International Journal of Mathematical Archive-3(8), 2012, 3169-3177

A COINCIDENCE POINT THEOREM FOR FOUR SELF MAPPINGS IN DISLOCATED QUASI METRIC SPACES

K. P. R. Sastry¹, S. Kalesha Vali², Ch. Srinivasa Rao³ and M. A. Rahamatulla^{4*}

¹8-28-8/1, Tamil Street, Chinna Waltair, Visakhapatanam-530 017, India

²Department of Mathematics, GITAM University, Visakhapatnam- 530 045, India

³Department of Mathematics, Mrs. A.V.N. College, Visakhapatnam -530 001, India

⁴Department of Mathematics, Al-Aman College of Engineering, Visakhapatnam – 531 173, India

(Received on: 23-07-12; Revised & Accepted on: 18-08-12)

ABSTRACT

In this paper we prove a coincidence point theorem in dislocated metric spaces, provide a supporting example and extend the theorem to dislocated quasi metric spaces. We observe that the supporting example of a result of K.P.R. Rao and P. Ranga Swamy ([7]), on the existence of a coincidence point for four self maps on a dislocated metric space is not valid. We also make a modification of their result.

Mathematical Subject Classification: 47 H 10, 54 H 25.

Key Words: Dislocated quasi metric, dq–limit, dq – convergent, dq – Cauchy sequence.

1. INTRODUCTION

In 2005, F.M. Zayeda, G.H. Hassan and M.A. Ahmed [10] defined dislocated quasi metric spaces and dislocated metric spaces. C.T. Aage and J.N. Salunke [1] and A. Isufati [4] proved fixed point theorems for a single self map and a pair of self mappings in dislocated metric spaces, K.P.R. Rao and P. Ranga Swamy ([7]) proved a common coincidence point theorem for four self maps in a dislocated metric space. In this paper we prove a coincidence point theorem for four self maps on a dislocated quasi metric space and observe that (Theorem 2.1, [7]) is a special case of our result.

First we recall some Definitions from [10]

Definition 1.1: Let *X* be a non empty set and let $d: X \times X \rightarrow [0, \infty)$ be a function. The following conditions on d are referred subsequently

$d(x,x) = 0 \ \forall x \in X \ .$	(1.1.1)
$d(x, y) = d(y, x) = 0 \Rightarrow x = y \forall x, y \in X.$	(1.1.2)
$d(x, y) = d(y, x) \forall x, y \in X.$	(1.1.3)
$d(x,y) \le d(x,z) + d(z,y) \forall x,y,z \in X.$	(1.1.4)
$d(x,y) \le \max\{d(x,z), d(z,y)\} \forall x, y, z \in X.$	(1.1.5)
(i) If d satisfies $(1.1.2)$ and $(1.1.4)$ then d is called a dislocated quasi metric (or) dq - metric and	(X, d) is called a dq -

metric space.

- (ii) If d satisfies (1.1.2), (1.1.3) and (1.1.4) then d is called a dislocated metric and (*X*, *d*) is called a dislocated metric space.
- (iii) If d satisfies (1.1.1), (1.1.2) and (1.1.4) then d is called a quasi metric and (X, d) is called a quasi metric space.
- (iv) If d satisfies (1.1.1), (1.1.2), (1.1.3) and (1.1.4) then d is called a metric and (X, d) is called a metric space.
- (v) If d satisfies (1.1.1), (1.1.2), (1.1.3) and (1.1.5) then d is called an Ultra metric and (*X*, *d*) is called an Ultra metric space.

Corresponding author: M. A. Rahamatulla^{4*}

⁴Department of Mathematics, Al-Aman College of Engineering, Visakhapatnam – 531 173, India

We observe that every ultra metric is a metric.

Definition 1.2 ([10]): A sequence $\{x_n\}$ in a dq – metric space (X, d) is called a Cauchy sequence if for any given $\epsilon > 0$ there exists $n_0 \in N$ such that for all $m, n \ge n_0$, $d(x_m, x_n) < \epsilon$.

