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ABSTRACT 
This paper deals with the optimal operation of a single removable server in an MX/Ek/1 two-phase queueing system 
with gating, server startup and unpredictable breakdowns under N-policy.  Arrivals occur in batches of random size X 
according to a compound Poisson process and waiting customers receive batch service all at a time in the first phase 
and proceed to the second phase to receive individual service.  After providing the second phase of service, the server 
returns to the first phase to see if new customers have arrived.  If there are any waiting customers, the server starts the 
cycle by providing them batch service followed by individual service.  If no customer is waiting, the server leaves for a 
random period of vacation.  As soon as the queue length reaches a threshold value N (N≥ 1) the server is turned on 
and is temporarily unavailable to serve the waiting batch of customers.  Because, when it comes back from vacation it 
needs a startup time before the batch service commences in the first phase.  While the server is working with the second 
phase of individual service, it may breakdown at any instant and is immediately repaired.  In the first phase of service, 
the batch includes only those customers who are already in the queue.  This criterion is called gating.  Explicit 
expressions for the steady state distribution of the number of customers in the system and hence the expected system 
length is derived.  The total expected cost function is developed to determine the optimal threshold of N at a minimum 
cost.  Numerical experiment is performed to validate the analytical results.  The sensitivity analysis has been carried 
out to examine the effect of different parameters in the system.     
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INTRODUCTION 
 
We investigate the optimal control policy of a removable and un-reliable server for an MX/Ek/1 two-phase gated 
queueing system with server startups, where the removable server operates an N-policy and takes an exponentially 
distributed vacation. Removable server means, the server can be turned on or off depending on whether customers are 
waiting in the system or no customer is in the system. The N-policy means that the server is turned on when N (N≥ 1) 
or more customers are present, and off when the system is empty. An un-reliable server means that the server is subject 
to unpredictable breakdowns. 
   
In this system, it is assumed that customers arrive following a compound Poisson process where the arrival rate is a 
random variable. The service is in two-phases, where the first phase of service is batch service to all customers waiting 
in the queue and the second phase of service is individual to each customer in the batch and consists of k exponential 
phases. On completion of the second phase of service, the server will go back to the first phase. If the customers are 
waiting in the queue it will provide batch service followed by individual service. Otherwise, it will proceed to a 
vacation of random length and is turned on as and when the queue length reaches or exceeds N. After coming back 
from a vacation the server needs a startup time for preparatory work before the batch service. While the server is 
working in the second phase, it is assumed that the server may breakdown at any time, and if the server fails, it is 
immediately sent for repair. 
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Such a control model frequently occurs in the area of computer networking, communication and in flexible production 
(manufacturing) systems. Let us consider a production process where the machine producing certain items may require 
two phases of service, such as preliminary checking followed by the usual process to complete the processing of the 
raw materials. After these two phases of service, the production process either needs to be stopped if there are no jobs 
on hand or may continue the processing of the raw materials. Once the production process is stopped it may need some 
startup time for re-starting the process. There may be breakdowns during the production process and needs to be 
repaired immediately. 
 
Krishna and Lee [11] and Doshi [7] studied distributed systems where all the customers waiting in the queue receive 
batch service in the first phase followed by individual service to every customer in the second phase.  Selvam and 
Sivasankaran [14] introduced the two-phase queueing system with server vacations. Kim and Chae [10] investigated 
the two-phase queueing system with N-policy.  
 
Baker [1] first proposed the N- policy M/M/1 queueing system with server startups. Later, Borthakur et al. [2] extended 
the Baker’s result to the general startup time.  Minh [13] first studied the N-policy M/G/1 queueing system with 
exponential startup times. Medhi and Templeton [12] extended Minh’s result to the general startup times. 
 
