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ABSTRACT 
In this study we focus on a negative binomial (NB) regression model to take account of regression coefficients in 
Poisson counts. An algorithm for estimating parameters was obtained and score test versus its alternative tests were 
presented for testing the significance of regression coefficients in Poisson regression model against NB regression 
model. The power of the score test is compared with their Likelihood ratio test (LRT) and Wald test via Monte Carlo 
simulation. The simulation result indicated that the Wald test is superior over the LRT and Score test in terms of its 
power. An Ethiopian under five children death rate data is used to illustrate the tests.  
 
Keywords: Count data, Negative binomial regression, Score test, regression parameter. 
 
 
1. INTRODUCTION 
 
Count data is very common in various fields such as in biomedical science, public health and marketing. Poisson 
models are widely used in the regression analysis of count data and as a basis for count data analysis (Frome[6]; 
Lawless[9]). It is also appropriate for analyzing rate data. Poisson regression is a part of class of models in generalized 
linear models. It uses natural log as the link function and models the expected value of response variable. The natural 
log in the model ensures that the predicted values of response variable will never be negative. The response variable in 
Poisson regression is assumed to follow Poisson distribution. One requirement of the Poisson distribution is that the 
mean equals the variance. In real-life application, however, count data often exhibits overdispersion. Overdispersion 
occurs when the variance is significantly larger than the mean. When this happens, the data is said to be overdispersed. 
Overdispersion can cause underestimation of standard errors which consequently leads to wrong inference. Numerous 
methods have been suggested for dealing with this (Breslow[1]; Cameron and Trivedi[2]; Lawless[7]; Mc- Cullagh[11]; 
Hilbe[7]), and there have also been studies of the effect of overdispersion on Poisson- based methods (Cox[3]). 

 
Analysts who choose the NB model over the Poisson model should justify the rejection of equi-dispersion and 
estimation of parameters in the Poisson model. A LRT or Wald test can be used, but the score test has the advantage 
that we only need to fit under the null hypothesis. The score test statistic for overdispersion parameter developed by 
Cameron and Trivedi[2] specifically for comparing the Poisson model against the negative binomial model, is a special 
case of the general score statistics later developed by Dean[4]. Furthermore, Dejen and Munisway[5] are provided a 
Monte Carlo simulation study to identify the power of score test statistic with existing tests for a negative binomial 
regression models in overdispersion parameter. In this paper, we propose a score test for testing regression parameters 
in a negative binomial regression model and compare the power of this test with the existing tests via Monte Carlo 
simulation study.  

 
The outline of the paper is as follows: In Section 1.1 we introduce the negative binomial regression model and its 
estimation method. Score test and alternative tests for regression parameters in the model are discussed in Section 2 and 
3, respectively. A simulation study for powers of two score tests and alternative tests will be presented in Section 4. 
Section 5 presents an example to illustrate our methodology and some conclusions are given in the last section. 

 
1.1 Negative binomial regression model 
 
Consider the negative binomial distribution with probability density function: 
 
𝑓𝑓(𝑦𝑦𝑖𝑖 ;𝜇𝜇𝑖𝑖 ,𝛼𝛼) = Γ�𝑦𝑦𝑖𝑖+1 𝛼𝛼� �

𝑦𝑦𝑖𝑖 !Γ�1 𝛼𝛼� �
(1 + 𝛼𝛼𝜇𝜇𝑖𝑖)

−1
𝛼𝛼 �1 + 1

𝛼𝛼𝜇𝜇𝑖𝑖
�
−𝑦𝑦𝑖𝑖

,𝑦𝑦𝑖𝑖 ≥ 0                                                                                                      (1) 
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with mean 𝐸𝐸(𝑌𝑌𝑖𝑖) = 𝜇𝜇𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒𝑖𝑖𝑇𝑇𝛽𝛽), and variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌𝑖𝑖) = 𝜇𝜇𝑖𝑖(1 + 𝛼𝛼𝜇𝜇𝑖𝑖). In equation (1), the term 𝛼𝛼 plays the role of 
a dispersion factor and it is a constant. Clearly, when 𝛼𝛼 → 0, the NB distribution reduces to the usual standard Poisson 
distribution with parameter 𝜇𝜇𝑖𝑖 .  For more details the reader is referred (Mc- Cullagh and Nelder[10]; Jansakul and 
Hinde[8]; Hilbe[7]). 
 
