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ABSTRACT 
In this paper we introduce and investigate the concept of strongly g-closed set and strongly g**-closed set. 
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1. INTRODUCTION 
 
N. Levine [2] introduced generalized closed sets in 1970, M.K.R.S. Veera Kumar [7] introduced the genralised g*- 
closed sets in 2000. R. Parimelazhagan and V. Subramania Pillai[5] introduced the strongly g*-closed set in 2012. In 
this paper we introduce and study the concept of strongly g-closed sets and strongly g**-closed sets. 
 
2. PRELIMINARIES 
 
Throughout this paper (X, τ) represents non-empty topological space on which no separation axioms are assumed 
unless otherwise mentioned. For a subset A of a space (X, τ), cl(A), int(A) and C((X, τ)) denote the closure of A, 
interior of A and the closed sets of (X, τ) respectively.  
 
Let us recall the following definitions, which are useful in this sequel. 
 
Definition 2.1: A subset A of a space(X, τ) is called a 
1. semi-open set [1] if A ⊆  cl(int(A)) and a semi-closed set if int(cl(A)) ⊆  A. 
2. regular-open set [1] if A = int(cl(A)) and a regular-closed set if  int(cl(A)) = A 
3. pre-open set [3] if A ⊆  int(cl(A)) and pre-closed set if cl(int(A) ⊆  A. 
 
Definition 2.2: A subset A of a space(X, τ) is called a 
1. regular generalized closed (briefly rg-closed) set [4] if cl(A) ⊆ U whenever A ⊆ U and U is regular open in (X, τ). 
2. generalized closed (briefly g-closed) set [2] if cl(A) ⊆  U whenever A ⊆  U and U is open in (X, τ). 
3. generalized g star(briefly g*-closed) set [7] if cl(A) ⊆ U whenever A ⊆ U and U is g-open in (X, τ). 
4. generalized g star star(briefly g**-closed) set [6] if cl(A) ⊆ U whenever A ⊆ U and U is g*-open in (X, τ). 
5. strongly g star closed(briefly strongly g*-closed) set [5] if cl(int(A)) ⊆ U whenever A ⊆ U and U is g-open in  

(X, τ). 
 
3. BASIC PROPERTIES OF STRONGLY g-closed sets and strongly g**-closed sets 
 
We introduce the following definitions.  
 
Definition 3.1: Let ),( τX  be a topological space and A be its subset. Then A is said to be a strongly g-closed set if 

cl(int(A) ⊆ U whenever  UA ⊆  and U  is open in X .  
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Definition 3.2: Let ),( τX  be a topological space and A be its subset. Then A is said to be a strongly g**-closed set if 
cl(int(A) ⊆ U whenever  UA ⊆  and U  is g*-open in X .  
 
Proposition 3.3: Every closed set is strongly g-closed. 
 
Proof follows from the definitions. 
 
Proposition 3.4: Every closed set is strongly g**-closed. 
 
Proof follows from the definitions. 
 
The converse of the above propositions need not true in general as seen in the following examples. 
 
Example 3.5: Let { }cbaX ,,= , }},,{},{,{ Xcaaϕτ = . Then A = {a,b}is a strongly g-closed set but not a closed 
set of ),( τX .  
 
Example 3.6: Let { }cbaX ,,= , }},{,{ Xaϕτ = . Then A = {b} is a strongly g**-closed set but not a closed set of 

),( τX .  
 
Proposition 3.7: Every strongly g*-closed set is strongly g-closed. 
 
Proof follows from the definitions. 
 
The converse of the above propositions need not true in general as seen in the following examples. 
 
Example 3.8: Let X = {a, b, c, d} and }},{,{ Xaϕτ = . Then A = {a, b}is  strongly g-closed but not strongly g*-
closed in ),( τX .  
 
Proposition 3.9: Every strongly g**-closed set is strongly g-closed. 
 
Proof follows from the definitions. 
 
Proposition 3.10: Every strongly g*-closed set is strongly g**-closed but not conversely. 
 
Proof follows from the definitions. 
 
Example 3.11: In example (3.8), A = {a, b} is strongly g**-closed but not strongly g*-closed in ),( τX .  
 
Proposition 3.12: Every g-closed set is strongly g-closed but not conversely. 
 
Proof follows from the definitions. 
 
Example 3.13: Let X = {a, b, c} and }},,{},{,{ Xbaaϕτ = . Then A = {b} is strongly g-closed but not g-closed in

),( τX .  
 
Proposition 3.14: Every g**-closed set is strongly g**-closed but not conversely. 
 
Proof follows from the definitions. 
 
Example 3.15: Let X = {a, b, c} and }},,{},{,{ Xbaaϕτ = . Then A = {b} is strongly g-closed but not g-closed in

),( τX .  
 
Proposition 3.16: Every g*-closed set is strongly g-closed but not conversely. 
 
Proof follows from the definitions. 
 
Example 3.17: In example (3.6) A = {b} is strongly g-closed but not g*-closed in ),( τX .  
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Proposition 3.18: Every g*-closed set is strongly g**-closed but not conversely. 
 
Proof follows from the definitions. 
 
Example 3.19: In example (3.6) A = {b} is strongly g**-closed but not g*-closed in ),( τX .  
 