Several authors have investigated queueing models with server breakdowns and vacations in different frame works in 
the recent past. Wang [18] for the first time proposed Markovian queueing system under the N-policy with server 
breakdowns. Wang [19] Wang et al.[20] and Wang et al.[22] extended the model proposed by Wang[18] to M/EK/1, 
M/H2/1 and M/HK/1  queueing systems respectively. Ke[8] presented the control policy of a removable and unreliable 
server, for an MX/M/1 queueing system, where the removable server operates an N-policy. Wang et al.[25] presented 
the optimal control of the N-policy M/G/1 queueing system with a single removable and unreliable server. Ke and 
Lin[9] studied the MX/G/1 queueing system under N-policy with an unreliable server with single vacation. Wang and 
Huang[24] used a maximum entropy approach to study a single removable and unreliable server in an M/G/1 queue 
operating under the (p,N) – policy.  Tadj and Choudhury[15] analyzed a bulk service quorum queueing system with an 
unreliable server, Poisson input  and general service and repair times.  Choudhury and Madan[4] presented the optimal 
policy for a two-stage batch arrival queueing system with a modified Bernoulli schedule vacation under N-
policy.Vasanta Kumar and Chandan [16 ],Vasanta Kumar et al [17] presented the optimal operating policy for a two-
phase MX/EK/1  queueing system under N-policy with and without breakdowns .Wang[21] considered an M/G/1 model 
with an additional second phase of optional service with an assumption that the server is subjected to breakdowns and 
repairs in which it is assumed that the second optional service times follow an exponential distribution.  Choudhury and 
Deka[3] generalized this model by introducing the concept of repeated attempts.  Choudhury and Tadj [5] generalized 
this model by introducing the concept of delayed repair. Later, Choudhury et al.[6] investigated such a type of model, 
where concept of N-policy  is also investigated along with a delayed repair for batch arrival queueing system. 
 
Existing research works for the N-policy, including those mentioned above, have never investigated cases involving 
both server startups and breakdowns for the bulk arrival two-phase queueing systems. 
 
The four main objectives for which the analysis has been carried out in this paper for the optimal control policy are: 
 
(i) To establish state equations to obtain the steady state probability distribution of the number of customers in the 

system. 
(ii) To derive an expression for the expected number of customers in the system. 
(iii) To formulate the expected cost function for the system, and determine the optimum value of the control parameter 

N. 
(iv) To carryout a sensitivity analysis of the optimal value of N and the minimum expected cost for various system 

parameters through numerical illustrations. 
 
2. THE SYSTEM AND ASSUMPTIONS 
 
In the fitness of realistic situation it is more appropriate to consider the arrival process is a compound Poisson process 
(with arrival rateλ ) of independent and identically distributed random batches of customers where each batch size X, 
has a probability density function { : ( ), 1}n na a P X n n= = ≥ . The first phase of service is a batch service to all the 

customers waiting in the queue and the batch service time is assumed to be exponentially distributed with mean 1/ β . 
On completion of the batch service, the server provides individual service to all customers in the batch in FIFS order. 
The individual service is in k independent and identically distributed exponential phases with mean 1/ kµ . To 

simplify the analysis the probability sequence { }nkc  is used to represent the number of arrival phase, i.e., if the 

arriving group has size ‘n’, then it has ‘nk’ phases with probability nkc . After the completion of individual service, the 
server returns to the first phase to serve the customers who have arrived. If the customers are waiting, the server restarts  
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the cycle by providing batch service followed by individual service. If no customer is waiting, the server takes a 
vacating and returns from the vacation only after N customers accumulate in the queue and spend a random time ‘t’ for 
pre-service, which is assumed to follow an exponential distribution with mean 1/θ . As soon as the startup period is 
over, the server begins batch service.  Arrivals during the batch service are not served in the same batch, but are served 
in the next visit of the server to the batch queue.   While serving in the individual queue, the server may fail at any time 
with a Poisson breakdown rate α . When the server fails, it is immediately repaired, where the repair times are 
exponentially distributed with mean 1/ γ . After repair the server immediately resumes individual service.  Further, we 
assume that input process, startup time, server’s life time, server’s repair time and service time random variables are 
mutually independent of each other. 
 
