
International Journal of Mathematical Archive-3(8), 2012, 3079-3084 

 Available online through www.ijma.info ISSN 2229 – 5046 

International Journal of Mathematical Archive- 3 (8), August – 2012                                                                                                      3079 

 
MHD Flow Over a Nonlinear Stretching Sheet: An Approximate Analytical Solution 

 
Vishwanath. B. Awati1*, Ramesh B. Kudenatti2 and N. M. Bujurke3 

 
1Maharani’s Science College for Women, Bangalore- 560 001, India 

 
2Department of Mathematics, Bangalore University, Bangalore-560 001, India 

 
3Department of Mathematics, Karnatak University, Dharwad-580 003, India 

 
(Received on: 08-08-12; Revised & Accepted on: 27-08-12) 

 
ABSTRACT 

The magnetohydrodynamic (MHD) flow of a viscous incompressible and electrically conducting fluid over a 
continuously stretching surface is considered. The governing equation is derived as a function of two parameters: the 
magnetic parameter M and stretching parameter β and is solved via the method of stretching of variables which is one 
of the best available approximate methods. The results are compared and are in good agreement with that of direct 
numerical solution and previous studies. The effects of the above parameters are shown on velocity profile and skin 
friction coefficient. 
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1. INTRODUCTION 
 
A theoretical study of the boundary layer flow of an incompressible viscous fluid over a continuously stretching sheet 
is a subject of interest since it has many engineering applications that include cooling of a metallic plate in a cooling 
bath, aerodynamic extrusion of plastic sheets, hot rolling, wire drawing, metal extrusion and spinning, drawing of 
copper wires, etc. These flows are also encountered in the glass and polymer industry. In one of the earliest studies, 
Sakiadis [1] theoretically investigated the boundary layer flow over a continuously stretching sheet which moves with 
constant speed and solved the boundary value problem numerically. Results of Sakiadis [1] were confirmed 
experimentally by Tsou et al. [2]. Crane [3] obtained an exact solution for the flow of an incompressible fluid over a 
linearly stretching sheet. Afzal [4] studied heat transfer from a arbitrarily stretching surface and gave closed form 
solutions for some parameters and solved numerically for other parameters. Batallar [5] gives the numerical study of a 
viscous flow over a nonlinear stretching sheet with heat transfer. This study includes the sheet with prescribed surface 
temperature and heat flux. Numerous other stretching sheet problems have been discussed, for example, the problem of 
suction/injection on the sheet surface has been studied by Erickson [6], Gupta and Gupta [7] have analyzed this 
problem at a constant surface temperature, Siddappa and Khapate [8] and Rajagopal et al. [9] have studied by including 
viscoelastic fluids and showed that as viscoelastic parameter increases the skin friction decreases.  
 
All these studies did not include the influence of magnetohydrodynamic (MHD) viscous flow. MHD flows are often 
encountered in applications such as power generators, electrostatic filters, cooling reactors, etc. MHD flow controls 
forces and stabilizes the boundary layer flow. MHD flow also appears in industrial applications such as the cooling of 
continuous strips or filaments, annealing and thinning of copper wires, etc. The properties of final product depends on 
the rate of cooling. In an uniform magnetic field, rate of cooling of sheets can be controlled and desired characteristics 
of product are obtained. Application of MHD flows in the purification of molten metals from non-metallic ones is done 
by applying uniform magnetic field. Pavlov [10] studied the MHD flow over a stretching sheet which has practical 
applications in polymer industry and gave the exact solution of boundary layer equation. Many aspects of MHD flow 
on a stretching surface were reported in the literature, for example, Kumaran et al. [11] have obtained an exact solution 
of MHD flow past a quadratically stretching sheet with suction/injection, Ishak et al. [12] studied the two-dimensional 
MHD stagnation point flow towards a stretching sheet with variable surface temperature and solve the problem both 
analytically, in circumstances, in which an exact solution to the problem is obtained to some parameters and otherwise 
numerically using Keller-box method, homotopy analysis method is used by Ghotbi [13] to study MHD viscous flow 
over a non-linear stretching sheet and obtained a uniformly valid Taylor series based analytical solution, Hayat et al. 
[14] have investigated the above problem and solved the boundary layer equations using series solution based on 
modified decomposition method and Pad´e approximants, etc. 
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Each problem involving boundary layer equations contains many involved parameters and needs to solve an entire set 
of partial differential equations which is a major computation task. Indeed an amount of work involved is so high that it 
is rarely attempted. Because of this complexity, it is necessary to devise other methods for boundary layer analysis, 
most of which do not require them to be solved exactly. All these methods are approximate by nature, but most of them 
give better accuracy in lesser time and can be used for wide range of physical variables. One of such approximate 
methods is the method of stretching of variables which is applied for the solution of MHD viscous flow over a non-
linear stretching sheet problem. This method is quite easy to use especially for nonlinear ordinary differential equations 
and requires less computer time compared to numerical method (for example, shooting method, Keller-box method 
etc.) and easy to solve compared to other approximate methods (for example, modified decomposition, homotopy 
analysis method etc.). Exploring this method for the solution of the Falkner-Skan equation, Kudenatti and Awati [15] 
compared the solution with their new exact analytical solution for various parameters involved and showed that there is 
a nice agreement between this method and direct numerical solution. Kudenatti et al. [16] have successfully used this 
approximate analytical method to solve a class of boundary value problems for non-linear stretching sheet. So, this 
approximate analytical method is rather general and can be applied to other class of non-linear problems in science and 
engineering.  
 
