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ABSTRACT 

The celebrated Weierstrass Approximation Theorem (1885) heralded intermittent interest in polynomial 

approximation, which continues unabated even as of today. The great Russian mathematician Bernstein, in 1912, not 

only provided an interesting proof of the Weierstrass’ theorem, but also displayed a sequence of the polynomials which 

approximate the given function f (x) � C[0, 1]. This paper is motivated by the “Iterative Statistical Bias-Reduction 

Strategy” proposed in Sahai (2004) for the Bernstein’s Polynomial Approximation operator. A ‘Dual-Fusion’ version 

of the Bernstein’s Polynomial Operator is proposed. This version has a ‘Systematic-Bias’ in approximation which is 

much more accessible to the ‘Iterative Algorithm’ of ‘Statistical Bias-Reduction’ proposed in Sahai (2004).The 

potential of the aforesaid improvement algorithm is tried to be brought forth and illustrated through an empirical study 

for which the function is assumed to be known in the sense of simulation. 

 

Keywords: Approximation; Bernstein operator; Simulated empirical study 
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1. INTRODUCTION: 

The problem of approximation arises in many contexts of “Numerical Analyses and Computing  [3, 4, 7 and 9]. 

Weirstrass [10] proved his celebrated approximation theorem: �“…If, f � C [a, b], then for every � > 0, ��a polynomial 

“p” such that “�f - p� < �”. In other words, result established the existence of an algebraic polynomial in concerned 

variable capable of approximating the unknown function in that variable, as closely as we please! This result was a big 

beginning of the Mathematicians’ interest in “Polynomial Approximation’’ [1, 5, 6, and 9] of an unknown function 

using its values generated, experimentally or otherwise, at certain equidistant knots in the impugned interval of the 

relevant variable. The Great Russian mathematician Bernstein proved the Weirstrass theorem in a style, which was very 

thought-provoking and curious in many ways. He first noted a simple though a very significant feature of this theorem, 

namely that if it holds for C [0, 1], it does hold for C [a, b] and vice-versa. In fact, C [0, 1] and C [a, b] are essentially 

identical, for all practical purposes, inasmuch as they are linearly “isometric” as normed spaces, order isomorphic as 

lattices, and isomorphic as algebras (rings) [2]. Also, the most important contribution in the Bernstein’s proof of the 

Weirstrass’ theorem consisted in the fact that Bernstein actually displayed a sequence of polynomials that approximate 

a given function f � C [0, 1]. If, f(x) is any bounded function on C [0, 1], the sequence of “Bernstein Polynomials” [1] 

for f(x) is defined by:  

 

(Bn (f)) (x)=�
=

= ��
�

�
��
�

�nk

k 0

)k  -n  (k (k/n) f .x)-(1 . x
k

n
, x � C [0, 1]; Say, E [f (x)]                 (1.1)  

The aim of the present paper, motivated by the “Iterative Statistical Bias-Reduction Intervention” in Sahai (2004) [8], is 

to propose such a variant of the aforesaid “Bernstein Polynomials” which would be much more amenable to that 

“Intervention”! 

 

2. THE PROPOSITION OF THE DUAL-FUSION VARIANT OF THE BERNSTEIN POLYNOMIAL: 
In context of the aforementioned sequence of “Bernstein Polynomials” for f(x), a significant observation which must 

be taken note of is that the use is made of the values of the unknown function “f (x)” at the equidistant-knots “k/n; k = 

0(1) n”, assumed to be knowable� through the experiment(s) in the relevant scientific field of investigation or known 

otherwise. This fuller use of this aforementioned information about the “n+1” values of the unknown function “f (x)” 

(at the�equidistant-knots “k/n; k = 0(1) n”) is the “Key-Point” for the paper.  

 

In any approximating polynomial operator use is made of the “Knots” and the corresponding “Weights”. In our 

proposition of a variant of the “Bernstein’s Polynomial” we propose to systematically introduce new corresponding 
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weights, without changing the location of the “knots”. We propose a “DUAL_FUSION” variant of the “Bernstein 

Polynomial” which is having a Systematic Bias, and is, therefore, more readily amenable to a Statistical “Bias-

Reduction” strategy than is the original/ usual “Bernstein’s Polynomial”!  