A diagram showing the transition among vacation, startup, batch service, individual service and breakdown periods is 
given in Figure 1. 
 

 
Figure 1.    Transition diagram 

 
3. STEADY – STATE ANALYSIS 
 
In steady-state the following notations are used. 
 
P0, i, 0 = The probability that there are i service phases in batch queue when the server is on vacation, where i=0, k, 2k, 

3k,. . . ,(N-1) k. 
P1, i, 0 =The probability that there are i service phases in batch queue when the server is doing pre-service (startup work), 

where i=Nk, (N+1)k, (N+2)k, . . . . 
P2, i, 0 =The probability that there are i service phases in batch queue when the server is in   batch service, where i= k, 

2k, 3k . . . 
P3, i, j  = The probability that there are i service phases in batch queue and j service phases in individual queue when the 

server is in individual service, where i = 0, k, 2k, 3k, . . . and j = 1, 2, 3, . . . . 
P4, i, j  =The probability that there are i service phases in batch queue and j service phases in individual queue when the 

server is in individual service but found to be broken down, where i = 0, k, 2k, 3k,…and       j = 1, 2, 3, . . . . 
 
The steady-state equations satisfied by the system size probabilities are as follows:  
 
λ  P0, 0, 0   = kµ  P3, 0, 1                                                                                                                                                      (1) 

 

λ  P0, i, 0   =  λ l

i

kl
c

=
∑   P0, i -l, 0,     i= k, 2k, 3k, . . ., (N-1) k.                                                                                                 (2) 
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(λ +θ ) P1, i, 0 = λ l

NKi

kl
c

−

=
∑ P1, i -- l, 0 + λ l

i

kNil
c

)1( −−=
∑  P0, i -- l, 0,   i = (N+1)k, (N+2)k, (N+3)k, …                                     (4) 

 
β  P2, i, 0  = kµ P3, i, 1,    i = k, 2k, 3k, …, (N-1)k.                                                                                                             (5) 
 
β  P2, i, 0 = kµ P3, i, 1 + θ  P1, i, 0,    i =Nk, (N+1)k, (N+2)k, . . . .                                                                                       (6) 
 
λ +α +k µ )P3, 0, j  = kµ  P3, 0, j + 1 + 0π β  P2, j, 0 + γ  P4, 0, j,     j ≥ 1.                                                                             (7) 
 

(λ +α +k µ )P3, i, j  = kµ P3, i, j + 1 / 2, j, 0Pi kπ β+ +λ l

i

kl
c

=
∑ P3, i - l, j + γ P4, i, j, i = k, 2k, 3k,…,  j≥ 1.                           (8) 

 
(λ +γ ) P4, 0, j  = α P3, 0, j    ,      j ≥ 1                                                                                                                                    (9)    
 

(λ +γ ) P4, i, j  = α P3, i, j +λ l

i

kl
c

=
∑  P4, i -l, j, i = k, 2k, 3k,…, j≥ 1.                                                                                  (10) 

where iπ  is the probability that i service phases arrive during sojourn of the server at the batch queue.  
 
The following probability generating functions are defined 
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∞
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where |z|≤ 1 and | | 1y ≤ . 
 
C(z) is the probability generating function of the number of phases in the batch and A(z) is the probability generating 
function of the number of customers in the system. It is found that E(C) = C1(1) and  E(C(C-1)) = C11 (1). 
 