Presentation of the paper proceeds as follows. In the next section mathematical formulation of the problem in question 
is derived along with the boundary conditions. Section 3 gives the solution to the problem by means of method of 
stretching of variables. The results thus obtained are plotted in Figures and Tables. These results are discussed in detail 
in Section 4. In the concluding section, summary of the paper is given. 
 
2. MATHEMATICAL FORMULATION 
 
Consider the steady two-dimensional MHD flow of an incompressible viscous fluid over a stretching sheet moving 
with constant velocity. The y-axis is extending along the upward direction and normal to the surface of the sheet and x 
is extending along the parallel to the sheet. Under the absence of induced magnetic field, the magnetic field B is applied 
normal to the stretching sheet. The set of boundary layer equations is given by 
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where u and v are the velocity components  in the x and y directions, υ  is  the kinematic viscosity, σ is the electrical 

conductivity, ρ  is the fluid density of the fluid and ( ) ( )1 2
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Introducing the stream functions u yψ= ∂ ∂  and v xψ= −∂ ∂ which satisfy the equation (2.1) where  
 

( ) ( ) ( ) ( )2 1
,   ,

1 2
xU x n U x

f y
n x

ν
ψ η η

ν
+

= =
+

 and ( ) nU x U x∞=                                                        (2.4) 

 
Using the above similarity transformations, the system (2.2)-(2.3) can be converted into a nonlinear ordinary 
differential equation as                                                                                                  

2 0f ff f Mfβ′′′ ′′ ′ ′+ − − =    ' ,d
dη

=                                                                                                 (2.5) 

 
and the boundary conditions take the form as  
 
( ) ( ) ( )0 0,      0 1,       0,f f f′ ′= = ∞ =                                                            (2.6) 

 
where f is the dimensionless stream function, 2 1n nβ = +  is the nonlinear stretching parameter and 

( )2
02 1M B U nσ ρ ∞= + is the Hartman (magnetic) parameter. Note that U=U(x) is used to define dimensionless  
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stream function f and n is a positive constant. The system (2.5)-(2.6) readily admits an exact analytical solution for 
linearly stretching boundary 1 ( 1)nβ = =  

( )1 exp 1

1

M
f

M

η− − +
=

+
                                                                                                                                                (2.7) 

and for other value of β , we present an approximate analytical method in the next section. 
  
3. METHOD OF STRETCHING OF VARIABLES 
 
Many attempts have been tried to develop methods for the solution of boundary value problems over an infinite 
domain, which are necessarily approximate methods because these are not universally valid and the accurate solutions. 
For example, Pad´e approximants have been used in modified decomposition method to accelerate the convergence of 
the series solution. Also, some numerical techniques require special treatment of the boundary condition at infinity. But 
method of stretching of variables gives the best approximate solution. It provides us a simple way to find out the 
required derived quantities. In the method of stretching of variables, we have to choose suitable velocity profile f ′  
such that the derivative boundary conditions satisfied automatically and integration of f ′  will satisfy the remaining 
boundary conditions. Substitution of this resulting function into the given equation gives the residual of the form R(ξ,α) 
and it is called defect function. Using least squares method, the residual of the defect function can be minimized. The 
solution to the third order nonlinear boundary value problem over an infinite domain characterizing the flow of a 
viscous fluid impinging normally to a wall from which the fluid is extracted at a uniform rate has been given by Ariel 
[17] using method of stretching of variables. Chakraborty and Mazumdar [18] have given an approximate solution to 
the problem of steady laminar flow of MHD fluid over a stretching sheet. More details about the method of stretching 
of variables are given in [17, 18]. We introduce two variables ξ and F as 
 

( ) ( )ηαξαηξ fF ==   ,                                                                                                                                              (3.1) 
 
where 0α is an amplification factor. In view of equation (3.1),equation (2.5) transformed to
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and the boundary conditions in (2.6) become 
( ) ( ) ( )0 0,    0 1,    0 .F F F′ ′= = ∞ =                                                                                                                      (3.3) 

 
We choose a trail velocity profile ( )ξ−=′ expF                                                                                                                                                              (3.4) 
 
which automatically satisfies the derivatives boundary conditions in (3.3). Integrating this velocity profile from 0 to 
ξ using first boundary condition in (3.3) and then substituting this result into equation (3.2), we get 
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( )αξ ,R  in the above expression is called the residual or defect function of the equation (3.2). With the help of least 

squares method as discussed by Ariel [18], for minimizing the defect function (3.5), we take
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Substituting (3.5) into equation (3.6) and solving cubic equation in α for positive root, we get 
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Once the amplification factor is calculated, then using equation (3.1), original function f can be written as
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α
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with α defined in (3.7). Thus, equation (3.8) gives the solution of the system (2.5)-(2.6) for all values of stretching 
parameter β and magnetic parameter M. It is interesting to note that the exact solution given in (2.7) is well established 
from equation (3.8) for β = 1. 
 
