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ABSTRACT 

In this paper, we introduce (1, 2) ∗−ψ
^
g -closed functions from a bitopological space X to a bitopological 

space Y as the image of every τ1,2-closed set is (1, 2)∗−ψ
^
g closed.  Also we discuss about Almost  

(1, 2)∗ −ψ
^
g -closed functions. Properties, characterizations and applications are studied. 
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^
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^
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^
g -closed function (1, 2)∗− ψ

^
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Almost (1, 2)∗ − ψ
^
g -closed function. 

 
 
1. Preliminaries 
 
Levine [8] introduced t h e  concepts of generalized closed sets in topological spaces and  studied  their  
properties. Levine [8], Mashhour et al.[10] and Najas- tad[11] have introduced the concepts of semi-open 
sets, preopen sets and α-open sets  respectively. Bhattacharya and  Lahiri[5], Arya  and  Nour[4], Maki et 
al[9] introduced  semi-generalized  closed sets, generalized  semi-closed  sets  and  α- generalized sets, 

Veerakumar[16] defined 
^
g -closed sets in topological spaces. Thivagar  et.al[11]have introduced the concepts 

of (1, 2)∗-semi open sets,(1, 2)∗− α-open sets,(1, 2)∗-generalized closed sets,(1, 2)∗-semi generalized closed 

sets and (1, 2)∗−α-generalized  closed sets. In this paper, a new class of function called (1, 2)∗− ψ
^
g -closed 

functions, Almost (1, 2)∗ − ψ
^
g -closed functions have been introduced and studied their various results. We prove that the 

composition of two (1, 2)∗ − ψ
^
g -closed functions need not be (1, 2)∗ − ψ

^
g -closed function. Also we obtain some 

important results in bitopological settings. 
 
Throughout the present paper (X, τ1 , τ2 ), (Y, σ1, σ2), (Z, η1, η2) briefly  X, Y, Z be bitopological space.. 
 
Definition 1.1: A subset S of a bitopological spacee (X, τ1, τ2) is said to be τ1,2 -open if S = A∪B where A∈ τ1 
and B ∈ τ2 . A subset S of X is said to be 
 
[1] τ1,2 

closed if the complement of S is τ1,2 –open. 
[2] τ1,2 -clopen if  S is both τ1,2-open and τ1,2 -closed. 
 
Definition 1.2: Let S be a subset of the bitopological space (X, τ1, τ2). Then 
[1] The τ1,2 –interior of S, denoted by τ1,2-int(S) is defined by ∪ G:G  ⊆ S and G is τ1,2 –open. 
[2] The τ1,2 –closure of s, denoted by τ1,2 –cl(s) is defined by ∩ F:S ⊆ F and F is τ1,2 –closed. 
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Definition 1.3:  A subset A of a bitopological space (X, τ1, τ2) is called 
[1] (1, 2)∗-regular open if A = τ1,2 -int(τ1,2 − cl(A)). 

[2]  (1, 2)∗ − α-open if A ⊆ τ1,2-int(τ1,2  − cl(τ1,2  − int(A))). 

[3] (1, 2)∗- generalized closed (briefly (1. 2)*- g-closed) if τ1,2 − cl(A) ⊆ U whenever A ⊆ U and U is τ1,2 -open in 
X. 
 
The complement of the sets mentioned from (i) and (ii) are called their respective closed sets and the complement 
of the sets mentioned above (iii) is called the respective open set.. 
 
Definition 1.4:  The finite union of (1, 2)∗-regular open sets is said to be τ1,2  − ψ - open. The complement of τ1,2  − ψ - 
open is said to be τ1,2  − ψ -closed.  
 
Definition 1.5:  A subset A of a bitopological space(X, τ1, τ2) is called          

[1] (1, 2)∗-g- closed  if f(U) is (1, 2)∗-g-closed set in Y for every τ1,2 -closed set U in X. 

[2] (1, 2)∗ − ψ-closed if (1, 2)∗ − ψcl(A) ⊆ U whenever A ⊆ U and U is (1, 2)∗- sg-open in X. 
[3] (1, 2)∗  − ψ -generalized closed ((1, 2)∗ψ-g-closed) if (1, 2)∗− ψcl(A) ⊆ A whenever A ⊆ U and U is 
τ1,2-open  in X. 

[4] (1, 2)∗  − 
^
g -closed set if (1, 2)∗  − cl(A) ⊆ A whenever A ⊆ U and U is(1, 2)∗-semi-open  in X. 