It can be shown that 1 1 11 2 11 1C (1) A (1) and C (1) A (1) ( 1)A (1)k k k k= = + − . 
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/

/ / 1
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Using equation (2), we get   P0, i, 0 = y i   P0, 0, 0   ,      i = k, 2k, 3k, . . .,(N-1) k  , 
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Solving equations (3) to (10) using generating functions, we get  
 
[λ (1-C(z)) +θ] G1 (z) = λ  P0, 0, 0 + [λ (C(z)-1)] G0 (z) .                                                                                             (12)       
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β  G2 (z) =  kµ R1 (z) + θ  G1 (z) - λ  P0, 0, 0 .                                                                                                             (13) 
 
[λ y (1-C(z)) +α y + kµ (y-1)] G3 (z, y) =γ  y G4 (z, y) + β y ( )zπ G2 (y) - kµ y R1 (z).                                      (14) 
 

4 3[ (1 ( ) ] ( , ) ( , )C z G z y G z yλ γ α− + =                                                (15) 
                 
The total probability generating function G(z, y) is given by 
 
G (z, y) = G0 (z) + G1 (z) + G2 (z) + G3 (z, y) + G4 (z, y). 

 
The normalizing condition is 
 
G (1, 1) = G0 (1) + G1 (1) + G2 (1) + G3 (1,1) + G4 (1, 1).                                                                                             (16) 
 
From equations (11) to (15)  
 
G0 (1) = 0,0,0(1)Ny P ,                                                                                                                                                      (17) 
 
G1 (1) = ( / )λ θ  P0, 0, 0 ,                                                                                                                                                  (18) 
 
G2 (1) = kµ  1(R (1) / )β ,                                                                                                                                            (19) 
 

G3 (1,1)  =  
( )1

1
1(1)

1(1)

G (1) k C R (1)1

[k C ( )]

θβ + λ µ γ

β µγ − λ α + γ                                                                                                          (20) 
 
and                               G4 (1,1) = (α /γ ) G3 (1,1).                                                                                                       (21)     
 
Normalizing condition (16) yields 
 
R1 (1) = λ C1 (1)/ (k2µ ).                                                                                                                                               (22) 
 
Substituting the value of R1 (1) in (20) and (21) yields 
 
G3 (1, 1) = λ  C1(1) /(kµ ) and   G4 (1, 1) =  (α /γ ) [ λ C1(1) / (k μ) ] . 
 
Under steady state conditions, let P0, P1, P2, P3 and P4 be the probabilities that the server is in vacation, startup, in batch 
service, in individual service and breakdown states respectively. Then, 
 
P0 = G0 (1) = 0,0,0(1)Ny P ,                                                                                                                                              (23) 
 
P1 = G1 (1) = λ  P0, 0, 0 / θ,                                                                                                                                              (24) 
 
P2 = G2 (1) = λ  C1(1)/(kβ ),                                                                                                                                         (25) 
 
P3 = G3 (1, 1) = λ  C1(1)/(kµ ),                                                                                                                                     (26) 
 
and    P4 = G4 (1,1) = (α /γ ) [ λ C1(1) / (k μ) ],               
                                                                                                                                                                                         (27)  

where P0, 0, 0 = 

N

1C (1)
1 1

k ( y (1))
+

λ α λ θ
− +

µ γ β λ + θ

   
      

. 
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4. EXPECTED NUMBER OF CUSTOMERS IN THE SYSTEM 
 
Using the probability generating functions expected number of customers in the system at different states are presented 
below. 
 
Let L ,  L ,  L ,  L an d L0 1 2 3 4 be the expected number of customers in the system when the server is in vacation, in 

startup, in batch service, in individual service and breakdown states respectively. 
 