Definition 1.3 ([10]): A sequence $\{x_n\}$ in a dq – metric space is said to be dislocated quasi convergent to x. if $\lim_{n\to\infty} d(x_n, x) = \lim_{n\to\infty} d(x, x_n) = 0.$

In this case x is called a dq – limit of $\{x_n\}$ and we write $x_n \rightarrow x$.

Lemma 1.4 ([10]): Dq – limit in a dq – metric space is unique.

Definition 1.5 ([10]): A dq – metric space (X, d) is called complete if every Cauchy sequence in it is dq – convergent.

Definition 1.6 ([10]): Let (X, d_1) and (Y, d_2) be dq – metric spaces and let $f: X \to Y$ be a function. Then f is said to be continuous at $x_0 \in X$, if the sequence $f\{x_n\}$ is d_2q - convergent to $f(x_0) \in Y$ whenever the sequence $\{x_n\}$ in X is d_1q - convergent to x_0 .

Definition 1.7 ([10]): Let (X, d) be a dq – metric space. A map T: $X \to X$ is called a contraction if there exists $0 \le \lambda < 1$ such that

$$d(Tx,Ty) \leq \lambda d(x,y) \forall x,y \in X.$$

Note: In a metric space, a contraction map is continuous. However, in a dq – metric space a contraction map need not be continuous (Rutten [9], Example [3.6]). Zayeda.et.al [10] proved the dq - metric version of Banach contraction principle.

Theorem 1.8 ([10]): Let (X, d) be a dq – metric space and let $T: X \to X$ be a continuous contraction mapping. Then T has unique fixed point.

K. P. R. Rao and P. Ranga Swamy [7] proved the following coincidence theorem for four self maps on a dislocated metric space.

Theorem 1.9: ([7], Theorem 2.1) Let (X, d) be a complete dislocated metric space and let F, G, S and $T: X \to X$ be continuous mappings satisfying

$$S(X) \subseteq G(X) \text{ and } T(X) \subseteq F(X) \tag{1.9.1}$$

SF = FS and TG = GT and

$$d(Sx,Ty) \le \varphi(\max\{d(Fx,Gy), d(Fx,Sx), d(Gy,Ty), \frac{d(Fx,Sx)d(Gy,Ty)}{d(Fx,Gy)}\})$$
(1.9.3)

for all $x, y \in X$, where $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ is monotonically non – decreasing and $\sum_{n=1}^{\infty} \varphi^n$ (t) < ∞ for all t > 0.

Then (i) F and S (or) G and T have coincidence point (or) (ii) the pairs (F, S) and (G, T) have a common coincidence point.

The following Example is given in [7] in support of Theorem 1.9 ([7], Example 2.2)

Example 1.10: Let X = [0, 1] and $d(x, y) = max\{x, y\}$. Then (X, d) is a dislocated metric space. Define Sx = 0, $Tx = \frac{x}{6}$, Fx = x, $Gx = \frac{x}{3}$. Clearly S, T, F and G are continuous and (1.9.1) and (1.9.2) are satisfied.

Also $d(Sx,Ty) \le \varphi(d(Fx,Gy))$ for all $x, y \in X$, where $\varphi(t) = \frac{t}{2}$, clearly 0 is a common coincidence point of (F, S) and (G, T). However the above example does not support Theorem 1.9, since at x = y = 0 (1.9.3) is not satisfied (In fact it has no meaning). Consequently condition (1.9.3) should be assumed to hold whenever $d(Fx,Gy) \ne 0$. Example 1.10 cannot be considered as an Example in support of Theorem 1.9,

since d(Fx, Gy) = 0 for x = y = 0.

(1.9.2)

2. MAIN RESULTS

In this section, we prove a coincidence point theorem for four self maps on a dislocated metric space and provide a supporting example. Extend this to dislocated quasi metric spaces. We also obtain the result of [7], with modification, as a corollary.