 

We consider the following PRIMAL variant of the Bernstein’s Polynomial:  

 

Say, BP (f; x) [n] =�
=

= ��
�

�
��
�

�nk

k 0

)k  -n  (k (k/n) f .x)/2)-((1 . x)/2)+((1
k

n

                (1.2) 

 

The correspondingly DUAL (-Weights) variant of the Bernstein Polynomial would be: 

Say, BD (f; x) [n] =�
=

=

+��
�

�
��
�

�nk

k 0

)k  -n  (k (k/n) f .x)/2)((1 . x)/2)-((1
k

n

                (1.3) 

 

We define the “PRIMAL-DUAL-Fusion-Weights” variant of the Bernstein Polynomial as follows: 

 

Say, PDFB (f; x) [n] = ((1 + x)/2). BP (f; x) + ((1 – x)/2). BD (f; x)                              (1.4) 

 

To make comprehensible the systematicness of this (PRIMAL-DUAL Fusion) variant of the Bernstein Polynomial, say, 

PDFB (f; x) [n] we note that it will work for an approximation polynomial focusing interval [(1 - x)/2, (1 + x)/2] around 

“1/2”, which will be [0, 1] for x = 1, and degenerating to the point “0” for x = 1. The impugned interval will be wider, 

the greater the value of “x”!  For example, in the approximating polynomial in “x” for the values of x � [0, 1]; the 

interval will be always centered around “0”, symmetrically, e.g. [1/4, 3/4] for x =1/2. To balance the “Pull”, 

systematically, the weights “((1 + x)/2)” and “((1 – x)/2)” are assigned to the relevant weights in BP (f; x) [n] & BD (f; 

x) [n]. These weights are also, respectively, “DUAL” to each-other, again! The aforesaid (PRIMAL-DUAL Fusion) 

variant of the Bernstein Polynomial, namely, PDFB (f; x) [n] will induce a “(Systematic)Bias” in the approximating 

“Polynomial” which is amenable, more systematically (than the original “Bernstein’s Polynomial”), to the  correction 

by “Statistical Bias-Reduction” ‘Iteration(s)’, to that extent which might please us.  

 

3. THE ITERATIVE-BIAS REDUCTION-STRATEGY FOR THE PROPOSED DUAL-FUSION 

POLYNOMIAL: 

We detail in this section, very briefly, the Iterative-Bias Reduction-Strategy for the Proposed Dual-Fusion Polynomial 

which is exactly analogous to that used in Sahai (2004) [8] for the Original “Bernstein’s Polynomial”. We note that the 

estimated values of the unknown function “f (x)” at the “knots: ‘k/n’; k = 0 (1) n”, as per the proposed “Dual Fusion 

Polynomial PDFB (f; x) [n]” would be: 

 

Say, Et PDFB (f; k/n) [n]                    (3.1) 

 

Thus, the “Error of Estimation” @ ‘the “knots: ‘k/n’; k = 0 (1) n” would be: 

 

Say, Er PDFB (f; k/n) [n] = Et PDFB (f; k/n) [n] – f (k/n)                               (3.2) 

 

We do note here that f (k/n)’s known for all “knots: ‘k/n’; k = 0 (1) n”. 

 

Hence, using (3.2) and the proposed “Dual Fusion Polynomial PDFB (f; x) [n]”, we get the “Error Polynomial” as: 

 

 Say, Er PDFB (f; x) [n].                    (3.3) 

 

The resultant “Bias-Reduced Polynomial” at “Iteration # 1” would then be: 

 

 Say, I (1) UPDFB (f; x) [n] = PDFB (f; x) [n] - Er PDFB (f; x) [n].  