 Then   L0 =
( 1)

1 1
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∞
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∞
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N N
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1 11 1 2 11
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∑
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3
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,                                                                       (32) 

where   ρ  = λ C1(1)/(kµ )  ,  ρ 1 = ρ  (1 + 
γ
α

) 

and  P0, 0, 0 = 
N

1

1C (1)
1

k ( y (1))
−
λ θ
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The expected number of phases in the system is given by 
 
        L(P) =  L0 + L1 + L2 + L3 + L4 
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Expressing L (P) in terms of A1(1) and A11(1) 
 

L(P) = 1

11
ρ
ρ

+
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1
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1− ρ
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Then, the expected number of customers in the system is given by 
 

L(N)= 
1 1 1( ) 1 (1)

2
kL P A

k
λ α λ
µ γ β
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






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γ
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µ
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5. SOME OTHER SYSTEM CHARACTERISTICS 
 
Let E0, E1, E2, E3 and E4 denote the expected length of idle period, startup period, batch service period, individual 
service period and breakdown period respectively. Then the expected length of a cycle is given by 
 

0E = E E E E +Ec 1 2 3 4+ + + .                                                                                                                               (36) 

 
The long-run fraction of time, the server is idle, in startup, in batch service, in individual service and breakdown states 
are respectively given b 

CE
E0 = P0 = 

1(1) (1 (1) / )1
( / (1))

y AN
yN

ρ λ β
λ θ
− −

+
 ,                                                                                                                 (37) 

CE
E1 = P1 = 

1( / ) (1 (1) / )1
( / (1))N

A

y

λ θ ρ λ β

λ θ

− −

+
 ,                                                                                                               (38) 

CE
E2 = P2 = 1(1) /Aλ β  ,                                                                                                                                               (39)                                                                                       

CE
E3 = P3 = ρ                                                                                            (40)  

and 
CE

E4  = P4 = G4 (1) =  ρ  ( / )α γ  .                                                                                                                         (41)                                      

Expected length of idle period = E0 = 1Ny ( ) / .λ  Substituting this in equation (37) yields 

( )
( / ) (1)

11 (1) /1

N
y

Ec
A

λ θ

λ ρ λ β

+
=

− −
.                                                                                                                                  (42) 

 
6. OPTIMAL COST STRUCTURE 
 
We develop a steady state total expected cost function per unit time for the N-policy two-phase MX/EK/1 gated 
queueing system with startup and server break downs, in which N is a decision variable. With the cost structure being 
considered, the objective is to determine the optimal N-policy, so as to minimize this function. 
 
Let 
Ch = holding cost per unit time for each customer present in the system, 
C0 = cost per unit time for keeping the server on and in operation, 
Cm = startup cost per unit time per cycle, 
Cs = setup cost per cycle, 
Cb = breakdown cost per unit time for the unreliable server and 
Cr = reward per unit time for the server being in vacation. 
 
The average cost per unit time is given by 
 

E E EE E 12 3 01 4
E E E E Ec c c c c

T(N) C L(N) C C C C Cm s r0h b
         
         
                  
         

+= + + + + − .                                                   (43) 

 

From equations (34) to (40), it is observed that 
E2
Ec

, 
E3
Ec

 and 
E4
Ec

 are not functions of decision variable N. Hence for 

determination of the optimal operating N-policy, minimizing T(N) in equation (43) is equivalent to minimizing 
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EE 1 01
E E Ec c c

T (N) C L(N) C C Cm s r1 h
     
     
          
     

= + + −
 

 

              
( ) ( ){ }

1

11 (1) /1 1 (1) (1 ) / (1)1(1) / (1 ) N N
N

A Ch y C C C ym s ry k

ρ λ β
ρ λ θ λ

λ θ ρ

 − −    = + − + − + −  
.                    (44) 

 
It is hard to prove that T1(N) is convex. But we now present a procedure that makes it possible to calculate the optimal 
threshold N*. 
 
RESULT 
 
Under the long-run expected average cost criterion, the optimal threshold N* for the model is given by  

(1 )* 1min 1/ ( )
0

p k C Cp m rN p p i y Csi Ci h

λ ρλ
θ θ

 − −  = ≥ − + > +∑  
=    

 

 
Proof: 
Let 1 1(1 (1) / ) / (1 )T Aρ λ β ρ′= − − − ,            

       

p
J yp ii 0

λ= +∑
θ=

  and ,
p

M i yp ii 1
= ∑

=
 where p = 1, 2, 3, . . . . 