Theorem 2.1: Let (X, d) be a complete dislocated metric space and let *F*, *G*, *S* and *T*: $X \rightarrow X$ be continuous mappings satisfying

$$\begin{split} S(X) &\subseteq G(X) \text{ and } T(X) \subseteq F(X) \\ SF &= FS \text{ and } TG = GT \text{ and} \\ d(Sx,Ty) &\leq \varphi \max\{d(Fx,Gy), d(Fx,Sx), d(Gy,Ty)\}) \end{split} \tag{2.1.1}$$

for all $x, y \in X$, where $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ is monotonically non –decreasing and $\sum_{n=1}^{\infty} \varphi^n$ (*t*) < ∞ for all *t* > 0. Then the pairs (*F*, *S*) and (*G*,*T*) have a common coincidence point.

Proof: It is clear that $\varphi^n(t) \to 0$ as $n \to \infty$ and $\varphi(t) < t \forall t > 0$. Suppose $x_0 \in X$. Define the sequences $\{x_n\}$ and $\{y_n\}$ in X such that

$$y_{2n} = Sx_{2n} = Gx_{2n+1}$$

$$y_{2n+1} = Tx_{2n+1} = Fx_{2n+2} , n = 0,1,2,...$$

Now

 $d(y_{2n}, y_{2n+1}) = d(Sx_{2n}, Tx_{2n+1})$ (by (2.1.3))

$$\leq \varphi(\max\{d(Fx_{2n}, Gx_{2n+1}), d(Fx_{2n}, Sx_{2n}), d(Gx_{2n+1}, Tx_{2n+1})\})$$

$$= \varphi(\max\{d(y_{2n-1}, y_{2n}), d(y_{2n-1}, y_{2n}), d(y_{2n}, y_{2n+1})\})$$

$$= \varphi(\max\{d(y_{2n-1}, y_{2n}), d(y_{2n}, y_{2n+1})\})$$
(2.1.4)

Now from (2.1.4)

$$d(y_{2n-1}, y_{2n}) \leq d(y_{2n}, y_{2n+1}) \Rightarrow d(y_{2n}, y_{2n+1}) \leq \varphi(d(y_{2n}, y_{2n+1})) \Rightarrow d(y_{2n}, y_{2n+1}) = 0 \Rightarrow d(y_{2n}, y_{2n+1}) \leq 0 \leq \varphi(d(y_{2n-1}, y_{2n}))$$
(2.1.5)

Now suppose

$$d(y_{2n-1}, y_{2n}) > d(y_{2n}, y_{2n+1})$$
. Then from (2.1.4)

follows that $d(y_{2n}, y_{2n+1}) \leq \varphi(d(y_{2n-1}, y_{2n}))$

From (2.1.5) and (2.1.6) follows that

$$d(y_{2n}, y_{2n+1}) \le \varphi(d(y_{2n-1}, y_{2n}))$$
 for $n = 1,2,3...$

Similarly we can show that

$$\begin{aligned} d(y_{2n+1}, y_{2n+2}) &= d(Tx_{2n+1}, Sx_{2n+2}) \quad (by (1.1.3)) \\ &= d(Sx_{2n+2}, Tx_{2n+1}) \\ &\leq \varphi(max\{d(Fx_{2n+2}, Gx_{2n+1}), d(Fx_{2n+2}, Sx_{2n+2}), d(Gx_{2n+1}, Tx_{2n+1})\}) \\ &= \varphi(max\{d(y_{2n+1}, y_{2n}), d(y_{2n+1}, y_{2n+2}), d(y_{2n}, y_{2n+1})\}) \\ &= \varphi(max\{d(y_{2n+1}, y_{2n+2}), d(y_{2n}, y_{2n+1})\}) \\ &\leq \varphi(d(y_{2n}, y_{2n+1})) \end{aligned}$$

(2.1.6)

Hence $d(y_n, y_{n+1}) \le \varphi(d(y_{n-1}, y_n))$ for n = 1, 2, 3...

$$\begin{array}{rl} \ddots & d(y_n, y_{n+1}) \leq \varphi(d(y_{n-1}, y_n)) \\ & \leq \\ & \vdots \\ & \leq \varphi^n(d(y_0, y_1)) \\ & \therefore & d(y_n, y_{n+1}) \leq \varphi^n(d(y_0, y_1)) \end{array}$$