[5](1, 2)∗− ψ
^
g -closed if  (1, 2)∗ − ψcl(A) ⊆ U whenever A ⊆ U and U is (1, 2)∗ − 

^
g -open in X.  

 
Definition 1.6: A function f : X → Y  is called 
[1] (1, 2)∗- continuous if  f  - 1 (V ) is (1, 2)∗ - closed in X for every σ1,2 –closed set V in Y. 

[2]  (1, 2)∗  − ψ -continuous if  f  - 1 (V ) is (1, 2)∗  − ψ -closed in X for every σ1,2-closed V in Y. 

[3] (1, 2)∗  − ψ g-continuous if  f  - 1 (V ) is (1, 2)∗ −ψ g-closed in X for every σ1,2-closed V in Y. 

[4]  (1, 2)∗  − ψ
^
g - continuous if  f  - 1 (V ) is (1, 2)∗ −

^
g -closed in X for every  σ1,2-closed V in Y. 

[5]  (1, 2)∗  − ψ
^
g -continuous if  f  - 1 (V ) is (1, 2)∗−ψ

^
g -closed in X for every  σ1,2-closed V in Y. 

[6]  (1, 2)∗ − ψ
^
g -irresolute if  f  - 1 (V ) is (1, 2)∗− ψ

^
g -closed in X, for every (1, 2)∗−ψ

^
g -closed set V of Y. 

[7]  (1, 2)∗  − ψ
^
g -continuous if  f  - 1 (V ) is (1, 2)∗ −ψ

^
g -closed in X for every σ1,2-closed. 

 

Definition 1.7:   A space (X, τ1 , τ2) is called (1, 2)∗ − ψ
^
g -T1/2-space if every (1, 2)∗− ψ

^
g -closed set is (1, 2)∗ − 

ψ -closed. 

Definition 1.8:  A function f : X → Y is said to be M −(1, 2)∗ −ψ
^
g -closed function if the image f(A) is (1, 2)∗− 

ψ
^
g -closed  in Y for every (1, 2)∗ − ψ

^
g -closed set A in X. 

The complement of the M − (1, 2)∗ −ψ
^
g -closed function is said to be M − (1, 2)∗ −ψ

^
g -open function. 

 
Definition 1.9:  A  space (X, τ ) is called  α-normal, if for every pair of disjoint  closed subsets H,K there exist disjoint 
α-open sets U,V suchthat H⊂α int U, K⊂ αintV and αintU ∩ αintV=φ. 
 
Definition 1.10:  A function f: (X, τ1, τ2) → (Y, σ1, σ2) is said to be  almost continuous if  f  - 1 (V ) is closed in X for 
every regular closed in Y. 
 

Definition 1.11:  A function f: (X, τ1, τ2) → (Y, σ1, σ2) is said to be almostψ
^
g -continuous if f  - 1 (V) is ψ

^
g -

closed in X for every regular closed in Y. 
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2. (1, 2) ∗ − ψ
^
g - CLOSED FUNCTIONS 

 

Definition 2.1:  A function f : (X, τ1 , τ2) → (Y, σ1 , σ2) is said to be (1, 2)∗ −ψ
^
g -closed if for every τ1,2  -closed F of 

X, f(F) is (1, 2)∗ − ψ
^
g -closed in Y. 

Theorem 2.2:   Every τ1,2  -closed function is (1, 2)∗  ψ
^
g -closed. 

 

Proof: Since every τ1,2  -closed set  is (1, 2)∗ − ψ
^
g - closed. We get the result. 

 
The converse need not be true as seen from the following example. 
 
Example 2.3: Let X={a, b, c},τ1 ={φ, X, {a},{b},{a,b}}, τ2 ={φ, X, {b},{a,b}},σ1 ={φ, X, {a},{a,c}}, σ2 ={φ,X, 

{a,b}}   f: (X, τ1 , τ2) → (Y, σ1 , σ2) b e  t h e  i d e n t i t y  function then f is (1, 2)∗  − ψ
^
g - closed but not τ1,2 -

closed function, not (1, 2)∗- 
^
g - closed function. 

Proposition 2.4:  If a function ping f: (X, τ1 , τ2) → (Y, σ1 , σ2) is (1, 2)∗  − ψ
^
g - closed then for every subset 

A of X,(1, 2)∗ − ψ
^
g - cl(f (A)) ⊂ f (σ1,2 − cl(A)).  

