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ABSTRACT 
A recently introduced graph-invariant is ‘Szeged Index’ and it has considerable applications in molecular chemistry. 
In this paper, the Szeged indices of standard graphs are calculated. A modified Szeged index of a graph is also 
introduced in which all the vertices of the graph are taken into consideration; thereby the variations in these indices of 
standard graphs are identified. 
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1. INTRODUCTION 
 
An important concept of a molecular graph associated with alkanes or more generally of a simple, connected graph is 
termed as the Wiener number (see [5]). A refined concept of this is coined as Szeged index (see [2]) & [3]). As in the 
case of Wiener number, no standard formula is available to calculate the Szeged index of a connected graph.  In §2, we 
calculate the Szeged index of standard graphs and in §3, we introduce a modified Szeged index and observe the 
variations in these indices for the standard graphs. 
 
For the standard notation and results we refer Bondy & Murthy [1]. 
 
For ready reference, we give the following: 
 
Definition: 1.1 [2]: G is a connected graph. Then the Wiener number W(G) of G is defined to be 1/2

, ( )
( , )

u v V G
d u v

∈
∑ , 

where V(G) is the vertex set of G and d(u, v) = dG (u, v)  is the shortest distance between the vertices u,v of G. 
 
Observations 1.2 [4]:  
 
a) For the complete graph Kn (n≥ 2), W(Kn) = n (n-1)/2. 
b) For the path Pn (n≥ 2), W (Pn) = n (n2 – 1)/6. 
c) For the cycle Cn (n≥ 3), W (Cn) = n [n/2]2. 
d) For the star graph K1,n,  W(K1,n) = n2 (n ≥ 1). 
e) For the complete bipartite graph Km,n (m, n ≥ 1),  W(Km,n) = (m2 + mn+n2) – (m+n). 
f) For the wheel K1 v Cn(n≥ 3), W(K1 v Cn) = n (n-1).  

 
Throughout this paper, we consider only non-empty, simple, finite and connected graph to avoid trivialities. 

 
2. SZEGED INDEX OF STANDARD GRAPHS 
 
For convenience, we recollect the following: 
 
Definition 2.1 [3]:  Let G be a graph (i.e., nonempty, simple, finite and connected graph). Let e = uv be any edge of G. 
Denote 
 
N1 (e│G) = {w∈V (G): d(w, u) < d(w, v) } ( w is closer to u than v in G), 
 
N2 (e│G) = {w∈V (G): d (w, v) < d(w, u)}(w is closer to v than to u in G); 
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and n1(e│G) =│N1(e│G)│,  n2(e│G) = │N2(e│G). (││ denotes the cardinality function). 
 
The Szeged index of G, denoted by Sz(G) (in the earlier works denoted by W*(G)), is defined as 
 

( )e E G∈
∑ n1(e│G) . n2 (e│G) (E (G) being the edge set of G). 

 
Theorem 2.2: For the path Pn (n ≥ 2) 

Sz (Pn) = 
2( 1)
6

n n −
 (= W (Pn)). 

 
Proof:  Let n be any integer ≥ 2 and V(Pn) = {v1, v2, ..., vn}. 
 
Any edge of Pn is of the form vivi+1, i being any positive integer, ≤ n-1. Now  
 
N1 (vi vi+1│Pn )    = {w ∈V(Pn) : d(w, vi) < d(w, vi+1)} = {v1, ..., vi} 
 
And 
 
N2 (vi vi+1│Pn )    = {w ∈V(Pn) : d(w, vi+1) < d(w, vi)}  = {vi+1, ..., vn} 
 
⇒  n1 (vi vi+1│Pn )  = │{v1, ..., vi}│= i and  n2 (vi vi+1│Pn )    = │{ vi+1, ..., vn}│= n-i. 
 
This is true for all the (n-1) edges vivi+1 of Pn. So 

Sz(Pn) = 
1

1

n

i

−

=
∑ n1 (vi vi+1│Pn ) . n2 (vi vi+1│Pn )  =

1

1

n

i

−

=
∑ i (n – i) = 

2( 1)
6

n n −
. 

