U \subseteq \mathcal{M} \cup (X)$. Since $(X, \mathcal{M} \cup (X))$ is compact, there exists a finite subcover of $U \subseteq \mathcal{M} \cup (X)$. Since $(X, \mathcal{M} \cup (X))$ is compact, there exists a finite subcover of $U \subseteq \mathcal{M} \cup (X)$. Since $(X, \mathcal{M} \cup (X))$ is compact, there exists a finite subcover of $U \subseteq \mathcal{M} \cup (X)$. Hence (X, τ) is λ -compact.

Theorem 3.8: An \mathcal{N} - λ -closed subset of a λ -compact space X is λ -compact relative to X.

Proof: Let A be a \mathcal{N} - λ -closed subset of X. Let $\left\{ \mathbf{U}_{\alpha} : \alpha \in \Delta \right\}$ be a cover of A by λ -open sets of X. Now for each $x \in \mathbf{X} - \mathbf{A}$ there is a λ -open set \mathbf{V}_x such that $\mathbf{V}_x - \mathbf{A}$ is finite. Since $\left\{ \mathbf{U}_{\alpha} : \alpha \in \Delta \right\} \cup \left\{ \mathbf{V}_x : x \in \mathbf{X} - \mathbf{A} \right\}$ is a λ -open cover of X and X is λ -compact, there exist a finite subcover $\left\{ \mathbf{U}_{\alpha_i} : i \in \mathbf{N} \right\} \cup \left\{ \mathbf{V}_{x_i} : i \in \mathbf{N} \right\}$. Since $\bigcup_{i \in \mathbf{N}} \left(\mathbf{V}_{x_i} \cap \mathbf{A} \right)$ is finite, so for each $x_j \in \cup \left(\mathbf{V}_{x_i} \cap \mathbf{A} \right)$ there is $\mathbf{U}_{\alpha(x_i)} \in \left\{ \mathbf{U}_{\alpha} : \alpha \in \Delta \right\}$ such that $x_j \in \mathbf{U}_{\alpha(x_i)}$ and $j \in \mathbf{N}$. Hence $\left\{ \mathbf{U}_{\alpha_i} : i \in \mathbf{N} \right\} \cup \left\{ \mathbf{U}_{\alpha(x_i)} : i \in \mathbf{N} \right\}$ is a finite subcover of $\left\{ \mathbf{U}_{\alpha} : \alpha \in \Delta \right\}$ and it covers A. Therefore, A is λ -compact relative to X.

Corollary 3.9: If a topological space X is λ -compact and A is λ -closed, then A is λ -compact relative to X.

4. PRESERVATION THEOREMS

Definition 4.1: A function $f:(X,\tau)\to (Y,\sigma)$ is said to be \mathcal{N} - λ -continuous (resp. λ -continuous [1]) if the inverse image of every open subset of Y is \mathcal{N} - λ -open in X.

It is clear that every λ -continuous function is \mathcal{N} - λ -continuous but not conversely.

Example 4.2: Let $X = \{a, b, c\}$, $\tau = \{\phi, \{a\}, X\}$ and $\sigma = \{\phi, \{a, c\}, X\}$. Clearly the identity function $f: (X, \tau) \to (X, \sigma)$ is \mathcal{N} - λ -continuous but not λ -continuous.

Theorem 4.3: A function $f:(X,\tau)\to (Y,\sigma)$ is \mathcal{N} - λ -continuous if and only if for each point x in X and each open set V in Y with $f(x)\in V$, there is an \mathcal{N} - λ -open set U in X such that $x\in U$, and $f(U)\subseteq V$.

Proof: Let V be an open set in Y and let $x \in f^{-1}(V)$. Then $f(x) \in V$ and thus there exist $U_x \in \mathcal{N} \lambda O(X)$ such that $x \in U_x$ and $f(U_x) \subseteq V$. Then $x \in U_x \subseteq f^{-1}(V) = \bigcup \{U_x : x \in f^{-1}(V)\}$ Then by Lemma 2.7 $f^{-1}(V)$ is $\mathcal{N} - \lambda$ -open. Conversely, let $x \in X$ and V be an open set of Y containing f(x). Then $x \in f^{-1}(V) \in \mathcal{N} \lambda O(X)$ since f is $\mathcal{N} - \lambda$ -continuous. Let $U = f^{-1}(V)$. Then $x \in U$ and $f(U) \subseteq V$.

Theorem 4.4: Let $f:(X,\tau)\to (Y,\sigma)$ be a $\mathcal{N}-\lambda$ -continuous function. If X is λ -compact, then Y is compact.

Proof: Let $\{V_{\alpha}: \alpha \in \Delta\}$ be an open cover of Y. Then, $\{f^{-1}(V_{\alpha}): \alpha \in \Delta\}$ is a \mathcal{N} - λ -cover of X. Since X is λ -compact, by Corollary 3.9 there exist a finite subset Δ_0 of Δ such that $X = \bigcup \{f^{-1}(V_{\alpha}): \alpha \in \Delta_0\}$ hence $Y = \bigcup \{V_{\alpha}: \alpha \in \Delta_0\}$. Therefore Y is compact.

Definition 4.5: A function $f: X \to Y$ is said to be strongly λ -open if the image of each λ -open subset of X is λ -open in Y.

Proposition 4.6: If $f: X \to Y$ is strongly λ -open, then the image of an \mathcal{N} - λ -open set of X is \mathcal{N} - λ -open in Y.