 

Proof: Let A⊂X .  Since f is (1,2)*− ψ
^
g -closed f (σ1,2 − cl(A)) is (1, 2)∗ − ψ

^
g - closed in Y. Now f  (A) ⊂ f (σ1,2 

−cl(A)).Also f (A) ⊂ (1, 2)∗ −ψ
^
g -cl(f (A)). By definition, we have (1, 2)∗ − ψ

^
g - cl(f (A)) ⊂ f (σ1,2 − cl(A)). 

 
Converse need not be trure as seen in the following example. 
 
Example 2.5: Let X={a, b, c, d},τ1={φ, X, {b, c, d}}, τ2 ={φ, X},σ1={φ, X, {b}}, σ2 ={φ, X,{a}, {a, b}}, f: (X, τ1 , 

τ2) → (Y, σ1 , σ2)  be the idemtity function. For every subset A of X ,(1, 2)∗−
 
ψ

^
g -cl(f (A)) ⊂ f (σ1,2 −cl(A)), but f is 

not  (1, 2)∗−
 
ψ

^
g -closed function  

 
Proposition 2.6: If for every subset A of X,τ1,2 − cl(τ1,2 − int(τ1,2 − cl(A))) ⊂ f (σ1,2  − cl(A)) then a function f: (X, τ1 

, τ2) → (Y, σ1 , σ2) is (1, 2)∗  − ψ
^
g -closed. 

 
Proof: Let A be closed in X. Since τ1,2  − cl(τ1,2  − int(τ1,2  − cl(A))) ⊂ f  (σ1,2  − 

cl(A)) ⊂ f (A).f(A)is (1, 2)∗ − ψ  closed and hence (1, 2)∗  − ψ
^
g - closed . 

 
Converse of the above need  not be true as seen in the following example. 
 
Example 2.7: Let X={a, b, c},τ1 ={φ, X,{a}},τ2={φ, X, {a, c}}, σ1 ={φ, X, {b}}, σ2 ={φ, X }, f:(X, τ1, τ2 ) → (Y, 

σ1, σ2 ) be the identity function then f is (1, 2)∗ −ψ
^
g -closed function, but τ1,2 − cl(τ1,2 − int(τ1,2 − cl(A))) ⊂ f (σ1,2 − 

cl(A)) is not true. 
 

Proposition 2.7:  If a function f: (X, τ1 , τ2) → (Y, σ1 , σ2) is (1, 2)∗−ψ
^
g -closed and Y is (1, 2)∗−ψ

^
g -T1/2  

space then τ1,2 − cl(τ1,2 − int(τ1,2 − cl(A))) ⊂ f (σ1,2  − cl(A)). 
 

Proof: Let A⊂  X .Then τ1,2  − cl(A) is closed in X. Since f is (1, 2)∗   − ψ
^
g -closed, f (σ1,2 − cl(A)) is (1, 2)∗ − 
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ψ
^
g - closed in Y and so (1, 2)∗ − αcl(f (τ1,2 −cl(A))) ⊂ f (σ1,2 −cl(A)).Hence τ1,2 −cl(τ1,2 − int(τ1,2 −cl(A))) ⊂ τ1,2 

−cl(τ1,2 −int(τ1,2  − cl(f (τ1,2  − cl(A)))) ⊂ f (σ1,2  − cl(A)) . 
 

Theorem 2.8:  A surjection f: (X, τ1 , τ2) → (Y, σ1 , σ2is (1, 2)∗ − ψ
^
g - closed iff for each subset S of Y and each τ1,2-

open set U containing f
- 1

 (S) there exist a (1, 2)∗  − ψ
^
g -open set V of Y such that S ⊂ V  and f

- 1
 (V ) ⊂ U .  

 
Proof: 

Necessity: Suppose  that f is (1, 2)∗  −ψ
^
g -closed. Let S be a subset of Y and Y be an τ1,2-open subset of X containing f

- 1
 

(S).If V=Y-f(X-U),then V is a (1, 2)∗  − ψ
^
g - open set of Y, suchthat  S ⊂ V  and f

- 1
(V ) ⊂ U . 

 
Sufficiency: Let F be any τ1,2 -closed set of X. Then f - 1  (Y  − f (F )) ⊂ X – F and X-F is τ1,2 -open in X. There exists 

 (1, 2)∗ − ψ
^
g - open set V of Y such that Y − f (F ) ⊂ V  and f - 1 (V ) ⊂ X − F .Therefore, Y  − V  ⊂ f  (F ) ⊂ f  (X 

−(1, 2)∗ − ψ
^
g -closed functions f - 1

 (V )) ⊂ Y − V .Hence we obtain f  (F ) = Y − V  and f(F) is (1, 2)∗ − ψ
^
g -

closed in Y which shows that f is (1, 2)∗  − ψ
^
g -closed. 