 

Theorem 2.3: For n ≥ 2, Sz(Kn) = 
( 1)

2
n n −

 (= W(Kn)). 

 
Proof: Let V(Kn) = {v1, v2, ..., vn}. Let e = uv be any edge of Kn. Since 
 
d(u, u) = d(v, v) = 0, d(u, v) = 1 and 
 
d(w, u) = d(w, v) = 1 for w ∈  V(Kn) \ {u, v}, follows that 
 
N1( e = uv│Kn) = {w ∈V(G): d(w, u) < d(w, v)} = {u} and 
 
N2( e = uv│Kn) = {w ∈V(G): d(w, v) < d(w, u)} = {v}.  
 
 
So, n1(e│Kn) = n2 (e│Kn) = 1.  This is true for all the edges e of Kn. 
 

Since any two vertices in Kn are adjacent (⇒Kn has 2
nc = 

( 1)
2

n n −
 edges) follows that 

( ) ( ) ( )z n 1 n 2 n
( ) ( )

( 1)S K   n e K . n e K  1.1
2

n ne E K e E K

n n
∈ ∈

−
= = = =∑ ∑│ │ . 

 
Theorem 2.4: For any star K1,n (n being any positive integer), 
 
Sz(K1,n) (= Sz(Kn,1)) = n2 = (W(K1,n) = W(Kn,1)). 
 
 
Proof: Let n = 1. K1,1 = K2 and so Sz(K1,1) = Sz(K2) = 2c2 = 12. 

 

Let n be any integer ≥ 2 and V (K1,n) = {u0,v1,v2,…,vn}. 
 
Now E(K1,n) = {ei = uovi : I = 1,2,…,n}.So 
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N1(ei│K1,n) = V(K1,n)\{vi} and N2(ei│K1,n) = {vi} 
 
⇒ n1(ei│K1,n) = (n+1) – 1 = n and n2(ei│Ki,n) = {vi}. 
 
This is true for all the n edges ei of K1,n.  So 
 
Sz(K1,n) = 

1,( )i ne E K∈
∑ n1(ei│K1,n) . n2(ei│K1,n) = 

1,( )i ne E K∈
∑ n(1) = n2 

 
Since the graph Kn,1 is isomorphic to K1,n it follows that Sz(Kn,1) = Sz(K1,n) = n2. 
 
Theorem 2.5: For the complete bipartite graph, Km,n(m,n ≥ 1), Sz(Km,n) = (mn)2. 
 
Proof: Case (i): m = n = 1⇒  Km,n = K1,1 = K2. 
 
Sz(K1,1) = Sz(K2) = 1 = (1.1)2. 
 
Case (ii): Let one of  m,n is 1 and the other is ≥ 2. 
 
Without loss of generality, we can assume that m = 1 and so n ≥ 2. Now 
 
W (Km,n) = W(K1,n) = n2 = (1.n)2 
 
Case (iii): Let m, n ≥ 2. 
 
Since Km,n is bipartite we can write V(Km,n) = V1∪V2 where  
 
V1 = {ui : i = 1,…,m} and V2 =   {vj : j = 1,2,…,n} 
 
and E(Km,n) ={ei,j = uivj : i = 1,2,….m, j = 1,2,…,n}.    
                                

Since 
0

( , )
2

i i
if i i

d u u
if i i

′

 ′ == 
′ ≠

       

and 

0
( , )

2
j j

if j j
d v v

if j j
′

 ′ == 
′ ≠

 

follows that 
 
N1(ei,j│Km,n) = {ui} ∪  (V2\{vj}) and N2(ei,j│Km,n) = {vj} ∪  (V1\{ui})  
 
⇒ n1(ei,j │Km,n) = 1 + (n-1) = n, n2(ei,j│Km,n) = 1 + (m-1) = m. 
 
This is true for all the mn edges ei,j of Km,n. 
 