4. RESULTS AND DISCUSSION 
 
Application of method of stretching of variables to investigate the effects of various physical parameters on viscous 
flow over a non-linearly stretching sheet has revealed the important features of boundary layer flow when subjected to 
a uniform magnetic field. The method provides us with a simple way to compute the accurate solution and ensures less 
computer time. All solutions have been examined as a function of stretching parameter β and magnetic parameter M. 
Solution (3.8) to the system (2.5)-(2.6) for all values of β and M embeds the known exact solution (2.7) for β = 1 as a 
special case.  
 
In order to check the accuracy of the results from equation (3.8), Table 1 compares the values of skin friction ( )0f ′′  
with that of direct numerical solution of the system (2.5)-(2.6) for different parameters of β and M. It is found that there 
is a nice agreement between two solutions. Every effort was made to obtain a high accuracy solution for the values of 
large M. The possibility of slightly inaccurate solution for small M is clearly associated with the slower convergence 
approach to mainstream conditions. Also from the Table 1, it is interesting to note that for higher values of M (i.e. 

β23 ≥M for given β), the skin friction changes marginally. As the application of magnetic field is increased, the 

magnitude of the skin friction ( )0f ′′ , as visible in these solutions, increases for all values of the parameter β. This also 
has been shown in the Figure 1 for different values of M. Solutions that are obtained by Hayat et al.[14] can also be 
recovered. They have computed the skin friction using modified decomposition method with 15th order Pad´e 
approximants and results are comparable to the present method  
 
Some of the computed velocity profiles ( )ηf ′  are presented in Figures 2(a-d) for different values of parameters M and 
β. These figures demonstrate that the velocity of the fluid decreases with increasing M. It is well-known that, the 
application of uniform magnetic field normal to the flow direction leads to the so-called Lorentz force (LF). Thus, the 
variation of M leads to change in the LF which has tendency to resist the velocity of the fluid. Hence, effect of 
magnetic field is to reduce the velocity component parallel to the stretching surface. A common feature of these 
profiles, irrespective of β, is that f ′  decreases for increasing M. 
 
5 CONCLUSIONS 
 
In this paper, the method of stretching of variables is applied to theoretically study the effect of magnetic field on 
boundary layer flow of viscous fluid over a nonlinear stretching sheet. Results thus obtained are compared with direct 
numerical solution and also with previous studies. It is found that the method gives an explicit analytical expression in 
terms of the parameters involved and turns out to be the best approximate method for nonlinear problems. It is shown 
that magnitude of skin friction increases with increasing M and β. 
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Table 1: Comparison of values of skin friction ( )0f ′′  obtained from the expression (3.8) with that of direct numerical 
solution for the stretching and magnetic parameters. 
 

M 
0.0=β  0.1=β  

Present Method Numerical Present Method Numerical 
1 -1.15470 -1.16329 -1.41421 -1.41422 
2 -1.52752 -1.53131 -1.73205 -1.73205 
5 -2.30940 -2.31048 -2.44948 -2.44949 

10 -3.21455 -3.21494 3.31662 -3.31662 
20 -4.50924 -4.50933 -4.58257 -4.58258 
50 -7.09459 -7.09462 -7.14142 -7.14143 
100 -10.01665 -10.01666 -10.04987 -10.04988 
500 -22.36813 -22.36813 -22.38302 -22.38303 
1000 -31.62804 -31.62804 -31.63858 -31.63858 

 
 

M 5.1=β  0.5=β  
Present Method Numerical Present Method Numerical 

1 -1.52752 -1.52528 -2.16024 -2.15290 
2 -1.82574 -1.82450 -2.38047 -2.37538 
5 -2.51661 -2.51618 -2.94392 -2.94152 
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10 -3.36650 -3.36633 -3.69684 -3.69582 
20 -4.61880 -4.61877 -4.86483 -4.86446 
50 -7.16472 -7.16472 -7.32575 -7.32569 
100 -10.06644 -10.06644 -10.18168 -10.18167 
500 -22.39047 -22.39048 -22.44251 -22.44254 
1000 -31.64385 -31.64385 -31.68069 -31.68071 

 
Figure 1: Variation of Skin friction with stretching parameter for different values of Magnetic parameter. 

  

 
                                      

Fig. 2(a):                                                                                    Fig. 2(c): 

 
                                  
                                        Fig. 2(b):                                                                                       Fig. 2(d): 
 

Figure 2: Variation of velocity profile for different values of stretching & magnetic parameters. 
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