 

Theorem 2.9:  If f: (X, τ1 , τ2) → (Y, σ1 , σ2) is (1, 2)∗  − ψ
^
g - closed and A is  τ1,2 -closed subset of X then f |A : (A) 

→ (Y ) is (1, 2)∗  − ψ
^
g - closed. 

 

Proof: Let B⊂A  be τ1,2 -closed in A. Then B is τ1,2 -closed in X. Since f is (1, 2)∗ − ψ
^
g - closed, f(B) is (1, 2)∗ − 

ψ
^
g - closed in Y.But f (B) = (f |A)(B). So  f |A is (1, 2)∗ − ψ

^
g - closed. 

 

Remark 2.10:  Composition of two (1, 2)∗  − ψ
^
g - closed functions need not be  (1, 2)∗ − ψ

^
g - closed function. 

 
Example 2.11:  Let X=Y=Z={a, b, c},τ1={φ, X, {b, c}},τ2 ={φ, X, {a}}, σ1 ={φ, X, {a}}, σ2 ={φ, X},  η1 ={φ, X, 
{b}}, η2={φ,X,{a},{a, b}},  f: (X, τ1 , τ2) → (Y, σ1 , σ2)  and g : (Y, σ1 , σ2 ) → (Z, η1, η2) be the identity  functions then f 

and g are (1, 2)∗ −ψ
^
g -closed functions, but gof  : (X, τ1, τ2 ) → (Z, η1, η2) is not (1, 2)∗ − ψ

^
g -closed function. 

 

Proposition 2.12: If f: (X, τ1 , τ2) → (Y, σ1 , σ2)is τ1,2 -closed and g : (Y, σ1 , σ2 ) → (Z, η1, η2) be the (1, 2)∗ − 

ψ
^
g - closed then gof  : (X, τ1, τ2 ) → (Z, η1, η2) is (1, 2)∗  − ψ

^
g -closed. 

 

Proof:   Let A  be  τ1,2 -closed in X then f  (A) is σ1,2 -closed in Y. Since  g is (1, 2)∗ − ψ
^
g -closed, g(f (A)) is(1, 2)∗ 

− ψ
^
g -closed in Z. Hence gof  is (1, 2)∗−ψ

^
g -closed. 

 
Theorem 2.13: Let f: (X, τ1 , τ2) → (Y, σ1 , σ2) and g  : (Y, σ1 , σ2 ) → (Z, η1, η2) be two functionpings and let gof  : 

(X, τ1, τ2 ) → (Z, η1, η2)) be (1, 2)∗  − ψ
^
g -closed. Then 

[1] If f is (1, 2)∗-continuous and surjection then g is (1, 2)∗  − ψ
^
g -closed. 

[2] If g is (1, 2)∗ − ψ
^
g -irresolute and injective then f is (1, 2)∗ − ψ

^
g -closed.  
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Proof:  

 (i) Let A be σ1,2 -closed in Y. Since f is (1, 2)∗-continuous, f -1 (A) is τ1,2 -closed in X. Since gof is (1, 2)∗ − ψ
^
g -closed.gof 

(f-1(A)) = g(f (f-1(A))) =g(A) is (1, 2)∗  − ψ
^
g -closed. 

ii) Let A be τ1,2 -closed in X. Since gof is (1, 2)∗−ψ
^
g -closed, (gof )(A) is (1, 2)∗−ψ

^
g -closed in Z. Since g is (1, 2)∗ − 

ψ
^
g -continuous,g-1((gof )(A)) = f (A) is (1, 2)∗ − ψ

^
g -closed in Y. Hence f is (1, 2)∗  − ψ

^
g -closed. 

 
Proposition 2.14: For any bijection f: (X, τ1, τ2) → (Y, σ1, σ2) the following statements are equivalent. 

[1] f is a (1, 2)∗ − ψ
^
g -open function. 

[2] f is a (1, 2)* − ψ
^
g -closed function. 

[3] f-1: (X, τ1 , τ2) → (Y, σ1 , σ2) is (1, 2)*  − ψ
^
g -continuous. 

 

Proof: (i) ⇒ (ii)Let f be a  (1, 2)∗ −ψ
^
g -open function. Let U be τ1,2 -closed in X. Then X-U is τ1,2 -open in X. By 

assumption,f (X − U ) is a  (1, 2)∗ − ψ
^
g -open function and it implies Y-f(U) is (1, 2)∗ − ψ

^
g -open  function and hence 

f(U) is (1, 2)∗ − ψ
^
g -closed. 

