# UNIQUENESS OF MEROMORPHIC FUNCTIONS

# Subhas S. Bhoosnurmath\* & Smita R Kabbur Department of Mathematics, Karnatak University, Dharwad-580003, India

(Received on: 22-05-12; Revised & Accepted on: 04-08-12)

### **ABSTRACT**

In this paper, we investigate the uniqueness of meromorphic functions concerning differential polynomials with weighted sharing method. Also study the uniqueness of meromorphic functions sharing a small function and a positive answer is given to the open problem possed by Dyavanal [11].

2000 Mathematics Subject Classification: 30D35.

**Keywords:** Uniqueness, Meromorphic, Shared Values.

### 1. INTRODUCTION AND MAIN RESULTS

In this paper, meromorphic function means meromorphic in the complex plane. We adopt the standard notations in Nevanlinna theory of meromorphic functions as explained in [1,2]. Let E denote any set of positive real numbers of finite linear measure, not necessarily the same at each occurrence. For a nonconstant meromorphic function f, we denote T(r, f) the Nevanlinna characteristic of f and S(r, f) any quantity satisfying

$$S(r,f) = o\{T(r,f)\} \ (r \to \infty, r \neq E).$$

Let f and g be two nonconstant meromorphic functions, and let a be a finite value. We say that f and g share the value a CM, provided that f - a and g - a have the same zeros with same multiplicities. Similarly, we say that f and g share the value a IM, provided that f - a and g - a have the same zeros with ignoring multiplicities.

For convenience ,we give following notations and definitions .

For any constant a, we denote by  $N_k(r, \frac{1}{f-a})$  the counting function for zeros of f(z) - a with multiplicity no more than k and  $\overline{N}_k(r, \frac{1}{f-a})$  the corresponding for which multiplicity is not counted. Let  $N_{(k}(r, \frac{1}{f-a}))$  be the counting function for zeros of f(z) - a with multiplicity at least k and  $\overline{N}_{(k}(r, \frac{1}{f-a}))$  the corresponding for which the multiplicity is not counted.

Set 
$$N_k(r, \frac{1}{f-a}) = \overline{N}(r, \frac{1}{f-a}) + \overline{N}_{(2}(r, \frac{1}{f-a}) + \dots + \overline{N}_{(k}(r, \frac{1}{f-a}))$$

We define,

$$\delta_k(a, f) = 1 - limsup_{r \to \infty} \frac{N_k(r, \frac{1}{f - a})}{T(r, f)}$$

$$\Theta(a,f) = 1 - limsup_{r \to \infty} \frac{\overline{N}(r, \frac{1}{f-a})}{T(r,f)}$$

Let l be non-negative integer or  $\infty$ . For any  $a \in C \cup \infty$ , we denote by  $E_l(a, f)$  the set of all a-points of f(z) where an a-points of multiplicity m is counted m times if  $m \le l$  and l+1 times if m > l. If  $E_l(a, f) = E_l(a, g)$ , we say that f and g share the value a with weight l. When l = 0, f and g share 1 IM.[8]

In 2007, Bhoosnurmath and Dyavanal[3] proved the following theorem.

**Theorem A.** Let f and g be two nonconstant meromorphic functions, and n, k be two positive integers with n > 3k + 8. If  $[f^n]^{(k)}$  and  $[g^n]^{(k)}$  share 1 CM then either f = tg for some  $n^{th}$  root of unity or  $f(z) = c_1 e^{cz}$  and  $g(z) = c_2 e^{-cz}$ , where  $c, c_1$  and  $c_2$  are constants satisfying  $(-1)^k (c_1 c_2)^n (nc)^{2k} = 1$ 

**Theorem B.** Let f and g be two nonconstant meromorphic functions satisfying  $\Theta(\infty, f) > \frac{3}{n+1}$  and let n, k be two positive integers with  $n \ge 3k + 13$ . If  $[f^n(f-1)]^{(k)}$  and  $[g^n(g-1)]^{(k)}$  share 1 CM, then  $f(z) \equiv g(z)$ 

In 2008, A Banerjee[4] proved the following theorem.