Remark 3.20: g**-closedness and strongly g*-closedness are independent as seen in the following examples. 
 
Example 3.21: In example (3.5) A = {c}is  strongly g*-closed but not g**-closed in ),( τX  and in example (3.8)  
B = {a, b}is  g**-closed but not strongly g*-closed in ),( τX  
 
Remark 3.22: g-closedness and strongly g*-closedness are independent as seen in the following examples. 
 
Example 3.23: In example (3.13) A = {b} is strongly g*-closed but not g-closed in ),( τX   
 
Example 3.24: In example (3.8) A = {a,}I s  g-closed but not strongly g*-closed in ),( τX   
 
Remark 3.25: g-closedness and strongly g**-closedness are independent as seen in the following examples. 
 
Example 3.26: In example (3.13) A = {b} is strongly g**-closed but not g-closed in ),( τX   
 
Example 3.27: In example (3.10) A = {a, b} is g-closed but not strongly g**-closed in ),( τX   
 
Proposition 3.28: Every g**-closed set is strongly g-closed but not conversely. 
 
Proof follows from the definitions. 
 
Example 3.29: In example (3.5) A = {c} is strongly g-closed but not g**-closed in ),( τX .  
 
Theorem 3.30: If A subset of a topological space ),( τX  is both open and strongly g-closed then it is closed. 
 
Proof: Suppose A is both open and strongly g-closed. Since A is strongly g-closed cl(int(A)⊆A.  
That is cl(A) = cl(int(A) ⊆A. ∴A is closed. 
 
Corollary 3.31: If A subset of a topological space ),( τX  is both open and strongly g-closed then it is both regular 
open and regular closed in X. 
 
Corollary 3.32: If A subset of a topological space ),( τX  is both open and strongly g-closed then it is rg-closed in X. 
 
Theorem 3.33: If A subset of a topological space ),( τX  is both open and strongly g**-closed then it is closed. 
 
Proof is similar to theorem (3.30). 
 
Corollary 3.34: If A subset of a topological space ),( τX  is both open and strongly g**-closed then it is both regular 
open and regular closed in X. 
 
Corollary 3.35: If A subset of a topological space ),( τX  is both open and strongly g**-closed then it is rg-closed in 
X. 
 
Theorem 3.36: If A subset of a topological space ),( τX  is both strongly g-closed and semi-open then it is g-closed. 
 
Proof: Since A is strongly g-closed cl(int(A) ⊆A whenever A ⊆U and U is open in X.  
 
cl(int(A) ⊇A since A is semi-open. Then cl(A) ⊆  cl(int(A) ⊆U. Hence A is g-closed. 
 
Corollary 3.37: If A subset of a topological space ),( τX  is both strongly g-closed then it is g-closed in X. 
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Proof: Since every open set is semi-open the result follows from the above theorem.  
 
Theorem 3.38: If A subset of a topological space ),( τX  is both strongly g**-closed and semi-open then it is g**-
closed. 
 
Corollary 3.39: If A subset of a topological space ),( τX  is both strongly g**-closed then it is g**-closed in X. 
 
Theorem 3.40: If  A  subset  of  a  topological  space ),( τX   is  both  strongly  g-closed  then  
cl(int(A)) – A contains no non empty closed set. 
 
Proof: Suppose F is a closed set such that F ⊆ cl(int(A)) – A. Then F ⊆ cl(int(A)) ∩ Ac, which implies  F ⊆ cl(int(A)) 
and F ⊆ Ac . F ⊆ Ac implies A ⊆ Fc where Fc is open. Therefore  cl(int(A)) ⊆ Fc since A is strongly g-closed.  
 
Then F ⊆ (cl(int(A)))c. Hence F ⊆ (cl(int(A))) ∩ (cl(int(A)))c = φ.  
 
Therefore cl(int(A)) – A contains no non empty closed set. 
 
Theorem 3.41: If  A  subset  of  a  topological  space ),( τX   is  both  strongly  g**-closed  then  
cl(int(A)) – A contains no non empty closed set. 
 
Proof:  Since every open set is g*-open the result follows from the previous theorem. 
 
Theorem 3.42: If A is strongly g-closed and A ⊆  B ⊆ cl(int(A)), then B is strongly g-closed. 
 
Proof: Let B ⊆  U where U is open which implies A ⊆  U where U is open.  
 
∴ cl(int(A)) ⊆  U, since A is strongly g-closed. cl(int(B)) ⊆  cl(B) ⊆  cl(int(A)) ⊆  U. ∴B is strongly g-closed. 
 
Theorem 3.43: If A is strongly g**-closed and A ⊆  B ⊆ cl(int(A)), then B is strongly g**-closed. 
 
Proof is similar to the above theorem. 
 
Proposition 3.44: Every pre-closed set is (i) strongly g-closed (ii) strongly g**-closed but not conversely. 
 
Proof follows from the definitions. 
 
Example 3.45: In example (3.5) A = {a, b} is strongly g-closed and strongly g**-closed but it is not pre-closed since 
cl(int(A)) = X ⊄A 
 
The above results can be represented in the following figure. 

 
 
Where A                B (resp. A                B) represents A implies B (resp. A and B are independent). 
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