Assume that each observation 𝑦𝑦𝑖𝑖 , 𝑖𝑖 = 1, 2, … ,𝑛𝑛 submits to negative binomial distribution, i.e. 𝑦𝑦𝑖𝑖~𝑁𝑁𝑁𝑁(𝛼𝛼,𝜇𝜇𝑖𝑖). Following 
the generalized linear model approach, we relate parameters 𝜇𝜇𝑖𝑖  to covariates 𝑒𝑒𝑖𝑖𝜖𝜖𝑅𝑅𝑒𝑒  through the log-link function so that 
 
log(𝜇𝜇𝑖𝑖) = 𝑒𝑒𝑖𝑖𝑇𝑇𝛽𝛽                                                                                                                                                                                   (2) 
 
Then we call equation (1) and (2) the negative binomial regression model, where 𝛽𝛽 is a 𝑒𝑒- dimension regression 
coefficients, and 𝑒𝑒𝑖𝑖𝑇𝑇 = �𝑒𝑒𝑖𝑖1,𝑒𝑒𝑖𝑖2, … , 𝑒𝑒𝑖𝑖𝑒𝑒�, 𝑖𝑖 = 1, 2, … ,𝑛𝑛. The log-likelihood function of the NB regression model based 
on a sample of n independent observations is expressed as 
 
ℓ(𝜇𝜇,𝛼𝛼;  𝑦𝑦𝑖𝑖) = ∑ �− log(𝑦𝑦𝑖𝑖) +∑ log(𝛼𝛼𝑦𝑦𝑖𝑖 − 𝛼𝛼𝑘𝑘 + 1)𝑦𝑦𝑖𝑖

𝑘𝑘=1 − �𝑦𝑦𝑖𝑖 + 1 𝛼𝛼� � log(1 + 𝛼𝛼𝜇𝜇𝑖𝑖) + 𝑦𝑦𝑖𝑖 log(𝜇𝜇𝑖𝑖)�𝑛𝑛
𝑖𝑖=1                              (3) 

 

where, Γ�𝑦𝑦𝑖𝑖+
1 𝛼𝛼� �

𝑦𝑦𝑖𝑖 !Γ�1 𝛼𝛼� �
= ∏ �𝑦𝑦𝑖𝑖 + 1 𝛼𝛼� − 𝑘𝑘�𝑦𝑦𝑖𝑖

𝑘𝑘=1 = 𝛼𝛼−𝑦𝑦𝑖𝑖 ∏ (𝛼𝛼𝑦𝑦𝑖𝑖 − 𝛼𝛼𝑘𝑘 + 1).𝑦𝑦𝑖𝑖
𝑘𝑘=1  

 
 
We can obtain the maximum likelihood estimators by using the Newton-Raphson iterative method. By differentiating 
the log-likelihood function (3) with respect to 𝛼𝛼 and 𝛽𝛽, we have 
 
𝜕𝜕ℓ(𝜇𝜇,𝛼𝛼)
𝜕𝜕𝛽𝛽 =

𝜕𝜕ℓ(𝜇𝜇,𝛼𝛼)
𝜕𝜕𝜇𝜇

𝜕𝜕𝜇𝜇
𝜕𝜕𝛽𝛽

 = �
(𝑦𝑦𝑖𝑖 − 𝜇𝜇𝑖𝑖)
1 + 𝛼𝛼𝜇𝜇𝑖𝑖

𝑒𝑒𝑖𝑖 ;
𝑛𝑛

𝑖𝑖=1

                                                                  

 

 
𝜕𝜕ℓ(𝜇𝜇,𝛼𝛼)
𝜕𝜕𝛼𝛼 = ���

𝑦𝑦𝑖𝑖 − 𝑘𝑘
𝛼𝛼𝑦𝑦𝑖𝑖 − 𝛼𝛼𝑘𝑘 + 1

𝑦𝑦𝑖𝑖

𝑘𝑘=1

+
log(1 + 𝛼𝛼𝜇𝜇𝑖𝑖)

𝛼𝛼2 −
�𝑦𝑦𝑖𝑖 + 1 𝛼𝛼� �𝜇𝜇𝑖𝑖

1 + 𝛼𝛼𝜇𝜇𝑖𝑖
�

𝑛𝑛

𝑖𝑖=1

;                       

 
so the score function is 𝑈𝑈 = �𝜕𝜕ℓ(𝜇𝜇 ,𝛼𝛼)

𝜕𝜕𝛽𝛽
, 𝜕𝜕ℓ(𝜇𝜇 ,𝛼𝛼)