                    = 2.PDFB (f; x) [n] – PDFB2 (f; x) [n] 

                    = [I – (I – PDFB)2] (f; x) [n].                                            (3.4) 
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Similarly, the resultant “Bias-Reduced Polynomial” at “Iteration # 2” would then be: 

 

Say, I (2) UPDFB (f; x) [n] = [I – (I – PDFB)3] (f; x) [n].                               (3.5) 

In general, “Bias-Reduced Polynomial” at “Iteration # J” would be: 

 

 Say, I (J) UPDFB (f; x) [n] = [I – (I – PDFB)J+1] (f; x) [n].                                            (3.6) 

 

Apparently, “J” being the iteration #, has to be a positive integer! 

 

Similar to what was noted in Sahai (2004) [8], in the absence of any conclusive analytical study [The derivable 

“Upper” bounds on the error of approximation (as noted in the paper by Sahai (2004) [8]) are not of much use as a 

smaller/ lower “Upper Bound” does not guarantee a better approximation and the extent of the resultant “GAIN” is 

unavailable, too!],we go for an empirical simulation study to illustrate the potential “GAIN” through our “Bias-

Reduction Iteration(s)” on this proposed (PRIMAL-DUAL Fusion) variant of the Bernstein Polynomial, namely, PDFB 

(f; x) [n]. 

 

4. THE EMPIRICAL SIMULATION STUDY: 

To illustrate the gain in efficiency by using our proposed Iterative Algorithm of Improvement of the proposed “Dual-

Fusion” variant of the Bernstein Polynomial Approximation, we have carried an empirical study. We have taken the 

example-cases of n = 3, 4, and 5 (i.e. n + 1 = 4, 5, and 6 knots) in the empirical study to numerically illustrate the 

relative gain in efficiency in using the Algorithm vis-à-vis the Original “Dual-Fusion” variant of the Bernstein 

Polynomial proposed in each example case of the n-value. Essentially, the empirical study is a simulation one wherein 

we would have to assume that the function, being tried to be approximated, namely “f (x)” being known to us. Once 

again we have confined to the illustrations of the relative gain in efficiency by the Iterative Improvement for the 

following four illustrative functions: 

 

f (x) = exp(x), ln(2+x),  sin(2+x), and  10x 

 

To illustrate the POTENTIAL of improvement with our proposed Iterative Algorithm, we have considered THREE 

Iterations, and the numerical values of SEVEN quantities-three percentage relative errors (PREs) corresponding to our 

Improvement Iteration (# J = 1, or 2, or 3): PRE_I (J) UPDFB (f; x) [n], that to Original “Dual-Fusion” variant of the 

Bernstein Polynomial: PRE_PDFB (f; x) [n], and the corresponding Percentage Relative Gains (PRGs) in using our 

Iterative Algorithmic Reduced-Bias “Dual-Fusion” variant of the Bernstein Polynomial in place of the Original “Dual-

Fusion” variant of the Bernstein Polynomial PRG_I (J) UPDFB  (f; x) [n] (# J = 1, or 2, or 3). These quantities are 

defined as follows. 

PRE_PDFB (f; x) [n] = 100. [{ �
1

0
dx (x)) f - [n] x) (f; (PDFB abs. }/ �

1

0
dx (x) f ];                            (4.1) 

PRE_I (J) UPDFB (f; x) [n] = 100. [{ �
1

0
dx (x)) f - [n] x) (f; UPDFB (I(J) abs. }/ �

1

0
dx (x) f ];            (4.2) 

 

Wherein; J = 1 or 2 or 3.  And, PRG_I (J) UPDFB (f; x) [n] =  

 

= 100. [ } [n] x) (f; PRE_PDFB} [n] x) (f; UPDFB (J) PRE_I - [n] x) (f; {PRE_PDFB /{ ]            (4.3) 

 

Wherein; J = 1 or 2 or 3. 

 

The PREs respective to the Original Variant of Bernstein Polynomial and respective to the First, Second, and the Third 

Algorithmic Improvement Iteration Polynomials, respectively for each of the example # of approximation 

Knots/Intervals; and the PRGs (defined as above in (4.3)) by using the Proposed Algorithmic Improvement Iteration: I# 

(e.g. 1, or 2, or 3) Polynomials with the n intervals in [0, 1] over using the Original Variant of Bernstein Polynomial for 

the approximation of the (Targeted) function, ‘f (x)’ are tabulated in the APPENDIX in Tables 1–4.  