**Theorem C.** Let f and g be two trancedental meromorphic functions and let n,k be two positive integers with n > 9k + 14. Suppose  $[f^n]^{(k)}$  and  $[g^n]^{(k)}$  share a nonzero constant b IM, then either  $f(z) = c_1 e^{cz}$  and  $g(z) = c_2 e^{-cz}$ , where  $c, c_1$  and  $c_2$  are constants satisfying  $(-1)^k (c_1 c_2)^n (nc)^{2k} = b^2$  or f = tg for some  $n^{th}$  root of unity.

In 2010, Pulak Sahoo[5] obtained the following result.

**Theorem D.** Let f and g be two trancedental meromorphic functions and let  $n(\geq 1), k(\geq 1)$  and  $m(\geq 0)$  be three integers. Let  $[f^n(f-1)^m]^{(k)}$  and  $[g^n(g-1)^m]^{(k)}$  share 1 IM. Then one of the following holds:

i) when m=0, if  $f(z) \neq \infty$ ,  $g(z) \neq \infty$  and n > 9k+14, then either  $f(z) = c_1 e^{cz}$  and  $g(z) = c_2 e^{-cz}$ , where  $c, c_1$  and  $c_2$  are constants satisfying  $(-1)^k (c_1 c_2)^n (nc)^{2k} = 1$  or f = tg for a constant t such that  $t^n = 1$ .

ii) when 
$$m = 1$$
,  $n > 9k + 20$  and  $\Theta(\infty, f) > \frac{2}{n}$ , the either  $[f^n(f-1)^m]^{(k)}[g^n(g-1)^m]^{(k)} \equiv 1$  or  $f = g$ .

iii) when  $m \ge 2$ , n > 9k + 4m + 16 then either  $[f^n(f-1)^m]^{(k)}[g^n(g-1)^m]^{(k)} \equiv 1$  or f = g or f and g satisfy the algebraic equation  $R(f,g) \equiv 0$  where  $R(x,y) = x^n(x-1)^m - y^n(y-1)^m$ .

In 2011, Xiao Bin Zhang,JunFeng Xu[6] considered more general differential polynomial and obtained the following theorem:

**Theorem E.** Let f and g be two non constant meromorphic functions and  $a(z) (\neq 0, \infty)$  be small function with respect to f. Let n,k and m be three positive integers with n>3k+m+7 and  $P(\omega)=a_m\omega^m+a_{m-1}\omega^{m-1}+\cdots+a_0$  where  $a_0\neq 0, a_1, \cdots a_{m-1}, a_m\neq 0$  are complex constants.If  $[f^nP(f)]^{(k)}$  and  $[g^nP(g)]^{(k)}$  share a CM, f and g share  $\infty$  IM, then

i) f(z) = tz for a constant t such that  $t^d = 1$ ,

where 
$$d = GCD(n + m, \dots, n + m - i, \dots, n), a_{m-i} \neq 0$$
, for some  $i = 0, 1, \dots, m$ 

ii) f and g satisfy the algebraic equation R(f,g) = 0,

where 
$$R(\omega_1, \omega_2) = \omega_1^n (a_m \omega_1^m + a_{m-1} \omega_1^{m-1} + \dots + a_0) - \omega_2^n (a_m \omega_2^m + a_{m-1} \omega_2^{m-1} + \dots + a_0)$$

iii)
$$[f^n P(f)]^{(k)}[g^n P(g)]^{(k)} = a^2$$
.

In 2009, using the notion of weighted sharing of values, Hong yan Xu and Ting Bin Cao[7] obtained following result.

**Theorem F.** Let f and g be two nonconstant entire functions and let m, n and k be three positive integers. If  $[f^n P(f)]^{(k)}$  and  $[g^n P(g)]^{(k)}$  share

- i) (1,0) with  $n \ge 5m + 5k + 8$
- ii) (1,1) with  $n \ge \frac{9}{2}m + 4k + \frac{9}{2}$
- iii) (1,2) with  $n \ge 3m + 3k + 5$
- (1) when  $P(z) = a_m z^m + a_{m-1} z^{m-1} + \dots + a_1 z + a_0$ , then either f = tg, for a constant t such that  $t^d = 1$  where  $d = (n + m, \dots, n + m i, \dots, n), a_{m-i} \neq 0$  for some  $i = 0, 1, 2, \dots, m$  or f and g satisfy the algebraic equation R(f, g) = 0, where,  $R(\omega_1, \omega_2) = \omega_1^n (a_m \omega_1^m + a_{m-1} \omega_1^{m-1} + \dots + a_0) \omega_2^n (a_m \omega_2^m + a_{m-1} \omega_2^{m-1} + \dots + a_0)$