𝜕𝜕𝛼𝛼
�, and differentiating the log-likelihood function with respect to the 

parameters 𝛼𝛼 and 𝛽𝛽 
 
𝜕𝜕2ℓ(𝜇𝜇,𝛼𝛼)
𝜕𝜕𝛽𝛽𝜕𝜕𝛽𝛽𝑇𝑇 = −��

[1 + 𝛼𝛼𝑦𝑦𝑖𝑖]𝜇𝜇𝑖𝑖
(1 + 𝛼𝛼𝜇𝜇𝑖𝑖)2 �𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖

𝑇𝑇 ;
𝑛𝑛

𝑖𝑖=1

                                                                     

 

  
𝜕𝜕2ℓ(𝜇𝜇,𝛼𝛼)
𝜕𝜕𝛼𝛼2 = ����

−(𝑦𝑦𝑖𝑖 − 𝑘𝑘)2

(𝛼𝛼𝑦𝑦𝑖𝑖 − 𝛼𝛼𝑘𝑘 + 1)2

𝑦𝑦𝑖𝑖

𝑘𝑘=1

�−
2log(1 + 𝛼𝛼𝜇𝜇𝑖𝑖)

𝛼𝛼3 +
2𝜇𝜇𝑖𝑖

𝛼𝛼2(1 + 𝛼𝛼𝜇𝜇𝑖𝑖)
+
�𝑦𝑦𝑖𝑖 + 1 𝛼𝛼� �𝜇𝜇𝑖𝑖2

(1 + 𝛼𝛼𝜇𝜇𝑖𝑖)2 �
𝑛𝑛

𝑖𝑖=1

;     

 

  
𝜕𝜕2ℓ(𝜇𝜇,𝛼𝛼)
𝜕𝜕𝛼𝛼𝜕𝜕𝛽𝛽 =

𝜕𝜕2ℓ(𝜇𝜇,𝛼𝛼)
𝜕𝜕𝛽𝛽𝜕𝜕𝛼𝛼 = −��

(𝑦𝑦𝑖𝑖 − 𝜇𝜇𝑖𝑖)𝜇𝜇𝑖𝑖
(1 + 𝛼𝛼𝜇𝜇𝑖𝑖)2�𝑒𝑒𝑖𝑖 .

𝑛𝑛

𝑖𝑖=1

                                                        

 
The observed Fisher information matrix:  
 

𝐼𝐼(𝛽𝛽,𝛼𝛼) = �
𝐼𝐼𝛽𝛽𝛽𝛽 (𝛽𝛽,𝛼𝛼)    𝐼𝐼𝛽𝛽𝛼𝛼(𝛽𝛽,𝛼𝛼)
𝐼𝐼𝛼𝛼𝛽𝛽 (𝛽𝛽,𝛼𝛼) 𝐼𝐼𝛼𝛼𝛼𝛼 (𝛽𝛽,𝛼𝛼) �,                                                                                                                                    (4) 

 
where, the elements 𝐼𝐼𝛽𝛽𝛽𝛽 = −𝐸𝐸 �𝜕𝜕

2ℓ(𝜇𝜇 ,𝛼𝛼)
𝜕𝜕𝛽𝛽 𝜕𝜕𝛽𝛽 𝑇𝑇

� is the 𝑒𝑒 × 𝑒𝑒 symmetric matrix,  𝐼𝐼𝛽𝛽𝛼𝛼 = 𝐼𝐼𝛼𝛼𝛽𝛽𝑇𝑇 = −𝐸𝐸 �𝜕𝜕
2ℓ(𝜇𝜇 ,𝛼𝛼)
𝜕𝜕𝛽𝛽𝜕𝜕 𝛼𝛼

� is the 𝑒𝑒 × 1 matrix 

and 𝐼𝐼𝛼𝛼𝛼𝛼 = −𝐸𝐸 �𝜕𝜕
2ℓ(𝜇𝜇 ,𝛼𝛼)
𝜕𝜕𝛼𝛼2 � is a scalar.  

 
 
The Newton-Raphson iterative algorithm used the specification of initial values. Our suggestion is setting  𝛼𝛼 → 0 and 𝛽𝛽 
using ML estimation obtained from the Poisson regression model. Let 𝜉𝜉 = (𝛼𝛼,𝛽𝛽𝑇𝑇)𝑇𝑇 , under the usual regularity 
conditions for maximum likelihood estimation, when the sample size is large, 𝜉𝜉 ~𝑁𝑁𝑒𝑒(𝜉𝜉, 𝐼𝐼−1(𝛼𝛼,𝛽𝛽)) approximately. 
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2. SCORE TESTS FOR REGRESSION PARAMETERS IN NB MODEL 
 
In many applications, it is important to assess whether the assumed model is indeed appropriate. The score test 
developed by Cameron and Trivedi[2] specifically for comparing the Poisson model against the negative binomial 
model, is a special case of the general score statistics later developed by Dean[4]. In this study, we derive the method to 
test significance of regression coefficients in NB model and compare the power of this proposed test with existing tests 
using simulation study.  

