ON SZEGED INDEX OF STANDARD GRAPHS

K. V. S. Sarma* \& I. V. N. Uma**
*Associate Professor, Regency Institute of Technology, Yanam, India
**Khaitan Public School, Noida, New Delhi, India

(Received on: 01-05-12; Revised \& Accepted on: 23-05-12)

Abstract

A recently introduced graph-invariant is 'Szeged Index' and it has considerable applications in molecular chemistry. In this paper, the Szeged indices of standard graphs are calculated. A modified Szeged index of a graph is also introduced in which all the vertices of the graph are taken into consideration; thereby the variations in these indices of standard graphs are identified.

Keywords: Wiener number, Szeged index, modified Szeged index.

1. INTRODUCTION

An important concept of a molecular graph associated with alkanes or more generally of a simple, connected graph is termed as the Wiener number (see [5]). A refined concept of this is coined as Szeged index (see [2]) \& [3]). As in the case of Wiener number, no standard formula is available to calculate the Szeged index of a connected graph. In §2, we calculate the Szeged index of standard graphs and in $\S 3$, we introduce a modified Szeged index and observe the variations in these indices for the standard graphs.

For the standard notation and results we refer Bondy \& Murthy [1].
For ready reference, we give the following:
Definition: 1.1 [2]: G is a connected graph. Then the Wiener number $\mathrm{W}(\mathrm{G})$ of G is defined to be $1 / 2 \sum_{u, v \in V(G)} d(u, v)$, where $\mathrm{V}(\mathrm{G})$ is the vertex set of G and $\mathrm{d}(\mathrm{u}, \mathrm{v})=\mathrm{d}_{\mathrm{G}}(\mathrm{u}, \mathrm{v})$ is the shortest distance between the vertices u, v of G .

Observations 1.2 [4]:

a) For the complete graph $\mathrm{K}_{\mathrm{n}}(\mathrm{n} \geq 2), \mathrm{W}\left(\mathrm{K}_{\mathrm{n}}\right)=\mathrm{n}(\mathrm{n}-1) / 2$.
b) For the path $\mathrm{P}_{\mathrm{n}}(\mathrm{n} \geq 2), \mathrm{W}\left(\mathrm{P}_{\mathrm{n}}\right)=\mathrm{n}\left(\mathrm{n}^{2}-1\right) / 6$.
c) For the cycle $\mathrm{C}_{\mathrm{n}}(\mathrm{n} \geq 3)$, $\mathrm{W}\left(\mathrm{C}_{\mathrm{n}}\right)=\mathrm{n}[\mathrm{n} / 2]^{2}$.
d) For the star graph $K_{1, n}, W\left(K_{1, n}\right)=n^{2}(n \geq 1)$.
e) For the complete bipartite graph $\mathrm{K}_{\mathrm{m}, \mathrm{n}}(\mathrm{m}, \mathrm{n} \geq 1)$, $\mathrm{W}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)=\left(\mathrm{m}^{2}+\mathrm{mn}+\mathrm{n}^{2}\right)-(\mathrm{m}+\mathrm{n})$.
f) For the wheel $K_{1} v C_{n}(n \geq 3), W\left(K_{1} \mathrm{vC}_{n}\right)=n(n-1)$.

Throughout this paper, we consider only non-empty, simple, finite and connected graph to avoid trivialities.