∴ Sz(Km,n) = ( ) ( ) ( ) ( )
, , , ,

2
1 i, j m,n 2 i, j m,n m,n

( ) ( )
n e K . n e K  n.m  nm E K   mn

i j m n i j m ne E K e E K∈ ∈

= = =∑ ∑│ │ │ │  

(observe that Szm,n > W(Km,n) where m, n ≥ 2). 
 

Theorem 2.6: For any integer n ≥2, 
 
a) Sz(C2n) = 2 n3 = 2n(n2) and 
b) Sz(C2n-1) = (2n-1)(n-1)2 
 
i.e. Sz(Ck) = k [k/2]2 for any integer k ≥ 3. 
 
Proof: Let n be any integer ≥ 2. 
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Case (i): Let V(C2n) = {v1,v2,…,v2n}. 
 
Any edge of C2n is of the form vivi+1 for i = 1, 2,…, 2n with the convention v2n+1 = v1. 
 
Now N1(v1v2│C2n) = {v1,v2,…,v2n-(n-2) = vn+2} and N2(v1v2│C2n) = {v2,v3,…,vn+1). 
 
For 2 ≤ i< n 
N1(vivi+1 │C2n) = {vi,vi+1,…,v1,v2n,…,v2n-(n-i-1)} and  N2(vivi+1│C2n) = {vi+1,…,vi+1}. 
 
For i = n 
N1(vivn+1|C2n) = {vi, vi+1, …, vi+(n-1)} and N2(vivn+1|C2n) = {vi+n, vi+n+1, …, v2n, v1, …, vi-1} 
 
For n < i < 2n, 
N1(vivi+1│C2n) = {vi,vi-1,…,vi-n+1}  and  N2(vivi+1│C2n) = {vi+1,vi+2,…,v2n,v1,...,vi-n}. 
 
For i = 2n, 
N1(v2nv1│C2n) = {v2n,v2n-1,…,v2n-(n-1) = vn+1}  and  N2(v2nv1│C2n) = {v1,v2,…,vn}. 
 
So follows that 
n1(vivi+1│C2n) =  n  = n2(vivi+1│C2n) for i = 1, ..., 2n. 

Hence Sz (C2n) = 
2

1

n

i=
∑ n1(vivi+1│C2n). n2(vivi+1│C2n)  =

2

1

n

i=
∑ (n) (n)  

                                           = 2n3 = 2n (n2) = 2n [(
2
2
n

)] 2. 

Case (ii). Let V(C2n-1) = {v1, v2, ..., v2n-1} 
 
Any edge of C2n-1 is of the form vivi+1, for i = 1, 2, ..., 2n-1 with the convention v2n = v1. 
 
Now 
N1(v1v2│C2n-1) = {v1,v2n-1,…,v2n-(n-2) = vn+2} and N2(v1v2│C2n-1) = {v2,v3,…,vn}. 
 
For 2 ≤ i < n-1 
N1(vivi+1 │C2n-1) = {vi,vi-1,…,v1,v2n-1,…,v2n-(n-i-1) = vn+i+1} and N2(vivi+1│C2n-1) = {vi+1,…,vi+n-1}. 
 
For i = n-1 
N1(vn-1vn│C2n-1) = {vn-1,…,v1} and N2(vn-1vn│C2n-1) = {vn, vn+1, vn+2,…,v2n-2}. 
 
For i = n 
N1(vnvn+1│C2n-1) = {vn, vn-1,…,v2} and N2(vnvn+1│C2n-1) = {vn+1, vn+2,…, vn+(n-1) =  v2n-1}. 
 
For n+1 ≤ i ≤ 2n-1 
N1(vivi+1│C2n-1) = {vi, vi-1,…,vi-(n-2)} and N2(vivi+1│C2n-1) = {vi+1,…, v2n-1, v2, ..., vi-n}. 
 
Finally, for i = 2n-1 
N1(v2n-1v1│C2n-1) = {v2n-1, v2n-2,…,v2n-(n-1) = vn+1} and N2(v2n-1v1│C2n-1)  = {v1, v2,…, vn-1}. 
 