 
To test the effect of covariates on the parameter 𝜇𝜇 of NB regression model we should consider the following hypothesis 
 
 𝐻𝐻02 : 𝛽𝛽∗ = 0    𝑣𝑣𝑒𝑒𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣    𝐻𝐻𝐴𝐴2:𝛽𝛽∗ ≠ 0,                                                                                                                                 (5) 

 
where, 𝛽𝛽∗ is a subset of 𝛽𝛽 without the intercept 𝛽𝛽0. Based on the log-likelihood function ℓ (3) and partitioning the 𝑒𝑒𝑖𝑖  as 
(1, (𝑒𝑒𝑖𝑖∗)𝑇𝑇)𝑇𝑇 , we can get the score function of 𝛽𝛽∗ and 𝛽𝛽0 as  
 
𝜕𝜕ℓ(𝜇𝜇 ,𝛼𝛼)
𝜕𝜕𝛽𝛽 ∗

 = ∑ (𝑦𝑦𝑖𝑖−𝜇𝜇𝑖𝑖)
1+𝛼𝛼𝜇𝜇𝑖𝑖

𝑒𝑒𝑖𝑖∗;𝑛𝑛
𝑖𝑖=1                                                                                                                                                                  (6) 

 
𝜕𝜕ℓ(𝜇𝜇 ,𝛼𝛼)
𝜕𝜕𝛽𝛽0

 = ∑ (𝑦𝑦𝑖𝑖−𝜇𝜇𝑖𝑖)
1+𝛼𝛼𝜇𝜇𝑖𝑖

;𝑛𝑛
𝑖𝑖=1                                                                                                                                                                      (7) 

 
and the second derivatives of the log-likelihood are given by: 
 𝜕𝜕

2ℓ(𝜇𝜇 ,𝛼𝛼)

𝜕𝜕𝛽𝛽 ∗𝜕𝜕𝛽𝛽 ∗𝑇𝑇
= −∑ �[1+𝛼𝛼𝑦𝑦𝑖𝑖 ]𝜇𝜇𝑖𝑖

(1+𝛼𝛼𝜇𝜇𝑖𝑖)2 � 𝑒𝑒𝑖𝑖∗𝑒𝑒𝑖𝑖∗
𝑇𝑇 ;𝑛𝑛

𝑖𝑖=1                                                                                                                                              (8) 
 
𝜕𝜕2ℓ(𝜇𝜇 ,𝛼𝛼)
𝜕𝜕𝛽𝛽0

2 = −∑ �[1+𝛼𝛼𝑦𝑦𝑖𝑖 ]𝜇𝜇𝑖𝑖
(1+𝛼𝛼𝜇𝜇𝑖𝑖)2 �𝑛𝑛

𝑖𝑖=1 ;                                                                                                                                                         (9) 
 
 𝜕𝜕

2ℓ(𝜇𝜇 ,𝛼𝛼)
𝜕𝜕𝛽𝛽 ∗𝜕𝜕𝛽𝛽0

= 𝜕𝜕2ℓ(𝜇𝜇 ,𝛼𝛼)
𝜕𝜕𝛽𝛽0𝜕𝜕𝛽𝛽 ∗

= −∑ �[1+𝛼𝛼𝑦𝑦𝑖𝑖 ]𝜇𝜇𝑖𝑖
(1+𝛼𝛼𝜇𝜇𝑖𝑖)2 � 𝑒𝑒𝑖𝑖∗.𝑛𝑛

𝑖𝑖=1                                                                                                                               (10) 
 
Let 𝜉𝜉1 = �𝛼𝛼�, �̂�𝛽0, 0𝑇𝑇�

𝑇𝑇
be the REML estimates of parameter 𝜉𝜉 under null hypothesis  𝐻𝐻02. Based on the relationship for 

the moments in a Poisson distribution with parameter 𝜇𝜇 and equations (8), (9) and (10), then we can write the blocking 
matrix 𝐼𝐼𝛽𝛽𝛽𝛽 (𝛽𝛽,𝛼𝛼)  as follows: 
 