Since $\varphi^n(t) \to 0$ as $n \to \infty$, we may suppose with out loss of generality that $d(y_0, y_1) < 1$

$$\begin{array}{l} \therefore \ d(y_n, y_{n+k}) \leq \ d(y_n, y_{n+1}) + \dots + d(y_{n+k-1}, y_{n+k}) \\ \\ = \ \varphi^n(d(y_0, y_1)) + \dots + \varphi^{n+k-1}(d(y_0, y_1)) \\ \\ \\ = \ \frac{\varphi^n(d(y_0, y_1))}{1 - \varphi(d(y_0, y_1))} \to 0 \quad as \quad n \to \infty \end{array}$$

 \therefore { y_n } is a Cauchy sequence. Hence there exists $u \in X$ such that

 $\{y_n\}$ converges to u. Since FS = SF and S and F are continuous,

we have $Su = \lim_{n \to \infty} SFx_{2n} = \lim_{n \to \infty} FSx_{2n} = Fu$,

since TG = GT and T and G are continuous,

we have $Tu = \lim_{n \to \infty} TGx_{2n+1} = \lim_{n \to \infty} GTx_{2n+1} = Gu$

Thus u is a common coincidence point of the pairs (F, S) and (G, T),

consequently u is a common coincidence point of F, S, G and T.

The following Example supports our theorem

Example 2.2: Let X = [0, 1], $d(x, y) = \max(x, y)$. Then (X, d) is a complete dislocated metric space. Define Sx = 0, $Tx = \frac{x}{2}$, Fx = Gx = x. Take $\varphi(t) = \frac{t}{2}$. Then clearly (2.1.1), (2.1.2) and (2.1.3) are satisfied and 0 is a common coincidence point of *S*, *F*, *G* and *T*.

The following is a modified version of Theorem 1.9

Theorem 2.3: Let (X, d) be a complete dislocated metric space and let F, G, S and $T: X \to X$ be continuous mappings satisfying

$$S(X) \subseteq G(X) \text{ and } T(X) \subseteq F(X)$$
 (2.3.1)

$$SF = FS$$
 and $TG = GT$ and

$$d(Tx, Sy) \le \varphi(max\{d(Gx, Fy), d(Fy, Sy), d(Gx, Tx), \frac{d(Fy, Sy)d(Gx, Tx)}{d(Gx, Fy)}\})$$
(2.3.3)

for all $x, y \in X$, whenever $d(Gx, Fy) \neq 0$, where $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ is monotonically non-decreasing and $\sum_{n=1}^{\infty} \varphi^n$ $(t) < \infty$ for all t > 0.

Then F, S, G and T have a common coincidence point.

Proof: It is clear that $\varphi^n(t) \to 0$ as $n \to \infty$ and $\varphi(t) < t \forall t > 0$. Suppose $x_0 \in X$.

Define the sequences $\{x_n\}$ and $\{y_n\}$ in X such that

$$y_{2n} = Sx_{2n} = Gx_{2n+1}$$

 $y_{2n+1} = Tx_{2n+1} = Fx_{2n+2}, n = 0,1,2,...$

(2.3.2)

If $y_{2n} = y_{2n+1}$ for some *n* then $Gx_{2n+1} = Tx_{2n+1}$. Hence x_{2n+1} is a coincidence point of G and T.

If $y_{2n+1} = y_{2n+2}$ for some n then $Fx_{2n+2} = Sx_{2n+2}$. Hence x_{2n+2} is a coincidence point of F and S. Assume that $y_n \neq y_{n+1}$ for all n. Then as in the proof of Theorem 2.1, we can show that $\{y_n\}$ is a Cauchy sequence.

Hence there exists $u \in X$ such that $\{y_n\}$ converges to u. Since FS = SF and S and F are continuous,

we have $Su = \lim_{n \to \infty} SFx_{2n} = \lim_{n \to \infty} FSx_{2n} = Fu$,

since TG = GT and T and G are continuous, we have $Tu = \lim_{n \to \infty} TGx_{2n+1} = \lim_{n \to \infty} GTx_{2n+1} = Gu$.

Thus u is a common coincidence point of the pairs (F, S) and (G, T), consequently u is a common coincidence point of F, S, G and T.