2. SZEGED INDEX OF STANDARD GRAPHS

For convenience, we recollect the following:
Definition 2.1 [3]: Let G be a graph (i.e., nonempty, simple, finite and connected graph). Let $\mathrm{e}=\mathrm{uv}$ be any edge of G . Denote
$N_{1}(\mathrm{e} \mid \mathrm{G})=\{\mathrm{w} \in \mathrm{V}(\mathrm{G}): \mathrm{d}(\mathrm{w}, \mathrm{u})<\mathrm{d}(\mathrm{w}, \mathrm{v})\}(\mathrm{w}$ is closer to u than v in G$)$,
$N_{2}(e \mid G)=\{w \in V(G): d(w, v)<d(w, u)\}(w$ is closer to v than to u in $G) ;$
and $n_{1}(e \mid G)=\left|N_{1}(e \mid G)\right|, n_{2}(e \mid G)=\mid N_{2}(e \mid G)$. ($|\mid$ denotes the cardinality function).
The Szeged index of G, denoted by $\operatorname{Sz}(\mathrm{G})$ (in the earlier works denoted by $\mathrm{W}^{*}(\mathrm{G})$), is defined as
$\sum_{e \in E(G)} n_{1}(e \mid G) \cdot n_{2}(e \mid G)(E(G)$ being the edge set of $G)$.
Theorem 2.2: For the path $P_{n}(\mathrm{n} \geq 2)$
$\mathrm{Sz}\left(\mathrm{P}_{\mathrm{n}}\right)=\frac{n\left(n^{2}-1\right)}{6}\left(=\mathrm{W}\left(\mathrm{P}_{\mathrm{n}}\right)\right)$.
Proof: Let n be any integer ≥ 2 and $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
Any edge of P_{n} is of the form $v_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}$, i being any positive integer, $\leq \mathrm{n}-1$. Now
$\mathrm{N}_{1}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} \mid \mathrm{P}_{\mathrm{n}}\right)=\left\{\mathrm{w} \in \mathrm{V}\left(\mathrm{P}_{\mathrm{n}}\right): \mathrm{d}\left(\mathrm{w}, \mathrm{v}_{\mathrm{i}}\right)<\mathrm{d}\left(\mathrm{w}, \mathrm{v}_{\mathrm{i}+1}\right)\right\}=\left\{\mathrm{v}_{\mathrm{i}}, \ldots, \mathrm{v}_{\mathrm{i}}\right\}$
And
$N_{2}\left(v_{i} v_{i+1} \mid P_{n}\right)=\left\{w \in V\left(P_{n}\right): d\left(w, v_{i+1}\right)<d\left(w, v_{i}\right)\right\}=\left\{v_{i+1}, \ldots, v_{n}\right\}$
$\Rightarrow n_{1}\left(v_{i} v_{i+1} \mid P_{n}\right)=\left|\left\{v_{1}, \ldots, v_{i}\right\}\right|=i$ and $n_{2}\left(v_{i} v_{i+1} \mid P_{n}\right)=\left|\left\{v_{i+1}, \ldots, v_{n}\right\}\right|=n-i$.
This is true for all the $(n-1)$ edges $v_{i} v_{i+1}$ of P_{n}. So
$\mathrm{Sz}\left(\mathrm{P}_{\mathrm{n}}\right)=\sum_{i=1}^{n-1} \mathrm{n}_{1}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} \mid \mathrm{P}_{\mathrm{n}}\right) \cdot \mathrm{n}_{2}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} \mid \mathrm{P}_{\mathrm{n}}\right)=\sum_{i=1}^{n-1} \mathrm{i}(\mathrm{n}-\mathrm{i})=\frac{n\left(n^{2}-1\right)}{6}$.
Theorem 2.3: For $\mathrm{n} \geq 2$, $\mathrm{Sz}\left(\mathrm{K}_{\mathrm{n}}\right)=\frac{n(n-1)}{2}\left(=\mathrm{W}\left(\mathrm{K}_{\mathrm{n}}\right)\right)$.
Proof: Let $V\left(K_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let $e=u v$ be any edge of K_{n}. Since
$\mathrm{d}(\mathrm{u}, \mathrm{u})=\mathrm{d}(\mathrm{v}, \mathrm{v})=0, \mathrm{~d}(\mathrm{u}, \mathrm{v})=1$ and
$d(w, u)=d(w, v)=1$ for $w \in V\left(K_{n}\right) \backslash\{u, v\}$, follows that
$N_{1}\left(e=u v \mid K_{n}\right)=\{w \in V(G): d(w, u)<d(w, v)\}=\{u\}$ and
$N_{2}\left(e=u v \mid K_{n}\right)=\{w \in V(G): d(w, v)<d(w, u)\}=\{v\}$.

So, $n_{1}\left(e \mid K_{n}\right)=n_{2}\left(e \mid K_{n}\right)=1$. This is true for all the edges e of K_{n}.
Since any two vertices in K_{n} are adjacent ($\Rightarrow \mathrm{K}_{\mathrm{n}}$ has ${ }^{n} C_{2}=\frac{n(n-1)}{2}$ edges) follows that
$\mathrm{S}_{\mathrm{z}}\left(\mathrm{K}_{\mathrm{n}}\right)==\sum_{e \in E\left(K_{n}\right)} \mathrm{n}_{1}\left(\mathrm{e} \mid \mathrm{K}_{\mathrm{n}}\right) \cdot \mathrm{n}_{2}\left(\mathrm{e} \mid \mathrm{K}_{\mathrm{n}}\right)=\sum_{e \in E\left(K_{n}\right)} 1.1=\frac{n(n-1)}{2}$.
Theorem 2.4: For any star $K_{1, n}$ (n being any positive integer),
$\mathrm{Sz}\left(\mathrm{K}_{1, \mathrm{n}}\right)\left(=\mathrm{Sz}\left(\mathrm{K}_{\mathrm{n}, 1}\right)\right)=\mathrm{n}^{2}=\left(\mathrm{W}\left(\mathrm{K}_{1, \mathrm{n}}\right)=\mathrm{W}\left(\mathrm{K}_{\mathrm{n}, \mathrm{l}}\right)\right)$.