𝐼𝐼𝛽𝛽𝛽𝛽 (𝛽𝛽,𝛼𝛼) = �
𝐼𝐼𝛽𝛽0𝛽𝛽0

(𝛽𝛽,𝛼𝛼)    𝐼𝐼𝛽𝛽0𝛽𝛽∗(𝛽𝛽,𝛼𝛼)
𝐼𝐼𝛽𝛽∗𝛽𝛽0

(𝛽𝛽,𝛼𝛼) 𝐼𝐼𝛽𝛽∗𝛽𝛽∗(𝛽𝛽,𝛼𝛼) �,                                                                                                                                 (11) 

 
where, 

𝐼𝐼𝛽𝛽∗𝛽𝛽∗(𝛽𝛽,𝛼𝛼) = �−𝐸𝐸 �
𝜕𝜕2ℓ(𝜇𝜇,𝛼𝛼)
𝜕𝜕𝛽𝛽∗𝜕𝜕𝛽𝛽∗𝑇𝑇

��
𝜉𝜉�2

= �
�̂�𝜇𝑖𝑖

1 + 𝛼𝛼��̂�𝜇𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑒𝑒𝑖𝑖∗𝑒𝑒𝑖𝑖∗
𝑇𝑇 ;                                                          

 

𝐼𝐼𝛽𝛽0𝛽𝛽0
(𝛽𝛽,𝛼𝛼) = �−𝐸𝐸 �

𝜕𝜕2ℓ(𝜇𝜇,𝛼𝛼)
𝜕𝜕𝛽𝛽0

2 ��
𝜉𝜉�2

= �
�̂�𝜇𝑖𝑖

1 + 𝛼𝛼��̂�𝜇𝑖𝑖
;

𝑛𝑛

𝑖𝑖=1

                                                               

 

𝐼𝐼𝛽𝛽0𝛽𝛽∗(𝛽𝛽,𝛼𝛼) = �−𝐸𝐸 � 
𝜕𝜕2ℓ(𝜇𝜇,𝛼𝛼)
𝜕𝜕𝛽𝛽∗𝜕𝜕𝛽𝛽0

��
𝜉𝜉�2

= �
�̂�𝜇𝑖𝑖

1 + 𝛼𝛼��̂�𝜇𝑖𝑖
𝑒𝑒𝑖𝑖∗.

𝑛𝑛

𝑖𝑖=1

                                                        

 
The general score test for testing 𝛽𝛽∗ = 0 is 
 
�𝑆𝑆𝛽𝛽2 = 𝑆𝑆𝛽𝛽∗𝑇𝑇 (𝛽𝛽,𝛼𝛼)𝐼𝐼22

∗ −1𝑆𝑆𝛽𝛽∗(𝛽𝛽,𝛼𝛼)�
𝜉𝜉�2

 
 

where, the score vector is given by the following: 
 
 𝑆𝑆𝛽𝛽∗ = � 𝑆𝑆𝛽𝛽∗(𝛽𝛽,𝛼𝛼)�

𝜉𝜉�1
=  �𝜕𝜕ℓ(𝜇𝜇 ,𝛼𝛼)

𝜕𝜕𝛽𝛽∗
�
𝜉𝜉�1

= ∑ �(𝑦𝑦𝑖𝑖−𝜇𝜇𝑖𝑖)
1+𝛼𝛼𝜇𝜇𝑖𝑖

𝑒𝑒𝑖𝑖∗�𝑛𝑛
𝑖𝑖=1                                                                                                            (12) 

and we denote the inverse of �𝐼𝐼𝛽𝛽𝛽𝛽 (𝛽𝛽,𝛼𝛼) �
𝜉𝜉�2

 as 𝐼𝐼∗ which can be partitioned as �𝐼𝐼11
∗ 𝐼𝐼12

∗

𝐼𝐼21
∗ 𝐼𝐼22

∗ �. Due to the structure of 
� 𝑆𝑆𝛽𝛽∗(𝛽𝛽,𝛼𝛼)�

𝜉𝜉�1
 only 𝐼𝐼22

∗  is needed and is given as follows: 
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� 𝐼𝐼22
∗ = 𝐼𝐼(𝛽𝛽∗𝛽𝛽∗)(𝛽𝛽,𝛼𝛼)− 𝐼𝐼(𝛼𝛼𝛽𝛽∗)

𝑇𝑇 (𝛽𝛽,𝛼𝛼)𝐼𝐼(𝛼𝛼𝛼𝛼 )
−1 (𝛽𝛽,𝛼𝛼)𝐼𝐼𝛼𝛼𝛽𝛽∗(𝛽𝛽,𝛼𝛼)�

𝜉𝜉�2
       

 
                                                      = 𝑋𝑋∗𝑇𝑇 diag(𝑣𝑣𝑖𝑖)𝑋𝑋∗        
where, 𝑣𝑣𝑖𝑖 = 𝜇𝜇�𝑖𝑖

1+𝛼𝛼�𝜇𝜇�𝑖𝑖
. 