(2) When P(z) = 0, then either  $f = \frac{c_1}{\sqrt{c_0}e^{cz}}$ ,  $g = \frac{c_2}{\sqrt{c_0}e^{-cz}}$  where  $c_1, c_2$  and c are three constants satisfying

$$(-1)^k (c_1c_2)^n (nc)^{2k} = 1$$
 or  $f = tg$  for some constant t such that  $t^n = 1$ .

In this paper with the notion of weighted sharing of values, we investigate result for meromorphic function.

**Theorem 1.** Let f and g be two nonconstant transcendental meromorphic functions and let  $n(\geq 1), k(\geq 1), l(\geq 0)$  be three integers. Let  $P(z) = a_m z^m + a_{m-1} z^{m-1} + \dots + a_0$  where  $a_0 \neq 0, a_1, \dots a_{m-1}, a_m \neq 0$  are complex constants. If  $[f^n P(f)]^{(k)}$  and  $[g^n P(g)]^{(k)}$  share (1, l) and if

i) 
$$l \ge 2$$
 and  $n > 3k + 2m^* + m + 8$ 

ii) 
$$l = 1$$
 and  $n > 5k + 2m^* + m + 11$ 

iii) 
$$l = 0$$
 and  $n > 9k + 2m^* + 4m + 14$ 

then either

f=tg, for a constant t such that  $t^d=1$  where d=(n+m,...,n+m-i,...,n),  $a_{m-i}\neq 0$  for some i=0,1,2,...,m or f and g satisfy the algebraic equation R(f,g)=0,

where 
$$R(\omega_1, \omega_2) = \omega_1^n (a_m \omega_1^m + a_{m-1} \omega_1^{m-1} + \dots + a_0) - \omega_2^n (a_m \omega_2^m + a_{m-1} \omega_2^{m-1} + \dots + a_0)$$

**Theorem 2.** Let f and g be two nonconstant entire functions and n, m and k be three positive integers. If  $[f^n P(f)]^{(k)}$  and  $[g^n P(g)]^{(k)}$  share (1, l) and if

i) 
$$l \ge 2$$
 and  $n > 2k + m + 2m^* + 3$ 

ii) 
$$l = 1$$
 and  $n > 3k + 3m + 2m^* + 5$ 

iii) 
$$l = 0$$
 and  $n > 5k + 4m + 2m^* + 7$ 

then conclusion of Theorem 1 still holds.

In 2004, Lin and Yi[ 12] proved the following theorems.

**Theorem G.** Let f and g be two noncontant meromorphic functions,  $n \ge 12$  an integer. If  $f^n(f-1)f'$  and  $g^n(g-1)g'$  share the value 1 CM, then  $g = (n+2)(1-h^{n+1})/(n+1)(1-h^{n+2})$ ,

$$f = (n+2)h(1-h^{n+1})/(n+1)(1-h^{n+2})$$
, where h is a nonconstant meromorphic function.

**Theorem H.**Let f and g be two noncontant meromorphic functions,  $n \ge 13$  an integer. If  $f^n(f-1)^2 f'$  and  $g^n(g-1)^2 g'$  share the value 1 CM, then f(z) = g(z).

In 2011, Renukadevi S Dyavanal [11] obtained following results.

**Theorem I.** Let f and g be two non-constant meromorphic functions, whose zeros and poles are of multiplicities at least s, where s is a positive integer. Let  $n \ge 2$  be an integer satisfying  $(n+1)s \ge 12$ . If  $f^n f'$  and  $g^n g'$  share the value 1 CM, then either f = dg for some (n+1) th root of unity d or  $f(z) = c_2 e^{-cz}$  and  $g(z) = c_1 e^{cz}$ , where c,  $c_1$  and  $c_2$  are constants satisfying  $(c_1 c_2)^{n+1} c^2 = -1$ 

**Theorem J.** Let f and g be two non-constant meromorphic functions, whose zeros and poles are of multiplicities at least s, where s is a positive integer. Let n be an integer satisfying

$$(n-2)s \geq 10$$
.