Proof: Let $\mathrm{n}=1 . \mathrm{K}_{1,1}=\mathrm{K}_{2}$ and so $\mathrm{Sz}\left(\mathrm{K}_{1,1}\right)=\mathrm{Sz}\left(\mathrm{K}_{2}\right)={ }^{2} \mathrm{C}_{2}=1^{2}$.
Let n be any integer ≥ 2 and $\mathrm{V}\left(\mathrm{K}_{1, \mathrm{n}}\right)=\left\{\mathrm{u}_{0}, \mathrm{~V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$.
$\operatorname{Now} E\left(K_{1, n}\right)=\left\{e_{i}=u_{0} v_{i}: I=1,2, \ldots, n\right\}$.So
$\left.N_{1}\left(e_{i} \mid K_{1, n}\right)=V\left(K_{1, n}\right) \backslash \mathrm{v}_{\mathrm{i}}\right\}$ and $\mathrm{N}_{2}\left(\mathrm{e}_{\mathrm{i}} \mid \mathrm{K}_{1, \mathrm{n}}\right)=\left\{\mathrm{v}_{\mathrm{i}}\right\}$
$\Rightarrow \mathrm{n}_{1}\left(\mathrm{e}_{\mathrm{i}} \mid \mathrm{K}_{1, \mathrm{n}}\right)=(\mathrm{n}+1)-1=\mathrm{n}$ and $\mathrm{n}_{2}\left(\mathrm{e}_{\mathrm{i}} \mid \mathrm{K}_{\mathrm{i}, \mathrm{n}}\right)=\left\{\mathrm{v}_{\mathrm{i}}\right\}$.
This is true for all the n edges e_{i} of $K_{1, n}$. So
$\mathrm{S}_{\mathrm{z}}\left(\mathrm{K}_{1, \mathrm{n}}\right)=\sum_{e_{i} \in E\left(K_{1, n}\right)} \mathrm{n}_{1}\left(\mathrm{e}_{\mathrm{i}} \mid \mathrm{K}_{1, \mathrm{n}}\right) \cdot \mathrm{n}_{2}\left(\mathrm{e}_{\mathrm{i}} \mid \mathrm{K}_{1, \mathrm{n}}\right)=\sum_{e_{i} \in E\left(K_{1, n}\right)} \mathrm{n}(1)=\mathrm{n}^{2}$
Since the graph $K_{n, 1}$ is isomorphic to $K_{1, n}$ it follows that $\operatorname{Sz}\left(K_{n, 1}\right)=S z\left(K_{1, n}\right)=n^{2}$.
Theorem 2.5: For the complete bipartite graph, $\mathrm{K}_{\mathrm{m}, \mathrm{n}}(\mathrm{m}, \mathrm{n} \geq 1), \mathrm{Sz}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)=(\mathrm{mn})^{2}$.
Proof: Case (i): $m=n=1 \Rightarrow K_{m, n}=K_{1,1}=K_{2}$.
$\mathrm{S}_{\mathrm{z}}\left(\mathrm{K}_{1,1}\right)=\mathrm{S}_{\mathrm{z}}\left(\mathrm{K}_{2}\right)=1=(1.1)^{2}$.
Case (ii): Let one of m, n is 1 and the other is ≥ 2.
Without loss of generality, we can assume that $m=1$ and so $n \geq 2$. Now
$\mathrm{W}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)=\mathrm{W}\left(\mathrm{K}_{1, \mathrm{n}}\right)=\mathrm{n}^{2}=(1 . \mathrm{n})^{2}$
Case (iii): Let $\mathrm{m}, \mathrm{n} \geq 2$.
Since $K_{m, n}$ is bipartite we can write $V\left(K_{m, n}\right)=V_{1} \cup V_{2}$ where
$V_{1}=\left\{u_{i}: i=1, \ldots, m\right\}$ and $V_{2}=\left\{v_{j}: j=1,2, \ldots, n\right\}$
and $E\left(K_{m, n}\right)=\left\{e_{i, j}=u_{i} v_{j}: i=1,2, \ldots . m, j=1,2, \ldots, n\right\}$.
Since $d\left(u_{i}, u_{i^{\prime}}\right)= \begin{cases}0 & \text { if } i^{\prime}=i \\ 2 & \text { if } i^{\prime} \neq i\end{cases}$
and
$d\left(v_{j}, v_{j^{\prime}}\right)= \begin{cases}0 & \text { if } j^{\prime}=j \\ 2 & \text { if } j^{\prime} \neq j\end{cases}$
follows that
$\mathrm{N}_{1}\left(\mathrm{e}_{\mathrm{i}, \mathrm{j}} \mid \mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)=\left\{\mathrm{u}_{\mathrm{i}}\right\} \cup\left(\mathrm{V}_{2} \backslash\left\{\mathrm{v}_{\mathrm{j}}\right\}\right)$ and $\mathrm{N}_{2}\left(\mathrm{e}_{\mathrm{i}, \mathrm{j}} \mid \mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)=\left\{\mathrm{v}_{\mathrm{j}}\right\} \cup\left(\mathrm{V}_{1} \backslash\left\{\mathrm{u}_{\mathrm{i}}\right\}\right)$
$\Rightarrow \mathrm{n}_{1}\left(\mathrm{e}_{\mathrm{i}, \mathrm{j}} \mid \mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)=1+(\mathrm{n}-1)=\mathrm{n}, \mathrm{n}_{2}\left(\mathrm{e}_{\mathrm{i}, \mathrm{j}} \mid \mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)=1+(\mathrm{m}-1)=\mathrm{m}$.
This is true for all the mn edges $e_{i, j}$ of $K_{m, n}$.
$\therefore \mathrm{Sz}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)=\sum_{e_{\mathrm{i}, \mathrm{j}} \in E\left(K_{m, n}\right)} \mathrm{n}_{1}\left(\mathrm{e}_{\mathrm{i}, \mathrm{j}} \mid \mathrm{K}_{\mathrm{m}, \mathrm{n}}\right) . \mathrm{n}_{2}\left(\mathrm{e}_{\mathrm{i}, \mathrm{j}} \mid \mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)=\sum_{e_{\mathrm{i}, \mathrm{j}} \in E\left(K_{m, n}\right)} \mathrm{n} . \mathrm{m}=\mathrm{nm}\left|\mathrm{E}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)\right|=(\mathrm{mn})^{2}$
(observe that $\mathrm{Sz}_{\mathrm{m}, \mathrm{n}}>\mathrm{W}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right)$ where $\mathrm{m}, \mathrm{n} \geq 2$).
Theorem 2.6: For any integer $n \geq 2$,
a) $\mathrm{Sz}\left(\mathrm{C}_{2 \mathrm{n}}\right)=2 \mathrm{n}^{3}=2 \mathrm{n}\left(\mathrm{n}^{2}\right)$ and
b) $\mathrm{Sz}\left(\mathrm{C}_{2 \mathrm{n}-1}\right)=(2 \mathrm{n}-1)(\mathrm{n}-1)^{2}$
i.e. $\mathrm{Sz}\left(\mathrm{C}_{\mathrm{k}}\right)=\mathrm{k}[\mathrm{k} / 2]^{2}$ for any integer $\mathrm{k} \geq 3$.