 
Therefore, the score test statistic for testing the significant of coefficient of regression parameters value is given by: 
 

𝑆𝑆𝛽𝛽2 = ��𝜕𝜕ℓ(𝜇𝜇 ,𝛼𝛼)
𝜕𝜕𝛽𝛽∗

�
𝑇𝑇
𝐼𝐼22
∗ −1 𝜕𝜕ℓ(𝜇𝜇 ,𝛼𝛼)

𝜕𝜕𝛽𝛽∗
�
𝜉𝜉�1

                                                                                                                                            (13) 

 
The standard asymptotic theory implies 𝑆𝑆𝛽𝛽2 has a chi-square distribution with degrees of freedom equals the number of 
restricted regression parameters in the Poisson model. 

 
3. ALTERNATIVE TESTS FOR OVERDISPERSION AND REGRESSION PARAMETERS 
 
We test the significance of coefficient of explanatory variables 𝑒𝑒𝑖𝑖∗ the hypothesis denoted as 𝐻𝐻02 :𝛽𝛽𝑖𝑖∗ = 0  𝑣𝑣𝑣𝑣.  𝐻𝐻𝐴𝐴2:𝛽𝛽𝑖𝑖∗ ≠
0 and the LRT test statistic for testing the null hypothesis is given by 𝐿𝐿𝑅𝑅𝑇𝑇 = −2 �ℓ�𝛼𝛼�, �̂�𝛽0� − ℓ�𝛼𝛼�, �̂�𝛽0, �̂�𝛽∗��, where 
ℓ�𝛼𝛼�, �̂�𝛽0� and ℓ�𝛼𝛼�, �̂�𝛽0, �̂�𝛽∗� are the log-likelihood estimate of the parameters for restricted and unrestricted parameter, 
respectively. The associated Wald test statistic is 𝑊𝑊𝛽𝛽∗ = �̂�𝛽𝑖𝑖∗

𝑇𝑇�𝐶𝐶𝐶𝐶𝑣𝑣(�̂�𝛽∗)��̂�𝛽∗, where �̂�𝛽𝑖𝑖∗ is the maximum likelihood 
estimate of coefficient 𝑒𝑒𝑖𝑖∗, 𝐶𝐶𝐶𝐶𝑣𝑣(�̂�𝛽𝑖𝑖∗) is the variance-covariance matrix of these estimation, determined from the 
estimation of the variance-covariance matrix, 𝐼𝐼(𝛽𝛽0,𝛽𝛽∗). For an adequate model, the Wald test also has an asymptotic 
chi-square distribution with degrees of freedom equals the number of restricted parameters under the null hypothesis. 
 
4. MONTE CARLO SIMULATION STUDY 
 
A simulation study was conducted to examine the empirical size and power of the proposed score test against the 
alternative tests. In order to compare the power of proposed score test with the existing test statistics for testing the 
regression parameters in a NB model a limited simulation study was carried out under different situations. The 
simulations are performed for testing of regression coefficients in mean  𝜇𝜇 portion. The model used for simulation study 
is 
 
𝑌𝑌𝑖𝑖~𝑁𝑁𝑁𝑁(𝛼𝛼, 𝜇𝜇𝑖𝑖),   𝑖𝑖 = 1, 2, … , 𝑛𝑛;        where, log(�̂�𝜇𝑖𝑖) = 𝛽𝛽0 + 𝛽𝛽1𝑒𝑒𝑖𝑖 . 
 