If 
$$f^n(f-1)f'$$
 and  $g^n(g-1)g'$  share the value 1 CM, then  $g = (n+2)(1-h^{n+1})/(n+1)(1-h^{n+2})$ ,  $f = (n+2)h(1-h^{n+1})/(n+1)(1-h^{n+2})$ , where  $h$  is a non-constant meromorphic function.

**Theorem K.** Let f and g be two non-constant meromorphic functions, whose zeros and poles are of multiplicities at least s, where s is a positive integer. Let n be an integer satisfying  $(n-3)s \ge 10$ . If  $f^n(f-1)^2f'$  and  $g^n(g-1)^2g'$  share the value 1 CM, then  $f \equiv g$ .

At the end of this paper[11], she posed the question: Can the differential polynomials in theorems I, J and K be replaced by the differential polynomials of the form  $\lceil f^n \rceil^{(k)}$  and  $\lceil f^n (f-1)^{(k)} \rceil^{(k)}$ ?

In this paper we consider more general differential polynomial of the form  $[f^n P(f)]^{(k)}$ , where P(f) is as defined in Theorem 1, and give answer to open question (4.4) of [11]

**Theorem 3.** Let f and g be trancendental meromorphic functions, whose zeros and poles are of multiplicity at least s. where s is a positive integer  $a(z) \neq 0, \infty$  be a small function with respect to f with finitely many zeros and poles. Let n, k and m be three positive integers satisfying (n-m)s > 3k + 7. If  $[f^n P(f)]^{(k)}$  and  $[g^n P(g)]^{(k)}$  share a CM and f and g share  $\infty$  IM, then one of the following cases holds:

i) f(z) = tg(z) for a constant t such that  $t^d = 1$ 

where 
$$d = (n + m, ..., n + m - i, ..., n), a_{m-i} \neq 0$$
 for some  $i = 0, 1, ..., m$ 

ii) f and g satisfy the algebraic equation R(f,g) = 0,

where, 
$$R(\omega_1, \omega_2) = \omega_1^n (a_m \omega_1^m + a_{m-1} \omega_1^{m-1} + \dots + a_0) - \omega_2^n (a_m \omega_2^m + a_{m-1} \omega_2^{m-1} + \dots + a_0)$$

**Remark**: We set  $P(z) = (z - 1)^m$ . With  $a_m = 1$ ,  $a_0 = -1$  and under condition (ii) of theorem 3, we have following important results.

- i) When m=0, ns>3k+7 and if  $[f^n]^{(k)}$  and  $[g^n]^{(k)}$  share a CM and  $\infty$  IM then either  $f(z)=c_1e^{cz}$  and  $g(z)=c_2e^{-cz}$ , where  $c,c_1$  and  $c_2$  are constants satisfying  $(-1)^k(c_1c_2)^n(nc)^{2k}=1$  or f=tg for a constant t such that  $t^n=1$ .
- ii) When m=1, (n-1)s>3k+7 and if  $[f^n(f-1)]^{(k)}$  and  $[g^n(g-1)]^{(k)}$  share a CM and  $\infty$  IM then  $f\equiv g$ .
- iii) When  $m \ge 2$ , (n-2)s > 3k+7 and if  $[f^n(f-1)^m]^{(k)}$  and  $[g^n(g-1)^m]^{(k)}$  share a CM and  $\infty$  IM then f and g satisfy the algebraic equation R(f,g)=0, where  $R(\omega_1,\omega_2)=\omega_1^n(\omega_1-1)^m-\omega_2^n(\omega_2-1)^m$ .

Remarks (i),(ii) and (iii) give answers to open problem (4.4) of [11].

### 2. LEMMAS

In order to prove our results, we need the following lemmas.