 

5. CONCLUSION:  

For all the FOUR illustrative functions, namely f (x) = exp (x); ln (2 +x); sin (2 + x), and 10x, the PRGs are around 99% 

for n = 3, 4, and 5. It is very significant to note that the PRGs are above 99.5% for n=5, i.e. for only SIX ‘Knots’! 
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APPENDIX: 

 

Table 1 :( Iterative) Algorithmic (In %) Relative (Absolute) Efficiency/ Gain for f (x) = exp(x). 

 

Items � n�   3 4 5 

PRE_PDFB (f; x) [n] 19.34918909 18.62091287 18.18048680 

PRE_I (1) UPDFB (f; x) [n]   0.11000302   0.10770714   0.10664681   

PRE_I (2) UPDFB f; x) [n]   0.06279666   0.06595319   0.06816574   

PRE_I (3) UPDFB (f; x) [n]   0.06068674   0.06317454    0.06521435 

PRG_I (1) UPDFB  (f; x) [n] 99.43148512 99.42157965 99.41339959 

PRG_I (2) UPDFB  (f; x) [n] 99.67545586 99.64581119 99.62506092 

PRG_I (3) UPDFB (f; x) [n] 99.68636029 99.66073339 99.64129481 

 

Table 2: (Iterative) Algorithmic (In %) Relative (Absolute) Efficiency/Gain for f (x) = ln (2+x). 

 

Items � n�   3 4 5 

PRE_PDFB (f; x) [n]  6.91836557  7.03802410 7.10923650   

PRE_I (1) UPDFB (f; x) [n]  0.02088038  0.02495295  0.04030345 

PRE_I (2) UPDFB f; x) [n]  0.00686818   0.01276364   0.03716380   

PRE_I (3) UPDFB (f; x) [n]  0.00220013  0.00896998  0.03666696   

PRG_I (1) UPDFB  (f; x) [n] 99.69818911 99.64545514 99.43308324 

PRG_I (2) UPDFB  (f; x) [n] 99.90072527 99.81864731 99.47724616 

PRG_I (3) UPDFB (f; x) [n] 99.96819856 99.87254963 99.48423477 

 

Table 3: (Iterative) Algorithmic (In %) Relative (Absolute) Efficiency/Gain for f (x) = sin (2+x). 

 

Items � n�   3 4 5 

PRE_PDFB (f; x) [n]  25.21042851 24.56619480 24.18447530 

PRE_I (1) UPDFB (f; x) [n]    0.05467121   0.05495187      0.05515142   

PRE_I (2) UPDFB f; x) [n]    0.03952980   0.03999141    0.04035494    

PRE_I (3) UPDFB (f; x) [n]    0.03737522   0.03725905      0.03737931    

PRG_I (1) UPDFB  (f; x) [n] 99.78314046 99.77631102 99.77195523 

PRG_I (2) UPDFB  (f; x) [n] 99.84320060 99.83720959 99.83313700 

PRG_I (3) UPDFB (f; x) [n] 99.85174699 99.84833198 99.84544089 

 

 

Table 4: (Iterative) Algorithmic (In %) Relative (Absolute) Efficiency/Gain for f (x) = 10x. 

 

Items � n�   3 4 5 

PRE_PDFB (f; x) [n] 51.54498557 47.59919214 45.19394949 

PRE_I (1) UPDFB (f; x) [n]  0.65678416      0.54509289       0.48224711     

PRE_I (2) UPDFB f; x) [n]  0.20503808      0.14011181       0.10846483       

PRE_I (3) UPDFB (f; x) [n]  0.05530318    0.01902893         0.00629602       

PRG_I (1) UPDFB  (f; x) [n] 98.72580397 98.85482743 98.93293878 

PRG_I (2) UPDFB  (f; x) [n] 99.60221527 99.70564246 99.76000141 

PRG_I (3) UPDFB (f; x) [n] 99.89270890 99.96002256 99.98606889 

 