(ii) ⇒ (iii) Let V be τ1,2 -closed in X. By (ii) f (V) = (f-1)-1(V) is  (1, 2)∗  − ψ
^
g -closed in Y. 

(iii) ⇒ (i) Let V be τ1,2 -open in X. By (iii) (f-1)-1(V) = f (V ) is  (1, 2)∗  − ψ
^
g -open in Y. 

 

Definition 2.15: A function  (X, τ1 , τ2) → (Y, σ1 , σ2) is said to be M − (1, 2)∗ −ψ
^
g -closed function if the image f(A) 

is  (1, 2)∗ − ψ
^
g -closed in Y for every  (1, 2)∗ − ψ

^
g - closed set A in X. 

 

Remark 2.16:  Every M −  (1, 2)∗  − ψ
^
g -closed function is  (1, 2)∗ − ψ

^
g -closed function, but the converse 

need not be true as seen in the following example. 
 
Example 2.17:  Let X= {a, b, c} τ1 = {φ, X, {a}}, τ2 ={φ, X},σ1={φ, X,{b}}, σ2 = {φ, X, {a}, {a, b}}. f: (X, 

τ1 , τ2) → (Y, σ1 , σ2) be the identity function then f is  (1, 2)∗ − ψ
^
g -closed function, but not M −  (1, 2)∗ − ψ

^
g -

closed function 
 

Definition 2.18:   A function f: (X, τ1 , τ2) → (Y, σ1 , σ2) is called  (1, 2)∗  − 
^
g - Continuous  if f  (V) is τ1,2  − 

^
g -

closed in X for every σ1,2-closed set V in Y. 

Theorem 2.19:  If f: (X, τ1 , τ2) → (Y, σ1 , σ2) is a (1, 2)∗  − 
^
g -continuous and M − (1, 2)∗ − ψ

^
g -closed 

function in X then f(A) is (1, 2)∗ − ψ
^
g -closed in Y for every (1, 2)∗ − ψ

^
g -closed set A of X. 

 

Proof:   Let A be any (1, 2)∗ − ψ
^
g -closed set of X and V be any σ1,2 − 

^
g -open set of Y containing f(A).Since f is  

(1, 2)∗  − 
^
g -continuous, f-1 (V ) is τ1,2  − 

^
g  

open in X and A ⊂ f −1(V ). Therefore  (1, 2)∗  − ψ cl(A) ⊂ f 
-1

(V ) and 

hence f (1, 2)∗ − ψ cl(A)) ⊂ V .Since f is M − (1, 2)∗ − ψ
^
g -closed, (1, 2)∗ − ψ cl(A)) is(1, 2)∗ − ψ

^
g -closed in Y ans 

hence we obtain (1, 2)∗ − ψ cl(f (A)) ⊂ (1, 2)∗ −ψ cl(f ((1, 2)∗ − ψ cl(A))) ⊂ V .Hence f(A) is (1, 2)∗ − ψ
^
g -closed 

in Y. 
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Proposition 2.20:  For any bijection f: (X, τ1 , τ2) → (Y, σ1, σ2) the following statements are equivalent. 

[1] f-1: (X, τ1 , τ2) → (Y, σ1 , σ2) is a (1, 2)∗  − ψ
^
g -irresolute.  

[2] f is   a M − (1, 2)∗ − ψ
^
g -open function. 

[3] f is a M −(1, 2)∗ − ψ
^
g -closed function. 

 

Proof:  (i) ⇒ (ii)Let U be a (1, 2)∗ − ψ
^
g -open in X. By (i) (f 

-1)-1
 (U ) = f (U ) is (1, 2)∗ − ψ

^
g -open in Y. Hence (ii) 

holds. 
(ii) ⇒ (iii) Let V be (1, 2)∗  − ψ

^
g -closed in X. By (ii) f (X − V = Y − f (V ) is (1, 2)∗ − ψ

^
g -open in Y. That is 

f(V) is (1, 2)∗ − ψ
^
g -closed in Y and so f is a M − (1, 2)∗ − ψ

^
g -closed function. 

(iii) ⇒ (i)  Let V be (1, 2)∗   − ψ
^
g -closed in X. By (iii) f (V) = (f -1)-1(V ) is (1, 2)∗− ψ

^
g -closed n Y. Hence (i) 

holds. 
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