Proof: Let n be any integer ≥ 2.

Case (i): Let $V\left(\mathrm{C}_{2 \mathrm{n}}\right)=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{2 \mathrm{n}}\right\}$.
Any edge of $C_{2 n}$ is of the form $v_{i} v_{i+1}$ for $i=1,2, \ldots, 2 n$ with the convention $v_{2 n+1}=v_{1}$.
Now $N_{1}\left(\mathrm{v}_{1} \mathrm{v}_{2} \mid \mathrm{C}_{2 \mathrm{n}}\right)=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{2 \mathrm{n}-(\mathrm{n}-2)}=\mathrm{v}_{\mathrm{n}+2}\right\}$ and $\mathrm{N}_{2}\left(\mathrm{v}_{1} \mathrm{v}_{2} \mid \mathrm{C}_{2 \mathrm{n}}\right)=\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{n}+1}\right)$.
For $2 \leq \mathrm{i}<\mathrm{n}$
$\mathrm{N}_{1}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} \mid \mathrm{C}_{2 \mathrm{n}}\right)=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}, \ldots, \mathrm{v}_{1}, \mathrm{v}_{2 \mathrm{n}}, \ldots, \mathrm{v}_{2 \mathrm{n}-(\mathrm{n}-\mathrm{i}-1)}\right\}$ and $\mathrm{N}_{2}\left(\mathrm{v}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}+1} \mid \mathrm{C}_{2 \mathrm{n}}\right)=\left\{\mathrm{v}_{\mathrm{i}+1}, \ldots, \mathrm{v}_{\mathrm{i}+1}\right\}$.
For $\mathrm{i}=\mathrm{n}$
$N_{1}\left(v_{i} v_{n+1} \mid C_{2 n}\right)=\left\{v_{i}, v_{i+1}, \ldots, v_{i+(n-1)}\right\}$ and $N_{2}\left(v_{i} v_{n+1} \mid C_{2 n}\right)=\left\{v_{i+n}, v_{i+n+1}, \ldots, v_{2 n}, v_{1}, \ldots, v_{i-1}\right\}$
For $\mathrm{n}<\mathrm{i}<2 \mathrm{n}$,
$\mathrm{N}_{1}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} \mid \mathrm{C}_{2 \mathrm{n}}\right)=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}-1}, \ldots, \mathrm{v}_{\mathrm{i}-\mathrm{n}+1}\right\}$ and $\mathrm{N}_{2}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} \mid \mathrm{C}_{2 \mathrm{n}}\right)=\left\{\mathrm{v}_{\mathrm{i}+1}, \mathrm{v}_{\mathrm{i}+2}, \ldots, \mathrm{v}_{2 \mathrm{n}}, \mathrm{V}_{1}, \ldots, \mathrm{v}_{\mathrm{i}-\mathrm{n}}\right\}$.
For $\mathrm{i}=2 \mathrm{n}$,
$\mathrm{N}_{1}\left(\mathrm{v}_{2 \mathrm{n}} \mathrm{v}_{1} \mid \mathrm{C}_{2 \mathrm{n}}\right)=\left\{\mathrm{v}_{2 \mathrm{n}}, \mathrm{v}_{2 \mathrm{n}-1}, \ldots, \mathrm{v}_{2 \mathrm{n}-(\mathrm{n}-1)}=\mathrm{v}_{\mathrm{n}+1}\right\}$ and $\mathrm{N}_{2}\left(\mathrm{v}_{2 \mathrm{n}} \mathrm{v}_{1} \mid \mathrm{C}_{2 \mathrm{n}}\right)=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$.
So follows that
$n_{1}\left(v_{\mathrm{i}} \mathrm{V}_{\mathrm{i}+1} \mid \mathrm{C}_{2 \mathrm{n}}\right)=\mathrm{n}=\mathrm{n}_{2}\left(\mathrm{v}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}+1} \mid \mathrm{C}_{2 \mathrm{n}}\right)$ for $\mathrm{i}=1, \ldots, 2 \mathrm{n}$.
Hence $S z\left(C_{2 n}\right)=\sum_{i=1}^{2 n} n_{1}\left(v_{i} v_{i+1} \mid C_{2 n}\right) . n_{2}\left(v_{i} v_{i+1} \mid C_{2 n}\right)=\sum_{i=1}^{2 n}$ (n) (n)

$$
=2 n^{3}=2 n\left(n^{2}\right)=2 n\left[\left(\frac{2 n}{2}\right)\right]^{2}
$$