The estimated values of parameters under the null hypothesis are treated as true values in simulation studies. The true 
values are respectively chosen as 𝛼𝛼 = 0.4, 𝛽𝛽0 = 1.0 for testing the regression parameter. We first generate a set of 
random numbers from a uniform distribution in the interval [0, 1] as the values of 𝑒𝑒𝑖𝑖 . To get values of 𝑦𝑦𝑖𝑖 , a random 
variate is drawn from a NB model with true values of parameters, the value of 𝑒𝑒𝑖𝑖 , and a given 𝛽𝛽1. Repeating these 
procedure n times, we get a set of simulated data {𝑦𝑦𝑖𝑖 ,𝑒𝑒𝑖𝑖 , 𝑖𝑖 = 1, 2, … 𝑛𝑛}. The values of score test and alternative tests are 
computed by formulas shown in Section 2 and 3, respectively. We take 𝛽𝛽1 = 0, 0.2, 0.4, 0.6, 1.0. For each given values 
of parameters, we do 1000 replications i.e., the values of 𝑒𝑒𝑖𝑖’s are fixed for each replication. Then the proportion of 
times which rejected the null hypothesis is just the simulated value of power. Here, all the statistics are compared with 
the 𝜒𝜒𝛼𝛼2  critical value at 𝛼𝛼 = 0.05 level.  
 
The simulations are performed for samples of size 𝑛𝑛 = 40, 60, 80, 100, 200 and 300 to get the simulated powers of the 
proposed test statistic and its alternative tests. For each set of generated data, a NB model is fitted for calculating the 
proposed score test and the existing tests followed by the powers of the tests. Results from the simulation study are 
presented in Table 1. 
 

Table 1: Empirical power of the Wald, LRT and Score tests for regression parameter based on 1,000 replications 
generated from the NB regression model with log(�̂�𝜇𝑖𝑖) = 1 + 𝛽𝛽1𝑒𝑒𝑖𝑖 . 

 

 
 

n 

 
 

Method 

Power 

𝜷𝜷𝟏𝟏 = 𝟎𝟎.𝟎𝟎 0.2 0.4 0.6 0.8 1.0 

40 
Wald 
LRT 
Score 

0.069 
0.062 
0.057 

0.077 
0.074 
0.064 

0.159 
0.149 
0.130 

0.265 
0.255 
0.231 

0.448 
0.432 
0.408 

0.632 
0.612 
0.589 
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60 
Wald 
LRT 
Score 

0.051 
0.048 
0.042 

0.09 
0.087 
0.08 

0.189 
0.184 
0.172 

0.392 
0.378 
0.362 

0.606 
0.600 
0.574 

0.816 
0.804 
0.784 

80 
Wald 
LRT 
Score 

0.061 
0.058 
0.052 

0.096 
0.094 
0.091 

0.244 
0.237 
0.228 

0.496 
0.486 
0.464 

0.704 
0.702 
0.694 

0.894 
0.887 
0.883 

100 
Wald 
LRT 
Score 

0.060 
0.057 
0.055 

0.116 
0.113 
0.111 

0.319 
0.309 
0.297 

0.603 
0.596 
0.587 

0.797 
0.794 
0.779 

0.951 
0.948 
0.948 

200 
Wald 
LRT 
Score 

0.056 
0.054 
0.053 

0.159 
0.157 
0.156 

0.508 
0.506 
0.499 

0.850 
0.848 
0.844 

0.976 
0.976 
0.975 

0.997 
0.997 
0.997 

300 
Wald 
LRT 
Score 

0.058 
0.058 
0.054 

0.230 
0.229 
0.224 

0.684 
0.68 
0.650 

0.959 
0.958 
0.954 

0.996 
0.996 
0.996 

1 
1 
1 

 
 

 

 

 
 

Fig. 1: The Simulated power curve of Wald, LRT and Score tests for regression parameter values based on negative 
binomial regression model. 
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The results shown in Table 1 displays that, in general, the statistic Score, Wald, and LRT maintains nominal level well 
for all values of 𝛼𝛼 and 𝛽𝛽1 considered. Only for small values n and 𝛽𝛽1 there is some liberal behavior. Table 1 shows that 
the power of the tests for detecting the regression coefficient 𝛽𝛽1 increase slowly for small n (n=40) and small 𝛽𝛽1 (e.g., 
𝛽𝛽1 =0.0); but for larger values of n and 𝛽𝛽1 the power increase and approach 1 quickly. It can be seen from Table 1 that 
as regression coefficient 1.0 or as n increase the power of the test increase very fast and approach 1 quickly. Some 
representative results are shown in Fig. 1 which displays that the plots of power functions of tests with respect to 
varying values of 𝛽𝛽1. As shown in Fig. 1 as n increase, the power of tests also increases. 

