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ABSTRACT

A recently introduced graph-invariant is ‘Szeged Index” and it has considerable applications in molecular chemistry.
In this paper, the Szeged indices of standard graphs are calculated. A modified Szeged index of a graph is also
introduced in which all the vertices of the graph are taken into consideration; thereby the variations in these indices of
standard graphs are identified.
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1. INTRODUCTION

An important concept of a molecular graph associated with alkanes or more generally of a simple, connected graph is
termed as the Wiener number (see [5]). A refined concept of this is coined as Szeged index (see [2]) & [3]). As in the
case of Wiener number, no standard formula is available to calculate the Szeged index of a connected graph. In 82, we
calculate the Szeged index of standard graphs and in 83, we introduce a modified Szeged index and observe the
variations in these indices for the standard graphs.

For the standard notation and results we refer Bondy & Murthy [1].

For ready reference, we give the following:

Definition: 1.1 [2]: G is a connected graph. Then the Wiener number W(G) of G is defined to be 1/2 Z d(u,v),
u,veV (G)

where V(G) is the vertex set of G and d(u, v) = dg (u, v) is the shortest distance between the vertices u,v of G.

Observations 1.2 [4]:

a) For the complete graph K, (n>2), W(K,) = n (n-1)/2.

b) For the path P, (n>2), W (P,) = n (n® - 1)/6.

c) For the cycle C, (n>3), W (C,) =n [n/2]".

d) For the star graph Ky, W(Ky,) =n(n > 1).

e) For the complete bipartite graph Ku, (M, 0> 1), W(Kp,) = (M? + mn+n?) — (m+n).

f)  For the wheel K; v Ci(n>3), W(K; v C)) = n (n-1).

Throughout this paper, we consider only non-empty, simple, finite and connected graph to avoid trivialities.

2. SZEGED INDEX OF STANDARD GRAPHS

For convenience, we recollect the following:

Definition 2.1 [3]: Let G be a graph (i.e., nonempty, simple, finite and connected graph). Let e = uv be any edge of G.
Denote

N; (e | G)={weV (G): d(w, u) <d(w, v) } (wis closer to u than v in G),

N, (e | G)={weV (G):d (w, v) < d(w, u)}(w is closer to v than to u in G);
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and ny(e | G)= | Ns(e | Q) | , Ny(e | G)= | Na(e | G). ( | | denotes the cardinality function).

The Szeged index of G, denoted by Sz(G) (in the earlier works denoted by W*(G)), is defined as

Z ni(e| G) . n, (e| G) (E (G) being the edge set of G).
¢<E(G)

Theorem 2.2: For the path P, (n > 2)

n(n®-1)

Sz (Py) = (=W (Py)).

Proof: Let n be any integer >2 and V(P,) = {v1, Vz, ..., Vn}.

Any edge of P, is of the form v;vi,4, i being any positive integer, <n-1. Now

Ni (Vi Vier | Pn) = {w € V(Py) : d(w, Vi) < d(W, Vis)} = {va, ..., Vi}

And

Ny (Vi Vier | Pn) = {w € V(Py) : d(W, Vis) < d(W, V)} = {Vist, ..., Vo}

=0y (ViVier | Pa) = | fvi, e Vi [ =ia0d 0o (Vi Viea | Pa) = | ey o, Vo | = e

This is true for all the (n-1) edges vivi.; of P,. So

< n-1 2 _
SZ(pn)ZZ nl(ViVi+1|Pn)-nZ(ViVi+1|Pn)=Z |(n—|)=¥
= i=1
n(n-1)
Theorem 2.3: Forn > 2, Sz(K,) = —2 (= W(K,)).

Proof: Let V(K;) = {v1, Vs, ..., Vo }. Let e = uv be any edge of K. Since
d(u, u) =d(v, v) =0, d(u, v) = 1 and

d(w, u) =d(w, v) =1 for w € V(K,)\ {u, v}, follows that

Ni(e=uv | Ky ={w € V(G): d(w, u) < d(w, v)} = {u} and

No( e =uv|Ky) = {w € V(G): dWw, v) < d(w, u)} = {v}.