 
Then we have  

J / J /C T p p 11h     1 Jk J JJ p p 1p

MMp p 1 1T (p 1) T (p)  (1 )T C  C   Cm s r1 1 J Jp p 1p 1

  
   
   
   
   
          

−λ θ −λ θ −−  − 

− λ+ − = − + − ρ + λ − −
θ −−

 

                                

T yp
J Jp p 1

h(p)
−

= , 

 

where  
C C Ch m rh(p) pJ M 1 Cp p s1k

                     

−= − − λ −ρ +
θ

. 

 

By definition of Jp  , Mp  and T, 

Ch pJ M 0p pk
 
 
 
 

− >  and  pT y 0J Jp p 1
>

−
. 

 
Thus the sign of h (p) determines whether T1(p) increases or decreases. 
 
Let q be the smallest p such that h(p)>0.  Then  
 

1
C C Ch m rh q 1 q 1 J M (1 ) Csq 1 q 1k

  
                   

−+ = + − − λ − ρ ++ + θ
 

              

Ch M1 qk
C C Ch m rqJ M (1 ) Cq q sk

             
+−= − − λ − ρ +

θ  

              h
q

Ch(q) M 0
k

= + > . 

 
Thus, T (p) T (q) for every p>q.1 1>
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Hence, *N =  first p such that   h(p) 0>  

                    
(1 )1min 1/ ( )

0

p k C Cp m rp p i y Csi Ci h

λ ρλ
θ θ

 − −  = ≥ − + > +∑  
=    

. 

 
7. NUMERICAL ILLUSTRATION 
 
In this section we present some examples to illustrate how the cost structure can be utilized to make the decision 
regarding the optimal value N* to minimize the average cost for different values of various parameters. We assume that 
the batch size X follows a geometric distribution with parameter p. 
 
Then, A1(1)= 1/p, A11(1) = 2(1-p)/p2  and  the expected number of customers in the system is given by  
 

L(N) =
1

1
0,0,0 0,0,02 2

1 1 1 1 1

(1) ( (1))1
1 1 (1 ) (1 ) (1 )

N Ny y k k kP P
k p p p

λ λ θρ αλ ρ λ
ρ ρ θ ρ γ ρ β ρ

 +
+ + + + − − − − −

2
1

2 2(1 )1

k
p

λ ρ
β ρ

+
−

 

                 1
2

1

(2 ( 1) ) (2 ( 1) ) 1 1 11 1 1
2(1 ) 22 (1 )1

k k p k k p k
p p pp

ρ λ ρ λ λ α λ λ α
ρ β µ γ β µ γβ ρ

− +       − + + + − − + + + + +       − −         
, 

where 
i

y a yl i li l 1
= ∑ −=

,  y 10 = , l
l 1a p(1 p) ,−= −  

p
λ
µ

ρ = , 11
 
 
  
 

αρ = ρ + γ ’
 

0, 0, 0 1
N

P 1
p ( y (1))

 λ θ
= −ρ − β λ + θ 

 and 1/ p  is the mean size of the arrival batch. 

 
For convenience of computations, the following cost elements are considered. 
 
Case 1: Ch = 5, Co = 100, Cm = 300, Cb = 125, Cr = 25, Cs = 500 
 
Case 2: Ch = 5, Co = 200, Cm = 500, Cb = 250, Cr = 50, Cs = 1250 
 
Case 3: Ch = 5, Co = 400, Cm = 800, Cb = 500, Cr = 100, Cs = 2500 
 
Case 4: Ch = 10, Co = 400, Cm = 800, Cb = 500, Cr = 100, Cs = 2500  
 
Case 5: Ch = 50, Co= 400, Cm = 800, Cb = 500, Cr = 200, Cs = 2500 
 
The joint optimum threshold value N* and its minimum expected cost T(N*) for the above five cost cases are shown in 
Table 1 for ( , , , , , ) (10,5,4,0.1,0.5,3)p kµ β γ α =  and for various values of ( , )λ θ . We observe from Table 1 
that (i) N* and T(N*) increase as λ  increases for any case, (ii) N* remains constant and T(N*) decreases for increase in 
the values of θ  from 2 to 5.   
 