Case (ii). Let $V\left(C_{2 n-1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{2 n-1}\right\}$
Any edge of $\mathrm{C}_{2 \mathrm{n}-1}$ is of the form $\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}$, for $\mathrm{i}=1,2, \ldots, 2 \mathrm{n}-1$ with the convention $\mathrm{v}_{2 \mathrm{n}}=\mathrm{v}_{1}$.
Now
$\mathrm{N}_{1}\left(\mathrm{v}_{1} \mathrm{v}_{2} \mid \mathrm{C}_{2 \mathrm{n}-1}\right)=\left\{\mathrm{v}_{1}, \mathrm{v}_{2 \mathrm{n}-1}, \ldots, \mathrm{v}_{2 \mathrm{n}-(\mathrm{n}-2)}=\mathrm{v}_{\mathrm{n}+2}\right\}$ and $\mathrm{N}_{2}\left(\mathrm{v}_{1} \mathrm{v}_{2} \mid \mathrm{C}_{2 \mathrm{n}-1}\right)=\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$.
For $2 \leq \mathrm{i}<\mathrm{n}-1$
$N_{1}\left(v_{i} v_{i+1} \mid C_{2 n-1}\right)=\left\{v_{i}, v_{i-1}, \ldots, v_{1}, v_{2 n-1}, \ldots, v_{2 n-(n-i-1)}=v_{n+i+1}\right\}$ and $N_{2}\left(v_{i} v_{i+1} \mid C_{2 n-1}\right)=\left\{v_{i+1}, \ldots, v_{i+n-1}\right\}$.
For $\mathrm{i}=\mathrm{n}-1$
$\mathrm{N}_{1}\left(\mathrm{v}_{\mathrm{n}-1} \mathrm{v}_{\mathrm{n}} \mid \mathrm{C}_{2 \mathrm{n}-1}\right)=\left\{\mathrm{v}_{\mathrm{n}-1}, \ldots, \mathrm{v}_{1}\right\}$ and $\mathrm{N}_{2}\left(\mathrm{v}_{\mathrm{n}-1} \mathrm{v}_{\mathrm{n}} \mid \mathrm{C}_{2 \mathrm{n}-1}\right)=\left\{\mathrm{v}_{\mathrm{n}}, \mathrm{v}_{\mathrm{n}+1}, \mathrm{v}_{\mathrm{n}+2}, \ldots, \mathrm{v}_{2 \mathrm{n}-2}\right\}$.
For $\mathrm{i}=\mathrm{n}$
$\mathrm{N}_{1}\left(\mathrm{v}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}+1} \mid \mathrm{C}_{2 \mathrm{n}-1}\right)=\left\{\mathrm{v}_{\mathrm{n}}, \mathrm{v}_{\mathrm{n}-1}, \ldots, \mathrm{v}_{2}\right\}$ and $\mathrm{N}_{2}\left(\mathrm{v}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}+1} \mid \mathrm{C}_{2 \mathrm{n}-1}\right)=\left\{\mathrm{v}_{\mathrm{n}+1}, \mathrm{v}_{\mathrm{n}+2}, \ldots, \mathrm{v}_{\mathrm{n}+(\mathrm{n}-1)}=\mathrm{v}_{2 \mathrm{n}-1}\right\}$.
For $\mathrm{n}+1 \leq \mathrm{i} \leq 2 \mathrm{n}-1$
$\mathrm{N}_{1}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} \mid \mathrm{C}_{2 \mathrm{n}-1}\right)=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}-1}, \ldots, \mathrm{v}_{\mathrm{i}-(\mathrm{n}-2)}\right\}$ and $\mathrm{N}_{2}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} \mid \mathrm{C}_{2 \mathrm{n}-1}\right)=\left\{\mathrm{v}_{\mathrm{i}+1}, \ldots, \mathrm{v}_{2 \mathrm{n}-1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{i}-\mathrm{n}}\right\}$.
Finally, for $\mathrm{i}=2 \mathrm{n}-1$
$\mathrm{N}_{1}\left(\mathrm{v}_{2 \mathrm{n}-1} \mathrm{v}_{1} \mid \mathrm{C}_{2 \mathrm{n}-1}\right)=\left\{\mathrm{v}_{2 \mathrm{n}-1}, \mathrm{v}_{2 \mathrm{n}-2}, \ldots, \mathrm{v}_{2 \mathrm{n}-(\mathrm{n}-1)}=\mathrm{v}_{\mathrm{n}+1}\right\}$ and $\mathrm{N}_{2}\left(\mathrm{v}_{2 \mathrm{n}-1} \mathrm{v}_{1} \mid \mathrm{C}_{2 \mathrm{n}-1}\right)=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}-1}\right\}$.
So follows that
$\mathrm{N}_{1}\left(\mathrm{v}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}+1} \mid \mathrm{C}_{2 \mathrm{n}-1}\right)=\mathrm{n}-1=\mathrm{N}_{2}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} \mid \mathrm{C}_{2 \mathrm{n}-1}\right)$ for $\mathrm{i}=1,2, \ldots, 2 \mathrm{n}-1$.
$\therefore \mathrm{Sz}\left(\mathrm{C}_{2 \mathrm{n}-1}\right)=\sum_{i=1}^{2 n-1}(\mathrm{n}-1)(\mathrm{n}-1)=(2 \mathrm{n}-1)(\mathrm{n}-1)^{2}=(2 \mathrm{n}-1)\left(\left[\frac{2 n-1}{2}\right]\right)^{2}$.
This proves the result.
Theorem 2.7: For the wheel $K_{1} v C_{n}(n \geq 3)$,
$\mathrm{Sz}\left(\mathrm{K}_{1} \vee \mathrm{C}_{\mathrm{n}}\right)=\mathrm{n}\left(\mathrm{n}-2+\left[\frac{n}{2}\right]^{2}\right)$.
Proof: Let n be any integer ≥ 3 and $V\left(K_{1} v C_{n}\right)=\left\{u_{0}, v_{1}, v_{2}, \ldots, v_{n}\right\}$.
Now $E\left(K_{1} v C_{n}\right)=\left\{u_{0} v_{i}: i=1, \ldots, n\right\} \bigcup\left\{v_{i} v_{i+1}: i=1, \ldots, n\right\}$ (with the convention $v_{n+1}=v_{1}$).