So, ni(e | Kq) =Nz (e | Kn) = 1. Thisis true for all the edges e of K.

n(n-1
Since any two vertices in K, are adjacent (= K, has “02 = % edges) follows that
n(n-1)
S,(Ky) ==Y nelK,)n,(elK) = L1==2—
eeE(K,) eeE(K,)

Theorem 2.4: For any star Ky, (n being any positive integer),

Sz(Ky,) (= Sz(Kn1)) = 0% = (W(Ky) = W(K,1)).

Proof: Let n = 1. Ky, = K, and s0 Sz(Ky 1) = Sz(Ky) = %c, = 1%
Let n be any integer > 2 and V (Kyn) = {Uo,V1,V2,...,Vn}.
Now E(Kyn) ={ei=upvi: 1=1,2,...,n}.S0
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Ni(ei | Kin) = V(Ken){Vi} and No(e; | Kyn) = {vit
= ny(ei| Ky) = (0+1) - 1= nand ny(ei | Kin) = {vi}.

This is true for all the n edges e; of Ky . So

S(Ki)= D, mei|Ki).moei| K= Y n(@)=n’

geE(Kyp) geE(Kyp)
Since the graph K, is isomorphic to Ky, it follows that Sz(K, 1) = Sz(Ky,) = n’.
Theorem 2.5: For the complete bipartite graph, Knn(m,n >1), Sz(Km) = (mn)%
Proof: Case (i) m=n=1= K,,=K;; = K,.
Si(Ky1) = S,(Kp) = 1= (1.1)%
Case (ii): Let one of m,n is 1 and the other is > 2.
Without loss of generality, we can assume that m =1 and so n >2. Now
W (Kn) = W(Kyp) = n° = (Ln)?
Case (iii): Letm,n>2.
Since Kp,n is bipartite we can write V(K ) = V1 U V,where
Vi={ui:i=1,...m}and Vo= {v;:j=12,...,n}

and E(Kmn) ={eij = uiv;:1=12,...m, j=1.2,...,n}.

Since d(u;,u,) = 0 if i"=i
2 if i'=i
and
0 if j'=]
d(vi,vi)=9_ . J J
2 if J'# ]
follows that

Na(eij | Kmn) = {u} U (Vv and Na(eij | Kimp) = {vi} U (Vi{u})
= ny(eij | Kmn) =1+ (n-1) = n, ny(ei | Kip) = 1+ (M-1) = m.

This is true for all the mn edges e;; of Ky .

2
LSz = D0 ny(e ) Koo )onp(e) Koo )= Y nm=nm [E(K, )| = (mn)
ei,jEE(Km,n) ei‘jGE(Km‘n)
(observe that Sz, > W(Kp, ) where m, n > 2).
Theorem 2.6: For any integer n >2,

a) Sz(Cy)=2n=2n(n°) and
b) Sz(Car) = (20-1)(n-1)’

i.e. Sz(C\) = k [k/2]? for any integer k > 3,

Proof: Let n be any integer > 2.
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Case (l) Let V(CZn) = {Vl,Vz, . .,V2n}.
Any edge of C,, is of the form vjv;,; for i = 1, 2,..., 2n with the convention v;n.; = Vvy.
Now Ni(VaVa | C2n) = {V1,Va,... Van-(n2) = Vis2} @Nd Np(VaVa | Can) = {V2,V3, ... Viner)-

For2<i<n
Ni(Vivier | C2n) = {ViVist, - Vi Van, - Vaniny} @A Na(ViViiaa | Can) = {Vis, - Via -

Fori=n
N1(ViVaea | Can) = {Vi, Vis1s s Visn-)} @Nd No(Vivinia | Con) = {Vien, Visnsa, s Van, Vi1, oy Via}

Forn<i<2n,
N1(ViVier | Can) = {VisVit, oo Vinsr} and Np(Vivien | C2n) = {Vist,Viea, - Van Vi, oo Vin }-

For i =2n,
N1(V2nVi | Con) = {VanVand, -+ Vanro1) = Visad @nd No(VanVs | Can) = {V1,Va,... Vi }-

So follows that
nl(vivi+1 | an) =n= ng(ViVi+1 | an) fori=1, .., 2n.