The following Example shows that Theorem 2.3 may not hold, even in metric spaces, if (2.3.2) is dropped.

Example 2.4: Let X = [0,1] with the usual metric d. Define $Sx = \frac{x}{3}$, Tx = 0, Fx = x, $Gx = 1 - x \quad \forall x \in X$. Then (X, d) is a complete metric space, (2.3.1) is clearly satisfied (2.3.3) is satisfied with $\varphi(t) = \frac{t}{2}$. But (2.3.2) is not satisfied since $TG \neq GT$. Here the pair (F, S) has a coincidence point, namely 0. The pair (G, T) has a coincidence point namely 1. But *S*, *T*, *F* and *G* do not have a common coincidence point.

Now we extend Theorem 2.1 to dislocated quasi metric spaces as follows

Theorem 2.5: Let (X, d) be a complete dislocated quasi metric space, let F, G, S and $T: X \to X$ be continuous mappings satisfying $S(X) \subseteq G(X)$ and $T(X) \subseteq F(X)$ (2.5.1) SE = ES and TC = CT and (2.5.2)

$$SF = FS \text{ and } TG = GT \text{ and}$$
 (2.5.2)

$$d(Sx,Ty) \le \varphi(\max\{d(Fx,Gy), d(Fx,Sx), d(Gy,Ty)\})$$

$$(2.5.3)$$

$$d(Tx, Sy) \le \varphi(max\{d(Gx, Fy), d(Fy, Sy), d(Gx, Tx)\})$$

$$(2.5.4)$$

for all $x, y \in X$, where $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ is monotonically non – decreasing and $\sum_{n=1}^{\infty} \varphi^n$ $(t) < \infty$ for all t > 0.

Then the pairs (F, S) and (G,T) have a common coincidence point which is also a common coincidence point of F,G,S and T

Proof: It is clear that $\varphi^n(t) \to 0$ as $n \to \infty$ and $\varphi(t) < t \forall t > 0$. Suppose $x_0 \in X$.

Define the sequences $\{x_n\}$ and $\{y_n\}$ in X such that

$$y_{2n} = Sx_{2n} = Gx_{2n+1}$$

$$y_{2n+1} = Tx_{2n+1} = Fx_{2n+2}$$
, $n = 0,1,2,...$

Now

$$d(y_{2n}, y_{2n+1}) = d(Sx_{2n}, Tx_{2n+1}) \quad (by (2.5.3))$$

$$\leq \varphi(max\{d(Fx_{2n}, Gx_{2n+1}), d(Fx_{2n}, Sx_{2n}), d(Gx_{2n+1}, Tx_{2n+1})\})$$

$$= \varphi(max\{d(y_{2n-1}, y_{2n}), d(y_{2n-1}, y_{2n}), d(y_{2n}, y_{2n+1})\})$$

$$= \varphi(max\{d(y_{2n-1}, y_{2n}), d(y_{2n}, y_{2n+1})\}) \quad (2.5.5)$$

Now from (2.5.5)

 $d(y_{2n-1}, y_{2n}) \leq d(y_{2n}, y_{2n+1})$

$$\Rightarrow d(y_{2n}, y_{2n+1}) \leq \varphi(d(y_{2n}, y_{2n+1}))$$

$$\Rightarrow d(y_{2n}, y_{2n+1}) = 0$$

© 2012, IJMA. All Rights Reserved

$$\Rightarrow d(y_{2n}, y_{2n+1}) \le 0 \le \varphi(d(y_{2n-1}, y_{2n}))$$
(2.5.6)

Now suppose

$$d(y_{2n-1}, y_{2n}) > d(y_{2n}, y_{2n+1})$$
. Then from (2.5.5)

follows that

$$d(y_{2n}, y_{2n+1}) \le \varphi(d(y_{2n-1}, y_{2n}))$$
(2.5.7)