So follows that 
 
N1(vivi+1│C2n-1) = n – 1 = N2(vivi+1│C2n-1) for i = 1, 2, ..., 2n-1. 

∴ Sz (C2n-1) = 
2 1

1

n

i

−

=
∑ (n-1)(n-1)  = (2n-1)(n-1)2 = (2n-1)(

2 1[ ]
2

n −
)2. 

This proves the result. 
 
Theorem 2.7: For the wheel K1v Cn (n ≥ 3), 

Sz (K1 v Cn) = n (n-2 +[
2
n

]2). 

Proof:  Let n be any integer ≥ 3 and V(K1 v Cn) = {u0, v1, v2, ..., vn}. 
 
Now E(K1 v Cn) = {u0vi : i = 1, ..., n}



{ vivi+1 : i = 1, ..., n} (with the convention vn+1 = v1). 



K. V. S. Sarma* & I. V. N. Uma**/ On Szeged index of standard graphs/ IJMA- 3(8), August-2012. 

© 2012, IJMA. All Rights Reserved                                                                                                                                                                   3133 

 
Denote ei = u0vi and fi = uivi+1 (i=1,..., n}. 
 
Now N1(ei│ K1 v Cn) = V(K1 v Cn) \ {vi-1, vi, vi+1}(with the convention v0 = vn)  
 
and N2(ei│ K1 v Cn) = {vi}. 
 
∴ N1(ei│ K1 v Cn) = (n+1) – 3 = (n – 2) and N2(ei│ K1 v Cn) = 1. 
 

So 
1

n

i=
∑ n1(ei│ K1 v Cn) . n2(ei│ K1 v Cn)  = 

1

n

i=
∑  (n-2).1 = n(n – 2)  (i) 

 
Further, 
 
Nj (fi│ K1 v Cn) = Nj(fi│Cn) (j = 1, 2)                                (ii) 
 
(u0  is ignored since d(u0, vi-1) = 1 = d(u0, vi)). 
 
(ii), by virtue of Theorem (2.6) implies that 

1

n

i=
∑ n1(fi│ K1 v Cn) . n2(fi│K1 v Cn) = Sz(Cn) = n[

2
n

]2 .                         (iii)
 

Now, from (i) and (iii) follows that Sz(K1 v Cn)  =  n(n-2) + n[
2
n

]2    = n{(n-2) + [
2
n

]2 }. 

(Observe that for n ≥ 4, Sz (K1 v Cn) > W (K1 v Cn)). 
 
3. MODIFIED SZEGED INDEX OF STANDARD GRAPHS 
 
In the calculation of Szeged Index of Kn(n ≥ 2), K1 V Cn (n ≥ 3), the contribution of all the vertices of the connected 
graph is not there. To avoid this, we propose the following modified index that involves all the vertices. 
 
Definition 3.1: Let G be a graph (i.e., nonempty, simple, finite and connected graphs). Let e = {u, v} be any edge of G. 
Denote 
 
N1

*(e│G) = {w ∈  V(G) : d(w,u) ≤ d(u,v),  N2
*(e│G) = {w ∈  V(G) : d(w,v) < d(w,u); 

 
and 
 
n1

*(e│G) = │N1
*(e│G│, n2

*(e│G) = │N2
*(e│G)│. 

 
The refined Szeged index of G, denoted by Sz*(G) is defined as, 
 

( ) ( )* *
1 2

( )
n e G .n e G

e E G∈
∑ │ │  

 
(Another way of defining this modified index is to keep < as it is in N1(e│G) and changing < into ≤ in N2(e│G)). 
 
Observations 3.2:  
 
a) For the path Pn (n ≥ 2), Sz* Pn = Sz Pn. 
 
b)  For any star K1,n (n ≥ 1), Sz(K1,n) = Sz* (K1,n). 
 
c) For the complete graph Km,n (m,n ≥  1), Sz*(Km,n) = Sz(Km,n). 

 
d) For any interger  n ≥ 2, Sz*(C2n) = Sz(C2n).  
 

Theorem 3.3: For n≥ 2, Sz*(Kn) =
2( 1)

2
n n −

. 