 
Table 1. The effect of ( , )λ θ  on the optimal threshold value N* and the minimum expected cost for the five cost cases 
( , , , , , ) (10,5,0.4,0.1,0.5,3)p kµ β γ α = . 
 

 ( , )λ θ  (0.4, 2) (0.6, 2) (1.8, 2) (1.0, 2) (0.6, 2) (0.6, 3) (0.6, 4) (0.6, 5) 

Case 1 N* 

T(N*) 
22 
41.23 

27 
60.52 

30 
76.49 

32 
89.72 

26 
60.54 

26 
58.60 

26 
57.63 

26 
57.04 

Case 2 N* 

T(N*) 
35 
66.15 

41 
102.61 

46 
133.97 

50 
161.09 

41 
102.61 

41 
100.54 

41 
99.50 

41 
98.88 

Case 3 N* 

T(N*) 
49 
101.57 

58 
171.79 

66 
234.86 

71 
292.00 

57 
171.79 

57 
169.45 

57 
168.26 

57 
167.55 

Case 4 N* 

T(N*) 
34 
130.65 

36 
204.28 

46 
266.33 

50 
320.83 

41 
203.50 

41 
199.93 

41 
198.14 

41 
197.06 

Case 5 N* 

T(N*) 
15 
183.47 

18 
286.24 

20 
366.96 

21 
429.71 

18 
286.24 

18 
274.89 

18 
269.19 

18 
265.45 
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The optimum value of N, N* and its minimum expected cost T(N*) for the five cost cases are shown in Table 2 for 
( , , , , , ) (0.6, 2,0.4,0.1,0.5,3)p kλ θ γ α =  and for various values of ( , )µ β .  We observe from Table 2 that (i) 
T(N*) decreases as µ  and β  increases for any case, (ii) N* shows increasing trend as µ  increases from 7 to 13 and 
(iii) N* does not change  as β  increases from 4 to 7. 
 
Table 2 The effect of ( , )µ β  on the optimal threshold value N* and the minimum expected cost for the five cost cases 
( , , , , , ) (0.6, 2,0.4,0.1,0.5,3)p kλ θ γ α = . 
 

 ( , )µ β  (7, 5) (9, 5) (11, 5) (13, 5) (10, 4) (10, 5) (10,6) (10,7) 

Case 1 N* 

T(N*) 
26 
67.71 

27 
62.38 

27 
59.00 

28 
56.66 

27 
64.71 

27 
60.52 

27 
57.73 

27 
55.74 

Case 2 N* 

T(N*) 
40 
116.93 

41 
106.32 

42 
99.56 

42 
94.88 

42 
112.56 

42 
102.61 

42 
95.97 

42 
91.23 

Case 3 N* 

T(N*) 
56 
201.42 

58 
179.48 

59 
165.48 

60 
155.78 

58 
194.76 

58 
171.79 

58 
156.48 

58 
145.54 

Case 4 N* 

T(N*) 
39 
232.27 

40 
210.97 

41 
197.40 

42 
187.99 

41 
223.59 

41 
203.50 

41 
190.12 

41 
180.57 

Case 5 N* 

T(N*) 
17 
322.13 

17 
295.12 

18 
278.69 

18 
267.16 

18 
300.03 

18 
286.24 

18 
277.08 

18 
270.56 

 
The optimal value of N, N* and its minimum expected cost T(N*) are shown in Table 3 for 
( , , , , , ) (0.6,10, 5,2,0.5,3)p kλ µ β θ =  and for different values of ( , )γ α .  It is noticed from Table 3 that (i) N* 
is insensitive and T(N*) decreases as γ  increases from 0.3 to 0.6 and (ii) N* is insensitive and T(N*) increases as α  
increases from 0.05 to 0.20 for any case. 
 