Denote $\mathrm{e}_{\mathrm{i}}=\mathrm{u}_{0} \mathrm{v}_{\mathrm{i}}$ and $\mathrm{f}_{\mathrm{i}}=\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}(\mathrm{i}=1, \ldots, \mathrm{n}\}$.
Now $\mathrm{N}_{1}\left(\mathrm{e}_{\mathrm{i}} \mid \mathrm{K}_{1} \vee \mathrm{C}_{\mathrm{n}}\right)=\mathrm{V}\left(\mathrm{K}_{1} \vee \mathrm{C}_{\mathrm{n}}\right) \backslash\left\{\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right\}$ (with the convention $\left.\mathrm{v}_{0}=\mathrm{v}_{\mathrm{n}}\right)$
and $N_{2}\left(e_{i} \mid K_{1} \vee C_{n}\right)=\left\{v_{i}\right\}$.
$\therefore \mathrm{N}_{1}\left(\mathrm{e}_{\mathrm{i}} \mid \mathrm{K}_{1} \mathrm{vC} \mathrm{C}_{\mathrm{n}}\right)=(\mathrm{n}+1)-3=(\mathrm{n}-2)$ and $\mathrm{N}_{2}\left(\mathrm{e}_{\mathrm{i}} \mid \mathrm{K}_{1} \mathrm{v} \mathrm{C}_{\mathrm{n}}\right)=1$.
So $\sum_{i=1}^{n} n_{1}\left(e_{i} \mid K_{1} v C_{n}\right) \cdot n_{2}\left(e_{i} \mid K_{1} v C_{n}\right)=\sum_{i=1}^{n}(n-2) .1=n(n-2)$
Further,
$\mathrm{N}_{\mathrm{j}}\left(\mathrm{f}_{\mathrm{i}} \mid \mathrm{K}_{1} \mathrm{v} \mathrm{C}_{\mathrm{n}}\right)=\mathrm{N}_{\mathrm{j}}\left(\mathrm{f}_{\mathrm{i}} \mid \mathrm{C}_{\mathrm{n}}\right)(\mathrm{j}=1,2)$
(u_{0} is ignored since $\mathrm{d}\left(\mathrm{u}_{0}, \mathrm{v}_{\mathrm{i}-1}\right)=1=\mathrm{d}\left(\mathrm{u}_{0}, \mathrm{v}_{\mathrm{i}}\right)$).
(ii), by virtue of Theorem (2.6) implies that
$\sum_{i=1}^{n} \mathrm{n}_{1}\left(\mathrm{f}_{\mathrm{i}} \mid \mathrm{K}_{1} \vee \mathrm{C}_{\mathrm{n}}\right) \cdot \mathrm{n}_{2}\left(\mathrm{f}_{\mathrm{i}} \mid \mathrm{K}_{1} \vee \mathrm{C}_{\mathrm{n}}\right)=\mathrm{Sz}\left(\mathrm{C}_{\mathrm{n}}\right)=\mathrm{n}\left[\frac{n}{2}\right]^{2}$.
Now, from (i) and (iii) follows that $\operatorname{Sz}\left(\mathrm{K}_{1} \vee \mathrm{C}_{\mathrm{n}}\right)=\mathrm{n}(\mathrm{n}-2)+\mathrm{n}\left[\frac{n}{2}\right]^{2}=\mathrm{n}\left\{(\mathrm{n}-2)+\left[\frac{n}{2}\right]^{2}\right\}$.
(Observe that for $n \geq 4, S_{z}\left(K_{1} \vee C_{n}\right)>W\left(K_{1} \vee C_{n}\right)$).

3. MODIFIED SZEGED INDEX OF STANDARD GRAPHS

In the calculation of Szeged Index of $K_{n}(n \geq 2), K_{1} V C_{n}(n \geq 3)$, the contribution of all the vertices of the connected graph is not there. To avoid this, we propose the following modified index that involves all the vertices.

Definition 3.1: Let G be a graph (i.e., nonempty, simple, finite and connected graphs). Let $e=\{u, v\}$ be any edge of G. Denote
$N_{1}{ }^{*}(\mathrm{e} \mid \mathrm{G})=\left\{\mathrm{w} \in \mathrm{V}(\mathrm{G}): \mathrm{d}(\mathrm{w}, \mathrm{u}) \leq \mathrm{d}(\mathrm{u}, \mathrm{v}), \mathrm{N}_{2}{ }^{*}(\mathrm{e} \mid \mathrm{G})=\{\mathrm{w} \in \mathrm{V}(\mathrm{G}): \mathrm{d}(\mathrm{w}, \mathrm{v})<\mathrm{d}(\mathrm{w}, \mathrm{u}) ;\right.$
and
$\mathrm{n}_{1}{ }^{*}(\mathrm{e} \mid \mathrm{G})=\mid \mathrm{N}_{1}{ }^{*}\left(\mathrm{e}|\mathrm{G}|, \mathrm{n}_{2}{ }^{*}(\mathrm{e} \mid \mathrm{G})=\left|\mathrm{N}_{2}{ }^{*}(\mathrm{e} \mid \mathrm{G})\right|\right.$.
The refined Szeged index of G, denoted by $\mathrm{Sz}^{*}(\mathrm{G})$ is defined as,

$$
\sum_{e \in E(G)} \mathrm{n}_{1}^{*}(\mathrm{e} \mid \mathrm{G}) \cdot \mathrm{n}_{2}^{*}(\mathrm{e} \mid \mathrm{G})
$$

(Another way of defining this modified index is to keep $<$ as it is in $N_{1}(e \mid G)$ and changing $<$ into \leq in $N_{2}(e \mid G)$).