 
Proof: With the same notation as in Th.2.3, 
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N1

*(e = uv│Kn) ={w∈V(G): d(w, u) ≤ d(w, v) ={V(G)\{v2) and N2
*(e = uv│Kn) ={w∈V(G): d(w, v)≤ d(w,u)} = {v2}. 

 
So n1

*(e│Kn) = (n-1) and   n2
*(e│Kn) = 1. 

 
This is true for all the edges e of Kn. Hence    

Sz*(Kn) = 
( )

( 1).1
e E Kn

n
∈

−∑
 
 = 

2( 1)
2

n n −
. 

 
Theorem 3.4: For n ≥ 2, Sz*(C2n-1) = n(n-1)(2n-1). 
 
Proof: With the same notation as in Th.2.6, for any edge vivi+1 (i = 1, 2,..., 2n-1) (with the convention v2n = v1), we get 
that 
 
n1

*(vivi+1│C2n-1) = (n-1) + 1 = n and  n2
*(vivi+1│C2n-1) = n-1 

 
(the excluded single vertex, in each case, enters into the set N1

*( ) under consideration). 
 

So, Sz*( C2n-1) = 
2 1

1
( 1)

n

i
n n

−

=

−∑   = n(n-1)(2n-1). 

 
Observation 3.5: In the other way of defining the modified index, we get the same Sz*(Kn), Sz*(C2n-1), since in these 

cases we get the sums 
( )

1.( 1)
e E Kn

n
∈

−∑  and 
2 1

1
( 1).

n

i
n n

−

=

−∑ respectively. 

Theorem 3.6: For the wheel K1v Cn (n≥3), 

2

1
2

( 6) ( ),
4( )

( 6 3) ( ).
4

n

n n if n is even
Sz K C

n n n if n is odd

 +
∨ = 
 + −

  

                            
With the same notation as in Th.(2.7), 
 
N1

*(ei│(K1v Cn)) = V(K1v Cn)\{vi} and N2
*(ei│(K1v Cn)) = {vi}. 

 
So, n1

*(ei│(K1v Cn)) . n2
*(ei│(K1v Cn))  = (n+1-1) (1) = n                                                                                         (3.6.1) 

 
Case (i): Suppose n is even ⇒  n ≥ 4. 
 
 As in Th.2.6 (case (i)), for each edge fi (i = 1,...n) with the convention vn+1 = v1, we get 
 
(n1(fi)| Cn)+1 = n/2 + 1                                                                                                                                                 (3.6.2) 

 
(Since u0 is added in N1

* ( )) 
 
and  
n2

*(fi│ (K1ν Cn)) = n2(fi│Cn) = n/2                                                                                                   (3.6.3) 
 
By (3.6.1), (3.6.2) and (3.6.3) 
 

Sz* (K1 v Cn) = n.n (
2
n

 + 1) (
2
n

)    = n2 
( 6)

4
n +

. 

 
Case (ii): Suppose n is odd. 
 
As in Th.2.6 case (i), for each edge fi we get that 
 

n1
*(fi│(K1 v Cn)) = 

( 1)
2

n −
 + 1 + 1 = 

( 3)
2

n +
                                                                                                         (3.6.4) 
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and 

n2
*(fi│(K1ν Cn)) = 

( 1)
2

n −
            ...                                                                                                (3.6.5) 

 
By (3.6.1), (3.6.4) and (3.6.5), we get 
 

Sz* (K1v Cn) = n.n + n
( 3)

2
n +

 
( 1)

2
n −

 = 
4
n

 (n2 + 6n – 3). 

 
Observation 3.7: In the other way of defining the modified index, we get that n1

*(ei│(K1v Cn) = (n-2) and n2
*(ei│(K1ν 

Cn) = 3 and the other relations remain the same. So, the corresponding index is  
 

3n (n-2) + n(
2
n

 + 1)(
2
n

) when n is even and  

3n (n-2) + n
( 3)

2
n +

 
( 1)

2
n −

 when n is odd. 
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