From (2.5.6) and (2.5.7) shows that

$$d(y_{2n}, y_{2n+1}) \le \varphi(d(y_{2n-1}, y_{2n}))$$
 for $n = 1, 2, 3...$

Similarly using (2.5.4), we can show that

 $d(y_{2n+1}, y_{2n+2}) \le \varphi(d(y_{2n}, y_{2n+1}))$

Now

 $d(y_{2n}, y_{2n+1}) = d(Tx_{2n+1}, Sx_{2n})$ (by (2.5.4))

$$\leq \varphi(\max\{d(Gx_{2n+1}, Fx_{2n}), d(Fx_{2n}, Sx_{2n}), d(Gx_{2n+1}, Tx_{2n+1})\})$$

= $\varphi(\max\{d(y_{2n}, y_{2n-1}), d(y_{2n-1}, y_{2n}), d(y_{2n}, y_{2n+1})\})$
= $\varphi(\max\{d(y_{2n}, y_{2n-1}), d(y_{2n}, y_{2n+1})\})$

:. If $d(y_{2n}, y_{2n+1}) \le d(y_{2n}, y_{2n+1}) < d(y_{2n}, y_{2n+1})$

since $d(y_{2n}, y_{2n+1}) > 0$, which is contradiction

$$d(y_{2n}, y_{2n+1}) \le d(y_{2n-1}, y_{2n})
∴ d(y_{2n}, y_{2n+1}) \le \varphi(d(y_{2n-1}, y_{2n}))$$
 this is true for $n = 1,2,3 ...
∴ d(y_n, y_{n+1}) \le \varphi(d(y_{n-1}, y_n))
≤
⋮
≤ $\varphi^n(d(y_0, y_1))$$

Here again, we may suppose without loss of generality that $\varphi(d(y_0, y_1)) < 1$

$$\begin{array}{l} \therefore \ d(y_n, y_{n+k}) \leq \ d(y_n, y_{n+1}) + \dots + d(y_{n+k-1}, y_{n+k}) \\ \\ = \ \varphi^n(d(y_0, y_1)) + \dots + \varphi^{n+k-1}(d(y_0, y_1)) \\ \\ \\ = \frac{\varphi^n(d(y_0, y_1))}{1 - \varphi(d(y_0, y_1))} \to 0 \quad as \quad n \to \infty \end{array}$$

 $\therefore \{ y_n \}$ is a Cauchy sequence.

Since X is a complete dislocated quasi metric space there exists $u \in X$ such that $\{y_n\}$ converges to u. Since FS = SF and S and F are continuous,

we have $Su = \lim_{n \to \infty} SFx_{2n} = \lim_{n \to \infty} FSx_{2n} = Fu$,

since TG = GT and T and G are continuous,

we have $Tu = \lim_{n \to \infty} TGx_{2n+1} = \lim_{n \to \infty} GTx_{2n+1} = Gu$

Thus the pairs (F, S) and (G, T) have common coincidence point which is also a common coincidence point of F, S, G and T.

The following is a common fixed point theorem, with the control function containing rational terms.

Theorem 2.6: Let (X, d) be a complete dislocated quasi metric space.

Let F, G, S and T: $X \rightarrow X$ be continuous mappings satisfying

$$S(X) \subseteq G(X) \text{ and } T(X) \subseteq F(X)$$
 (2.6.1)

SF = FS and TG = GT and (2.6.2)

$$d(Sx,Ty) \leq \varphi(max\{d(Fx,Gy),d(Fx,Sx),d(Gy,Ty),\frac{d(Fx,Sx)d(Gy,Ty)}{d(Fx,Gy)}\}) \text{ for all } x,y \in X \text{ and}$$

$$d(Fx,Gy) \neq 0$$
 and

$$d(Tx, Sy) \le \varphi(\max\{d(Gx, Fy), d(Fy, Sy), d(Gx, Tx), \frac{d(Fy, Sy)d(Gx, Tx)}{d(Gx, Fy)}\})$$
(2.6.4)

for all $x, y \in X$ and $d(Gx, Fy) \neq 0$, where $\varphi : R^+ \rightarrow R^+$ is monotonically non – decreasing and

 $\sum_{n=1}^{\infty} \varphi^n$ (t) < ∞ for all t > 0.

Then the pairs (F, S) and (G, T) have a common coincidence point.