**Lemma1 [1].** Let  $P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_0$ , where  $a_n \neq 0$ ,  $a_{n-1}, \dots, a_0$  are constants. If f(z) is a meromorphic function, then

$$T(r, P(f)) = nT(r, f) + S(r, f).$$

**Lemma 2[12].** Let f(z) a nonconstant meromorphic and p, k be two positive integer. Then

$$N_{p}(r, \frac{1}{f^{(k)}}) \le T(r, f^{(k)}) - T(r, f) + N_{p+k}(r, \frac{1}{f}) + S(r, f)$$

$$N_{p}(r, \frac{1}{f^{(k)}}) \le k\overline{N}(r, f) + N_{p+k}(r, \frac{1}{f}) + S(r, f)$$

**Lemma 3 [2].** Let f(z) be nonconstant meromorphic functions and k be a positive integer. Suppose that  $f^{(k)} \neq 0$ , then

$$N(r, \frac{1}{f^{(k)}}) \le N(r, \frac{1}{f}) + k\overline{N}(r, f) + S(r, f)$$

**Lemma 4[6].** Let f(z) and g(z) two be nonconstant meromorphic function and n,k be two positive integers and a be a finite nonzero constant. If f(z) and g(z) share a CM and  $\infty$ IM, then one of the following cases holds:

i)
$$T(r,f) \le N_2(r,\frac{1}{f}) + N_2(r,\frac{1}{g}) + 3\overline{N}(r,f) + S(r,g)$$
 the same inequality holds for  $T(r,g)$ ; ii) $fg = a^2$ , iii) $f = g$ .

**Lemma 5**[ 13]. Let f(z) and g(z) two be nonconstant meromorphic functions,  $k(\ge 1)$ ,  $l(\ge 0)$  be two integers. Suppose that  $f^{(k)}$  and  $g^{(k)}$  share (1, l). If one of the following conditions holds,

i) 
$$l \ge 2$$
 and  $\Delta_1 = 2\Theta(\infty, f) + (k+2)\Theta(\infty, g) + \Theta(0, f) + \Theta(0, g) + \delta_{k+1}(0, f) + \delta_{k+1}(0, g) > (k+7)$  © 2012, IJMA. All Rights Reserved

ii) l=1 and  $\Delta_2=(k+3)\Theta(\infty,f)+(k+2)\Theta(\infty,g)+\Theta(0,f)+\Theta(0,g)+2\delta_{k+1}(0,f)+\delta_{k+1}(0,g)>2k+9$ iii) l=0 and  $\Delta_3=(2k+4)\Theta(\infty,f)+(2k+3)\Theta(\infty,g)+\Theta(0,f)+\Theta(0,g)+3\delta_{k+1}(0,f)+2\delta_{k+1}(0,g)>4k+13$  then either  $f^{(k)}g^{(k)}\equiv 1$  or f(z)=g(z).

Taking N(r, f) = N(r, g) = 0 and proceeding as in lemma 6[12], we get following lemma.

**Lemma 6.** Let f(z) and g(z) two be nonconstant entire functions,  $k(\ge 1), l(\ge 0)$  be two integers. Suppose that  $f^{(k)}$ and  $a^{(k)}$  share (1, l). If one of the following conditions holds,

i)
$$l \ge 2$$
 and  $\Delta_4 = \Theta(0, f) + \Theta(0, g) + \delta_{k+1}(0, f) + \delta_{k+1}(0, g) > 3$   
ii) $l = 1$  and  $\Delta_5 = \Theta(0, f) + \Theta(0, g) + 2\delta_{k+1}(0, f) + \delta_{k+1}(0, g) > 4$ 

iii)
$$l = 0$$
 and  $\Delta_6 = \Theta(0, f) + \Theta(0, g) + 3\delta_{k+1}(0, f) + 2\delta_{k+1}(0, g) > 6$  then either  $f^{(k)}g^{(k)} \equiv 1$  or  $f(z) = g(z)$ .

**Lemma 7[6].** let f and g be two nonconstant meromorphic functions, let n and k be two integers with n > k + 2, let  $P(z) = a_m z^m + a_{m-1} z^{m-1} + \dots + a_0$  where  $a_0 \neq 0, a_1, \dots a_{m-1}, a_m \neq 0$  are constants, and let  $a(z) \neq 0, \infty$  be small function with respect to f with finitely many zeros and poles.