Proof: Let $f: X \to Y$ be strongly λ -open and W an \mathcal{N} - λ -open subset of X. For any $y \in f(W)$, there exist $x \in W$ such that f(x) = y. Since W is \mathcal{N} - λ -open, there exists a λ -open set U such that $x \in U$ and U - W = C is finite. Since f is strongly λ -open, f(U) is λ -open in Y such that $y = f(x) \in f(U)$ and $f(U) - f(W) \subseteq f(U - W) = f(C)$ is finite. Therefore, f(W) is \mathcal{N} - λ -open in Y.

Definition 4.7: [2] A function $f: X \to Y$ is said to be λ -irresolute if the inverse image of each λ -open subset of Y is λ -open in X.

Proposition 4.8: If $f: X \to Y$ is a λ -irresolute injection and A is \mathcal{N} - λ -open in Y, then $f^{-1}(A)$ is \mathcal{N} - λ -open in X.

Proof: Assume that A is an \mathcal{N} - λ -open subset of Y. Let $x \in f^{-1}(A)$. Then $f(x) \in A$ and there exists a \mathcal{N} - λ -open set V containing f(x) such that V - A is finite. Since f is λ -irresolute, $f^{-1}(V)$ is a λ -open set containing x. Thus $f^{-1}(V) - f^{-1}(A) = f^{-1}(V - A)$ and it is finite. It follows that $f^{-1}(A)$ is \mathcal{N} - λ -open in X.

Definition 4.9: A function $f: X \to Y$ is said to be \mathcal{N} - λ -closed if f(A) is \mathcal{N} - λ -closed in Y for each λ -closed set A of X.

It is clear that every strongly λ -closed function is \mathcal{N} - λ -closed but not conversely. The function f in Example 4.2 is \mathcal{N} - λ -closed but not strongly \mathcal{N} - λ -closed.

Theorem 4.10: If $f: X \to Y$ is an \mathcal{N} - λ -closed surjection such that $f^{-1}(y)$ is λ -compact relative to X for each $y \in Y$ and Y is λ -compact, then X is λ -compact.

Proof: Let $\{U_{\alpha}: \alpha \in \Delta\}$ be any λ -open cover of X. For each $y \in Y$, $f^{-1}(y)$ is λ -compact relative to X and there exists a finite subset $\Delta(y)$ of Δ such that $f^{-1}(y) \subset \cup \{U_{\alpha}: \alpha \in \Delta(y)\}$. Now, we put $U(y) = \cup \{U_{\alpha}: \alpha \in \Delta(y)\}$ and V(y) = Y - f(X - V(y)). Then, since f is \mathcal{N} - λ -closed, V(y) is an \mathcal{N} - λ -open set in Y containing y such that $f^{-1}(V(y)) \subset U(y)$. Since $\{V(y): y \in Y\}$ is an \mathcal{N} - λ -open cover of Y, by Corollary 3.9 there exists a finite subset $\{y_k: 1 \le k \le n\} \subseteq Y$ such that $Y = \bigcup_{k=1}^n V(y_k)$. Therefore,

$$X=f^{-1}\big(y\big)=\bigcup_{k=1}^n f^{-1}\big(V\big(y_k\big)\big)\subseteq\bigcup_{k=1}^n U\big(y_k\big)=\bigcup_{k=1}^n \big\{U_\alpha:\alpha\in\Delta\big(y_k\big)\big\}. \text{ This shows that X is }\lambda\text{-Compact}.$$

Definition 4.11: A function $f: X \to Y$ is said to be \mathcal{N} - λ -continuous if for each $x \in X$ and each λ -open set V of Y containing f(x), there exist an \mathcal{N} - λ -open set U of X containing x such that $f(U) \subseteq V$.

Theorem 4.12: Let $f: X \to Y$ be a \mathcal{N} - λ -continuous surjection from X onto to Y. If X is λ -compact, then Y is λ -compact.

Proof: Let $\{V_{\alpha}: \alpha \in \Delta\}$ be a λ -open cover of Y. For each $x \in X$, there exist $\alpha(x) \in \Delta$ such that $f(x) \in V_{\alpha(x)}$. Since f is \mathcal{N} - λ -continuous, there exists an \mathcal{N} - λ -open set of X containing x such that $f(U_{\alpha(x)}) \subseteq (V_{\alpha(x)})$. So $\{U_{\alpha(x)}: x \in X\}$ is an \mathcal{N} - λ -open cover of the λ -compact space X, by Corollary 3.9 there exists a finite subset

$$\left\{x_k: 1 \leq k \leq n\right\} \subseteq X \text{ such that } X = \bigcup_{k=1}^n U_{\alpha(x_k)} \text{ . Therefore, } Y = f(X) = f\left(\bigcup_{k=1}^n U_{\alpha(x_k)}\right) \subseteq \bigcup_{k=1}^n V_{\alpha(x_k)} \text{ . This shows that } Y \text{ is } \lambda \text{ -Compact.}$$

REFERENCES

- [1] Arenas F.G., J. Dontchev and M. Ganster, On λ -closed sets and dual of generalized continuity, Q&A Gen.Topology, 15, (1997), 3-13.
- [2] Caldas M., S. Jafari and G. Navalagi, More on λ -closed sets in topological spaces, Revista Columbiana de Matematica, 41(2), (2007), 355-369.
- [3] Maki H., Generalized Λ -sets and the associated closure operator, The special issue in commemoration of Prof. Kazusada IKEDA's Retirement, (1.Oct, 1986), 139-146.

Source of support: Nil, Conflict of interest: None Declared