Table 3 The effect of ( , )γ α  on the optimal threshold value N* and the minimum expected cost for the five cost cases 
( , , , , , ) (0.6,10,5,2,0.5,3)p kλ µ β θ = . 
 

 ( , )γ α  (.3, .1) (.4, .1) (.5, 0.) (.6, .1) (.4, .5) (.4, .1) (.4, .15) (.4, .20) 

Case 1 N* 

T(N*) 
26 
62.23 

26 
60.54 

26 
59.58 

26 
58.97 

27 
58.34 

27 
60.52 

27 
62.71 

27 
64.91 

Case 2 N* 

T(N*) 
41 
105.62 

41 
102.61 

41 
100.87 

41 
99.73 

42 
98.45 

42 
102.61 

42 
106.77 

42 
110.95 

Case 3 N* 

T(N*) 
57 
177.60 

57 
171.81 

57 
168.37 

57 
166.13 

59 
163.45 

59 
171.79 

59 
180.13 

59 
188.4 

Case 4 N* 

T(N*) 
40 
209.56 

40 
203.53 

40 
200.03 

40 
197.75 

41 
195.17 

41 
203.50 

41 
211.86 

41 
220.21 

Case 5 N* 

T(N*) 
17 
296.45 

17 
286.35 

17 
280.91 

17 
277.53 

18 
274.66 

18 
286.24 

18 
297.95 

18 
309.80 

 
The optimum value of N, N* and its minimum expected cost T(N*) are shown in Table 4 for 
( , , , , , ) (0.6,10,5,2,0.4,0.1)λ µ β θ γ α =  and for different values of ( , )p k .  From Table 4, we find that (i) N* 
and T(N*) increases as p decreases and (ii) N* increases and T(N*) decreases as k increases from 1 to 3 for any case. 
 
 
Table 4 The effect of ( , )p k  on the optimal threshold value N* and the minimum expected cost for the five cost cases 
( , , , , , ) (0.6,10,5,2,0.4,0.1)λ µ β θ γ α = . 
 

 ( , )p k  1 0.5 0.25 (0.2, 1) (0.2, 2) (0.2, 3) 

Case 1 N* 

T(N*) 
21 
31.53 

27 
60.52 

32 
96.95 

15 
80.91 

22 
67.02 

27 
60.52 

Case 2 N* 

T(N*) 
31 
47.04 

41 
102.61 

51 
180.79 

23 
135.78 

34 
113.04 

41 
102.61 

Case 3 N* 

T(N*) 
44 
64.60 

58 
171.79 

64 
340.43 

33 
219.67 

47 
186.75 

58 
171.79 
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Case 4 N* 

T(N*) 
31 
92.54 

41 
203.50 

50 
360.63 

23 
268.58 

33 
223.99 

41 
203.50 

Case 5 N* 

T(N*) 
14 
136.74 

18 
286.24 

21 
441.59 

10 
410.49 

14 
326.54 

18 
286.24 

 
Overall, we conclude that  
 
• , ,  andkα β γ  do not affect N* 
• θ  rarely affects N* 
• λ  affects N* significantly 
• Ch and Cs have much stronger effect on N* than , ,  and λ θ µ α . 
 
8. CONCLUSIONS 
 
Two-phase N-policy MX/EK/1 queueing system with startup times and server breakdown was analyzed. Some of the 
system performance measures are derived. The cost function is formulated to determine the optimum value of N and 
hence minimum expected cost. Sensitivity analysis is performed for the optimum value of N, expected system length 
and minimum expected cost with various system parameters and cost elements for three specific batch size distributions 
viz. Deterministic, Geometric and positive Poisson. This queueing system is a generalization of the existing queueing 
systems of this type. 
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