2n 2n
Hence Sz (Can) = D M(Wiviu | Can). No(Vivies | C2n) =D () ()
i=1 i=1

2n
=2n°=2n(n%) =2n [(7)] 2
Case (ll) Let V(CZn—l) = {Vl, Vo, ..., V2n_1}
Any edge of C,,,4 is of the form vvi,, for i =1, 2, ..., 2n-1 with the convention vy, = v;.

Now
N1(V1Vs | Cant) = {V1,Vant, - Vann2) = Vie2} @0 No(VaVa | Cant) = {V2,V3,..., Vo).

For2<i<n-1
Ni(Vivier | Con-1) = {VisVitse Vi Vant, - Vane(oict) = Vasier} @00 No(ViVia | Con-1) = {Vist, - Viena}-

Fori=n-1
N1 (Vo-1Vn | Con-1) = {Vit, - Va3 @nd No(VaaVo | Cana) = {Viy Vi1, Viez, - Van2}-

Fori=n
N1 (VaVn+1 | Can-1) = {Vn, Voa,-..,Vo} and No(VpViss | Con1) = {Vn+1s Vis2s- ooy Vis(nr) = Vont}-

Forn+l <i<2n-1
N1(Viviet | Cant) = {Vi, Vit -+ Vot and No(Vivisr | Cana) = {Vist o, Vont, Va, wooy Vi

Finally, for i = 2n-1
N1(Van-aVi | Cana) = {Van-1, Vanzye« - Vanot) = Vier} @00 No(VonaVa | Cana) = {Va, Vo, Vit

So follows that
Nl(ViVi+1 | CZn—l) =n-1= Ng(ViVi+1 | CZn—l) fori=1,2, .., 2n-1.
. 2n-1 , 2n-1.
2. S2(Cana) = Y. (N-1)(n-1) = (@n-1)(n-1) = 11"
i=1
This proves the result.
Theorem 2.7: For the wheel Kyv C,, (n > 3),
n

Sz (KyvCy)=n(n-2 +[§]2).

Proof: Letn be any integer >3 and V(K v Cy)) = {Uo, V1, V2, ..., Vn}-
Now E(K; v Cp)={upvi:i=1, .., n}U { Vivis1 11 =1, ..., n} (with the convention Vp. = V).
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Denote e; = ugv; and f; = uvis (i=1,..., n}.
Now Nj(e; | Ki v Cy) = V(K v Cp) \ {Viy, Vi, Vies H(with the convention vy = v,)
and Na(ei | Ky v Cp) = {vi}.
S Nyei| KivC)=(n+1)-3=(n-2)and Ny(&;| Ky vCp)=1.

n n
So Y, mei| KivCy) .noei| Kive) =) (n-2.1=n(n-2) (i)

i=1 i=1
Further,
N (fi| KivCo)=Ni(fi|Co) (i=1,2) (ii)
(uo is ignored since d(uo, Vi1) =1 = d(uo, V).
(i), by virtue of Theorem (2.6) implies that
Zn: m(fi| KivCy).ny(fi| KivCy)=Sz(Co) = n[g]2 . (iii)
i=1
Now, from (i) and (iii) follows that Sz(K; v C,) = n(n-2) + n[g]2 =n{(n-2) + [g]2 }
(Observe that forn >4, S, (K; v C,) > W (K; v Cp)).
3. MODIFIED SZEGED INDEX OF STANDARD GRAPHS

In the calculation of Szeged Index of K,(n > 2), K; V C, (n > 3), the contribution of all the vertices of the connected
graph is not there. To avoid this, we propose the following modified index that involves all the vertices.