 
5. APPLICATION  
 
To illustrate our methodology for fitting a NB model, we first consider the 2005 Demographic and Health Survey 
(DHS) which is obtained from the Central Statistical Agency, Ethiopia. Thus, this study analyzes responses from each 
of 9210 women (only those who have ever born a child), out of 14070 women of age 15-49 interviewed in 2005 DHS, 
on the counts of the number of deaths of children aged less than 5 years that the mother has experienced in her lifetime. 
The response variable of this study, 𝑌𝑌𝑖𝑖 , is a count, which gives the number of deaths of children aged less than 5 years 
that each mother has experienced in her lifetime.  
 
The set of children death dataset in Ethiopia is then used to illustrate the score test with covariates in the NB model. 
The number of child death begins with a value of zero and grows from there. There are 9210 observations in the 
dataset, and the minimum count is 0 and the maximum count is 7, with mean 0.63 and median 0. The dispersion index 
(the ratio of variance to mean) is 1.7905. So the data exhibit over-dispersion. There are a number of variables in the 
dataset. Here we selected six important dummy explanatory variables, i.e., age of women at first birth (𝑒𝑒1), toilet 
facility (𝑒𝑒2), source of drinking water (𝑒𝑒3), education status of women (𝑒𝑒4), work status of women (𝑒𝑒5) and type of 
place of residence (𝑒𝑒6), from the variables and using the negative binomial regression model to fit the data for 
illustrating our results: 
 
The estimated dispersion parameter in NB model is 𝛼𝛼� = 0.298942 with standard error 0.028569; and the estimated 
regression parameters are �̂�𝛽 =(-1.9982, -0.1794, -0.0190, -0.01093, -0.4256, -0.1318, 0.2848).  Based on the modeling 
information, the computed score statistics for regression parameters the computed score test is S = 1452.254 with its 
corresponding 𝑒𝑒-value= 0.0000; The LRT statistics is 180.97 with 𝑒𝑒-value= 0.0000; and the Wald test statistics is 
16968.43 with 𝑒𝑒-value= 0.0000. All the values of the tests indicate that the negative binomial model is suitable for this 
dataset. 
 
The above analysis doesn’t indicate which of the Poisson and negative binomial model will fit the data better. To cheek 
this, we fitted the maximum likelihood estimate of the parameters and the maximized log-likelihoods for them. The 
fitted statistics for Poisson and negative binomial models are shown in Table 2.  
 

Table 2: The observed and predicted count percent of children who died before age five per mother by 
Poisson and NB models 

 
Number of 

U5CD 
Observed 
frequency 

Observed 
Percent (%) 

Predicted percent (%) 
Poisson model NB model 

0 
1 
2 
3 
4 
5 
6 
7 

5897 
1881 
793 
379 
166 
60 
20 
14 

64.0282 
20.4235 
8.6102 
4.1151 
1.8024 
0.6515 
0.2172 
0.1520 

36.7879 
36.7879 
18.3940 
6.1313 
1.5328 
0.3066 
0.0510 

0.0073 

41.6896 
28.7837 
13.2487 
5.0818 
1.7543 
0.5652 
0.1735 
0.0513 

 
Clearly, from Fig. 2 and the value of AIC, BIC criteria in Table 2, there is a difference between Poisson and negative 
binomial model for this dataset. Then we can make a conclusion that the negative binomial model is essentially more 
appropriate than the Poisson model for the number of under 5 years children death in Ethiopia dataset.  

 
Table 3: Model fitting of Poisson and NB models for number of under 5 years children death count dataset. 

 
 

Model 
Selection criteria 

−2ℓ AIC BIC 
Poisson 

Negative binomial 275.48                        228.91 17203.81                     17004.82 17253.71 
17061.85 
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Fig. 2: Graphical comparison of Poisson and NB distribution for under 5 years children death 
 

6. CONCLUSION 
 
In this paper, we have presented the power of Poisson regression model versus negative binomial models based on the 
Score, Wald and LRT for regression coefficient parameter values. An algorithm for estimating parameters are obtained 
and a proposed score test and their alternative tests are presented for testing the significance of regression coefficients 
in Poisson regression model against the negative binomial regression model. A Monte Carlo simulation and application 
example are given to illustrate our method.  
 
The simulation study and application example for regression parameter in NB model indicates the score test is highly 
misleading, and the Wald and LR tests should be used instead. The simulation result shows that for dataset that has 
small regression parameter values the Poisson regression is more appropriate while negative binomial regression is 
more appropriate for data that has high regression parameter values.  
 
Our main work has been focused on the NB regression models without correlation between observations. However, it 
seems that it is reasonable to assume the correlation between observations. We will consider it in our future research. 
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