Observations 3.2:

a) For the path $P_{n}(n \geq 2), \mathrm{Sz}^{*} \mathrm{P}_{\mathrm{n}}=\mathrm{Sz} \mathrm{P}_{\mathrm{n}}$.
b) For any star $K_{1, n}(n \geq 1), S z\left(K_{1, n}\right)=\operatorname{Sz}^{*}\left(K_{1, n}\right)$.
c) For the complete graph $K_{m, n}(m, n \geq 1), \operatorname{Sz}^{*}\left(K_{m, n}\right)=\operatorname{Sz}\left(K_{m, n}\right)$.
d) For any interger $n \geq 2, S z{ }^{*}\left(C_{2 n}\right)=S z\left(C_{2 n}\right)$.

Theorem 3.3: For $\mathrm{n} \geq 2, \mathrm{Sz}^{*}\left(\mathrm{~K}_{\mathrm{n}}\right)=\frac{n(n-1)^{2}}{2}$.
Proof: With the same notation as in Th.2.3,

K. V. S. Sarma ${ }^{*}$ \& I. V. N. Uma**/ On Szeged index of standard graphs/ IJMA- 3(8), August-2012.

$\mathrm{N}_{1}{ }^{*}\left(\mathrm{e}=\mathrm{uv} \mid \mathrm{K}_{\mathrm{n}}\right)=\left\{\mathrm{w} \in \mathrm{V}(\mathrm{G}): \mathrm{d}(\mathrm{w}, \mathrm{u}) \leq \mathrm{d}(\mathrm{w}, \mathrm{v})=\left\{\mathrm{V}(\mathrm{G}) \backslash\left\{\mathrm{v}_{2}\right)\right.\right.$ and $\mathrm{N}_{2}{ }^{*}\left(\mathrm{e}=\mathrm{uv} \mid \mathrm{K}_{\mathrm{n}}\right)=\{\mathrm{w} \in \mathrm{V}(\mathrm{G}): \mathrm{d}(\mathrm{w}, \mathrm{v}) \leq \mathrm{d}(\mathrm{w}, \mathrm{u})\}=\left\{\mathrm{v}_{2}\right\}$. So $n_{1}{ }^{*}\left(\mathrm{e} \mid \mathrm{K}_{\mathrm{n}}\right)=(\mathrm{n}-1)$ and $\mathrm{n}_{2}{ }^{*}\left(\mathrm{e} \mid \mathrm{K}_{\mathrm{n}}\right)=1$.