Definition 3.1: Let G be a graph (i.e., nonempty, simple, finite and connected graphs). Let e = {u, v} be any edge of G.
Denote

N;"(e| G) = {w € V(G) : d(w,u) <d(u,v), N,'(e| G) = {w € V(G) : d(w,v) < d(w,u);
and
n'e|G) = |Ni'e| G|,n(e| G) = |N(e| G) | .

The refined Szeged index of G, denoted by Sz'(G) is defined as,

> n'(el G).nz*(e | G)

ecE(G)
(Another way of defining this modified index is to keep < as it is in Ny(e | G) and changing < into <in Ny(e | Q)).
Observations 3.2:

a) For the path P, (n >2), Sz P, =Sz P,

b) For any star Ky, (n > 1), Sz(Ky,) = SZ° (Ky).

c) For the complete graph K, (m,n > 1), SZ (Kmy) = Sz(Kmp).

d) For any interger n > 2, Sz(Ca,) = Sz(Can).

n(n—1)>

Theorem 3.3: Forn>2, Sz'(K,) = 5

Proof: With the same notation as in Th.2.3,
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Ny'(e = uv | Ko) ={w € V(G): d(w, u) < d(w, v) ={V(G)\{v2) and N;'(e = uv | K,) ={w € V(G): d(w, V)< d(w,u)} = {v2}.
So nl*(e | K,) =(n-1) and ng*(e | Ky =1

This is true for all the edges e of K, Hence

_n(n-1)°
S2'(K,) = eEEZ(I;n)(n—l).l ==

Theorem 3.4: For n >2, Sz'(Czy.1) = n(n-1)(2n-1).

Proof: With the same notation as in Th.2.6, for any edge vivi.; (i = 1, 2,..., 2n-1) (with the convention v, = v;), we get
that

nl*(vivm | CZn—l) = (n-l) +1=nand ng*(ViVi+1 | CZn—l) =n-1
(the excluded single vertex, in each case, enters into the set N, () under consideration).
2n-1
80, Sz°(Cara) = Y, N(N=1) =n(n-1)(@n-1).
i=1
Observation 3.5: In the other way of defining the modified index, we get the same Sz"(K.), Sz"(Czn-1), since in these
2n-1

cases we get the sums Z 1.(n-1) and Z (n—1).nrespectively.

ecE(Kn) i=1

2
n“(n+6) . .
n(n+6) (if n is even),
Theorem 3.6:  For the wheel Kyv C, (n>3), Sz(K,; v C,) = 4

%(n2+6n—3) (if n is odd).

With the same notation as in Th.(2.7),

N (& | (Kav Cr)) = V(Kqv C){vi} and Ny (&; | (Kav Cy)) = {vi}-

So, ny (i | (Kqv Co)) . 0y (&1 | (Kav Cy)) = (n+1-1) (1) =n (3.6.1)
Case (i): Suppose niseven = n>4.

As in Th.2.6 (case (i)), for each edge f; (i = 1,...n) with the convention v,.; = vy, we get

(ni(fi)| Ca)+1=n/2+1 (3.6.2)
(Since ug is added in N; " ())

and
o (fi | (Kyv Cy)) = na(fi | Co) = n/2 (3.6.3)

By (3.6.1), (3.6.2) and (3.6.3)

, (N+6)

Sz (K vC)-nn(ﬂ+1)(ﬂ) =n
T 2 4

Case (ii): Suppose n is odd.

As in Th.2.6 case (i), for each edge f; we get that

n (fi | (Kyv Cy)) = @ +1+1= (+3) (3.6.4)
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and

(n-1)

o (f | (Kyv Cp)) = S (3.6.5)

By (3.6.1), (3.6.4) and (3.6.5), we get

(n+3) (n-1) _n

Sz' (K Cy)=nn+n — (n*+6n-3).
" 2 4

Observation 3.7: In the other way of defining the modified index, we get that n,"(e; | (Ksv C,)) = (n-2) and n,"(e; | (Kav
C,) = 3 and the other relations remain the same. So, the corresponding index is

3n (n-2) + n(g + 1)(%) when n is even and

(n+3) (n-1)
2

3n(n-2) +n when n is odd.
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