Proof: It is clear that

$$\varphi^n(t) \to 0 \text{ as } n \to \infty \text{ and } \varphi(t) < t \forall t > 0.$$
 Suppose $x_0 \in X$.

Define the sequences $\{x_n\}$ and $\{y_n\}$ in X such that

$$y_{2n} = Sx_{2n} = Gx_{2n+1}$$
$$y_{2n+1} = Tx_{2n+1} = Fx_{2n+2}, n = 0, 1, 2, \dots$$

Now

 $d(y_{2n}, y_{2n+1}) = d(Sx_{2n}, Tx_{2n+1})$ (by (2.6.3))

$$\leq \varphi(\max\{d(Fx_{2n}, Gx_{2n+1}), d(Fx_{2n}, Sx_{2n}), d(Gx_{2n+1}, Tx_{2n+1}), \frac{d(Fx_{2n}, Sx_{2n}) d(Gx_{2n+1}, Tx_{2n+1})}{d(Fx_{2n}, Gx_{2n+1})}\})$$

$$= \varphi(\max\{d(y_{2n-1}, y_{2n}), d(y_{2n-1}, y_{2n}), d(y_{2n}, y_{2n+1}), \frac{d(y_{2n-1}, y_{2n}) d(y_{2n}, y_{2n+1})}{d(y_{2n-1}, y_{2n})}\})$$

$$= \varphi(\max\{d(y_{2n-1}, y_{2n}), d(y_{2n}, y_{2n+1})\})$$
(2.6.5)

Now from (2.6.5)

$$d(y_{2n-1}, y_{2n}) \leq d(y_{2n}, y_{2n+1})$$

$$\Rightarrow d(y_{2n}, y_{2n+1}) \leq \varphi(d(y_{2n}, y_{2n+1}))$$

$$\Rightarrow d(y_{2n}, y_{2n+1}) = 0$$

$$\Rightarrow d(y_{2n}, y_{2n+1}) \leq 0 \leq \varphi(d(y_{2n-1}, y_{2n}))$$
(2.6.6)

Now suppose

$$d(y_{2n-1}, y_{2n}) > d(y_{2n}, y_{2n+1})$$
. Then from (2.6.5)

follows that

$$d(y_{2n}, y_{2n+1}) \leq \varphi(d(y_{2n-1}, y_{2n}))$$
(2.6.7)

From (2.6.6) and (2.6.7) follows that

 $d(y_{2n}, y_{2n+1}) \leq \varphi(d(y_{2n-1}, y_{2n}))$ for n = 1,2,3...

(2.6.3)

Similarly we can show that

$$d(y_{2n+1}, y_{2n+2}) \leq \varphi(d(y_{2n}, y_{2n+1}))$$
 for $n = 1, 2, 3$..

Now

$$\begin{aligned} d(y_{2n}, y_{2n+1}) &= d(Tx_{2n+1}, Sx_{2n}) \qquad (by (2.6.4)) \\ &\leq \varphi(max\{d(Gx_{2n+1}, Fx_{2n}), d(Fx_{2n}, Sx_{2n}), d(Gx_{2n+1}, Tx_{2n+1}), \frac{d(Fx_{2n}, Sx_{2n}) d(Gx_{2n+1}, Tx_{2n+1})}{d(Gx_{2n+1}, Fx_{2n})} \}) \\ &= \varphi(max\{d(y_{2n}, y_{2n-1}), (y_{2n-1}, y_{2n}), d(y_{2n}, y_{2n+1}), \frac{d(y_{2n-1}, y_{2n}) d(y_{2n}, y_{2n+1})}{d(y_{2n-1}, y_{2n}), d(y_{2n-1}, y_{2n+1})} \}) \\ &= \varphi(max\{d(y_{2n}, y_{2n-1}), d(y_{2n}, y_{2n+1})\}) \\ &\therefore \text{ If } d(y_{2n}, y_{2n+1}) \leq d(y_{2n}, y_{2n+1}) < d(y_{2n}, y_{2n+1}) \end{aligned}$$

since $d(y_{2n}, y_{2n+1}) > 0$, which is contradiction

$$\therefore d(y_{2n}, y_{2n+1}) \leq d(y_{2n-1}, y_{2n})$$

$$d(y_{2n}, y_{2n+1}) \leq \varphi(d(y_{2n-1}, y_{2n}))$$
 this is true for $n = 1, 2, 3 \dots$