This is true for all the edges e of K_{n}. Hence
$\mathrm{Sz}^{*}\left(\mathrm{~K}_{\mathrm{n}}\right)=\sum_{e \in E(K n)}(n-1) \cdot 1=\frac{n(n-1)^{2}}{2}$.
Theorem 3.4: For $n \geq 2$, $\mathrm{Sz}^{*}\left(\mathrm{C}_{2 \mathrm{n}-1}\right)=\mathrm{n}(\mathrm{n}-1)(2 \mathrm{n}-1)$.
Proof: With the same notation as in Th.2.6, for any edge $v_{i} v_{i+1}(i=1,2, \ldots, 2 n-1)$ (with the convention $v_{2 n}=v_{1}$), we get that
$\mathrm{n}_{1}{ }^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} \mid \mathrm{C}_{2 \mathrm{n}-1}\right)=(\mathrm{n}-1)+1=\mathrm{n}$ and $\mathrm{n}_{2}{ }^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} \mid \mathrm{C}_{2 \mathrm{n}-1}\right)=\mathrm{n}-1$
(the excluded single vertex, in each case, enters into the set $\mathrm{N}_{1}{ }^{*}$ () under consideration).
So, $\mathrm{Sz}^{*}\left(\mathrm{C}_{2 \mathrm{n}-1}\right)=\sum_{i=1}^{2 n-1} n(n-1)=n(n-1)(2 n-1)$.
Observation 3.5: In the other way of defining the modified index, we get the same $\mathrm{Sz}^{*}\left(\mathrm{~K}_{\mathrm{n}}\right), \mathrm{Sz}^{*}\left(\mathrm{C}_{2 \mathrm{n}-1}\right)$, since in these cases we get the sums $\sum_{e \in E(K n)} 1 .(n-1)$ and $\sum_{i=1}^{2 n-1}(n-1) \cdot n$ respectively.
Theorem 3.6: For the wheel $K_{1} \vee C_{n}(n \geq 3), S z\left(K_{1} \vee C_{n}\right)=\left\{\begin{array}{lll}\frac{n^{2}(n+6)}{4} & \text { (if } n \text { is even), } \\ \frac{n}{4}\left(n^{2}+6 n-3\right) & \text { (if } n \text { is odd). }\end{array}\right.$
With the same notation as in Th.(2.7),
$\mathrm{N}_{1}{ }^{*}\left(\mathrm{e}_{\mathrm{i}} \mid\left(\mathrm{K}_{1} \mathrm{v} \mathrm{C}_{\mathrm{n}}\right)\right)=\mathrm{V}\left(\mathrm{K}_{1} \mathrm{v} \mathrm{C}_{\mathrm{n}}\right) \backslash\left\{\mathrm{v}_{\mathrm{i}}\right\}$ and $\mathrm{N}_{2}{ }^{*}\left(\mathrm{e}_{\mathrm{i}} \mid\left(\mathrm{K}_{1} \mathrm{v} \mathrm{C}_{\mathrm{n}}\right)\right)=\left\{\mathrm{v}_{\mathrm{i}}\right\}$.
So, $\mathrm{n}_{1}{ }^{*}\left(\mathrm{e}_{\mathrm{i}} \mid\left(\mathrm{K}_{1} \mathrm{v} \mathrm{C}_{\mathrm{n}}\right)\right) \cdot \mathrm{n}_{2}{ }^{*}\left(\mathrm{e}_{\mathrm{i}} \mid\left(\mathrm{K}_{1} \mathrm{v} \mathrm{C}_{\mathrm{n}}\right)\right)=(\mathrm{n}+1-1)(1)=\mathrm{n}$
Case (i): Suppose n is even $\Rightarrow n \geq 4$.
As in Th. 2.6 (case (i)), for each edge $f_{i}(i=1, \ldots n)$ with the convention $v_{n+1}=v_{1}$, we get
$\left(n_{1}\left(f_{i}\right) \mid C_{n}\right)+1=n / 2+1$
(Since u_{0} is added in $\mathrm{N}_{1}{ }^{*}()$)
and
$\mathrm{n}_{2}^{*}\left(\mathrm{f}_{\mathrm{i}} \mid\left(\mathrm{K}_{1} \vee \mathrm{C}_{\mathrm{n}}\right)\right)=\mathrm{n}_{2}\left(\mathrm{f}_{\mathrm{i}} \mid \mathrm{C}_{\mathrm{n}}\right)=\mathrm{n} / 2$
By (3.6.1), (3.6.2) and (3.6.3)
$\mathrm{Sz}^{*}\left(\mathrm{~K}_{1} \vee \mathrm{C}_{\mathrm{n}}\right)=\operatorname{n.n}\left(\frac{n}{2}+1\right)\left(\frac{n}{2}\right)=\mathrm{n}^{2} \frac{(n+6)}{4}$.
Case (ii): Suppose n is odd.
As in Th. 2.6 case (i), for each edge f_{i} we get that
$\mathrm{n}_{1}{ }^{*}\left(\mathrm{f}_{\mathrm{i}} \mid\left(\mathrm{K}_{1} v \mathrm{C}_{\mathrm{n}}\right)\right)=\frac{(n-1)}{2}+1+1=\frac{(n+3)}{2}$
and
$\mathrm{n}_{2}{ }^{*}\left(\mathrm{f}_{\mathrm{i}} \mid\left(\mathrm{K}_{1} v \mathrm{C}_{\mathrm{n}}\right)\right)=\frac{(n-1)}{2}$
By (3.6.1), (3.6.4) and (3.6.5), we get
$\mathrm{Sz}^{*}\left(\mathrm{~K}_{1} \vee \mathrm{C}_{\mathrm{n}}\right)=\mathrm{n} . \mathrm{n}+\mathrm{n} \frac{(n+3)}{2} \frac{(n-1)}{2}=\frac{n}{4}\left(\mathrm{n}^{2}+6 \mathrm{n}-3\right)$.
Observation 3.7: In the other way of defining the modified index, we get that $\mathrm{n}_{1}{ }^{*}\left(\mathrm{e}_{\mathrm{i}} \mid\left(\mathrm{K}_{1} \mathrm{v} \mathrm{C}_{\mathrm{n}}\right)=(\mathrm{n}-2)\right.$ and $\mathrm{n}_{2}{ }^{*}\left(\mathrm{e}_{\mathrm{i}} \mid\left(\mathrm{K}_{1} v\right.\right.$ C_{n}) $=3$ and the other relations remain the same. So, the corresponding index is
$3 \mathrm{n}(\mathrm{n}-2)+\mathrm{n}\left(\frac{n}{2}+1\right)\left(\frac{n}{2}\right)$ when n is even and
$3 n(n-2)+n \frac{(n+3)}{2} \frac{(n-1)}{2}$ when n is odd.

ACKNOWLEDGEMENTS

We thank Dr. I.H. Nagaraja Rao, our Professor, for his guidance in the preparation of this paper.

REFERENCES

[1] Bondy J.A. and Murthy U.S.R., Graph Theory with Applications, North Holand, New York, 1976.
[2] Gutman, A formula for the Wienr number of trees and its extension to graphs containng cycles, Graph theory Notes, New York 27, 9-15 (1994).
[3] Klav Ž ar S., Rajapakse A. and Gutman I., The Szeged and the Wiener Index of Graphs, Appl. Math. Lett., 9, 45-49 (1996).
[4] Rao I.H.N. and Sarma K.V.S., The Wiener Number for a class of graphs, Varahamihir Jour. of Math. Sciences, 7(2), 2007.
[5] Weiner, H., Structural determination of Paraffin Boiling points, Jour. Amer. Chemi. Soc., 69, 17-20 (1947).

Source of support: Nil, Conflict of interest: None Declared