Similarly

$$\begin{array}{l} \therefore \ d(y_n, y_{n+1}) \leq \varphi(d(y_{n-1}, y_n)) \\ \leq \\ \vdots \\ \leq \varphi^n(d(y_0, y_1)) \end{array}$$

Since $\varphi^n(t) \to 0$ as $n \to \infty$, we may suppose with out loss of generality that $d(y_0, y_1) < 1$

$$\begin{array}{l} \therefore \ d(y_n, y_{n+k}) &\leq \ d(y_n, y_{n+1}) + \dots + d(y_{n+k-1}, y_{n+k}) \\ \\ &= \ \varphi^n(d(y_0, y_1)) + \dots + \varphi^{n+k-1}(d(y_0, y_1)) \\ \\ &= \frac{\varphi^n(d(y_0, y_1))}{1 - \varphi(d(y_0, y_1))} \to 0 \quad as \quad n \to \infty \end{array}$$

 $\therefore \{y_n\}$ is a Cauchy sequence.

Since X is a complete dislocated quasi metric space there exists $u \in X$ such that $\{y_n\}$ converges to u.

Since FS = SF and S and F are continuous, we have $Su = \lim_{n \to \infty} SFx_{2n} = \lim_{n \to \infty} FSx_{2n} = Fu$,

since TG = GT and T and G are continuous,

we have $Tu = \lim_{n \to \infty} TGx_{2n+1} = \lim_{n \to \infty} GTx_{2n+1} = Gu$

Thus the pairs (F, S) and (G, T) have common coincidence point which is also a common coincidence point of F, S, G and T.

Note: In theorem 2.6, if we assume the space to be a complete dislocated metric space, (2.6.4) can be drooped and consequently we get a modified version of theorem 1.9 as a corollary.

ACKNOWLEDGEMENTS

The fourth author (M.A. Rahamatulla) is grateful to the authorities of Al-Aman College of Engineering and I.H. Faruqui Sir for granting permission to carry on this research.

REFERENCES

[1] C. T. Aage, J. N. Salunke, the results on fixed point in dislocated and dislocated quasi- metric space. Appl. Math. Sci., Vol.2. 2008, No.59, 2941-2948.

[2] P. Hitzler and A. K. Seda, Dislocated Topologies, J.Electr.Engin.51 (12/5), 2000, pp. 3-7.

[3] P. Hitzler, Generalized matrices and Topology in logic programming semanties, Ph. D Thesis .National University of Ireland (University College Cork), 2001.

[4] A. Isufati, Fixed point theorems in Dislocated quasi – metric space, Appl. Math. Sci., Vol.4. 2010, No.5, 217-223.

[5] R. Kannan, Some results on fixed points Bull. Cal. Math. Soc 60, pp 71-76 (1968).

[6] S. G. Matthews, Matric Domains for Comleteness, Ph.D Thesis (Research Report 76), Dept .Com. Sci., University of Warwick, U.K.1986.

[7] K.P.R. Rao and P. Ranga Swamy, A coincidence point theorem for four mappings in Dislocated metric spaces, Int. J. Contemp. Math. Sci, Vol.No.6, 2011, No: 34, pp 1675-1680.

[8] B.E. Rhodes, A Comparison of various definitions of Contractive mappings, Trans. Amer. Soc. 226(1977), 257-290.

[9] J.J.M.M. Rutten, Elements of Generalized Ultra metric domain theory, Theorietic. Com. Sci, 1970 (1996), pp 349-381.

[10] F.M. Zayeda, G.H. Hassan and M.A. Ahmed, A Generalization of fixed point theorem due to Hitzler and Seda in dislocated quasi metric spaces, The Arabian .Jour for Sci and Engg., Vol. 31, Number iA (2005).

Source of support: Nil, Conflict of interest: None Declared