If  $[f^n P(f)]^{(k)}[g^n P(g)]^{(k)} = a^2$  and f and g share  $\infty$  IM, then P(z) is reduced to a nonzero monomial, namely,  $P(z) = a_i z^i \neq 0$  for some i = 0, 1, ..., m.

### 3. PROOF OF THEOREMS

### Proof of theorem 1.

Let 
$$F = f^n P(f)$$
 and  $G = g^n P(g)$ 

Then we have,

$$\begin{split} \Theta(0,f) &= 1 - \overline{\lim}_{r \to \infty} \frac{\overline{N}(r,1/F)}{T(r,F)} \\ &= 1 - \overline{\lim}r \to \infty \frac{\overline{N}(r,1/f^n) + \overline{N}(r,1/P(f))}{T(r,F)} \\ &\geq 1 - \frac{(1+m^*)T(r,f)}{(n+m)T(r,f)}, \end{split}$$

Therefore, 
$$\Theta(0, f) \ge \frac{n + m - 1 - m^*}{n + m}$$

where 
$$m^* = 0$$
 if  $m = 0$  and  $m^* = 1$  if  $m \ge 1$ 

Similarly, 
$$\Theta(0, G) \ge \frac{n+m-1-m^*}{n+m}$$

Next we have,

Next we have , 
$$\delta_{k+1}(0,f) = 1 - \overline{\lim}_{r \to \infty} \frac{N_{k+1}(r,1/F)}{T(r,F)}$$
 
$$\geq 1 - \overline{\lim}_{r \to \infty} \frac{\frac{(k+1)\overline{N}(r,1/f) + N_{k+1}(r,1/P(f))}{(n+m)T(r,f)}}{\frac{(k+1)\overline{N}(r,\frac{1}{f}) + mT(r,f)}{(n+m)T(r,f)}}$$
 
$$\geq 1 - \overline{\lim}_{r \to \infty} \frac{(k+1)\overline{N}(r,\frac{1}{f}) + mT(r,f)}{(n+m)T(r,f)}$$
 
$$\geq 1 - \frac{m+k+1}{n+m}$$

Therefore, 
$$\delta_{k+1}(0, f) \ge \frac{n-k-1}{n+m}$$

Similarly, 
$$\delta_{k+1}(0,G) \ge \frac{n-k-1}{n+m}$$

$$\Theta(\infty, f) = 1 - \overline{\lim}_{r \to \infty} \frac{\overline{N}(r, F)}{T(r, F)}$$

$$= 1 - \overline{\lim}_{r \to \infty} \frac{\overline{N}(r, F)}{T(r, F)}$$

$$\geq 1 - \frac{T(r, f)}{(n + m)T(r, f)},$$

Therefore, 
$$\Theta(\infty, f) \ge \frac{n+m-1}{n+m}$$

Since  $F^{(k)}$  and  $G^{(k)}$  share (1, l) we consider following three cases.

Case 1: Let 
$$l \ge 2$$
,
$$\Delta_1 = (k+2)\Theta(\infty,G) + 2\Theta(\infty,F) + \Theta(0,F) + \Theta(0,G) + \delta_{k+1}(0,F) + \delta_{k+1}(0,G)$$

$$\ge (k+4)\left(\frac{n+m-1}{n+m}\right) + 2\left(\frac{n+m-1-m^*}{n+m}\right) + 2\left(\frac{n-k-1}{n+m}\right)$$

$$= (k+4)\left(1 - \frac{1}{n+m}\right) + 2\left(1 - \frac{1+m^*}{n+m}\right) + 2\left(\frac{n-k-1}{n+m}\right)$$

$$= (k+6) - \left(\frac{k+4}{n+m} + \frac{2+2m^*}{n+m} - \frac{2(n-k-1)}{n+m}\right)$$

$$= (k+8) - \left(\frac{3k+2m^*+2m+8}{n+m}\right)$$

from(i) of lemma(5), we have  $n + m \le 3k + 2m^* + 2m + 8$  i.e  $n \le 3k + 2m^* + m + 8$ 

which contradicts our hypothesis that  $n > 3k + 2m^* + m + 8$ .

By lemma (5), we have either  $F^{(k)}G^{(k)} \equiv 1$  or  $F \equiv G$ 

**Case 2:** Let l = 1

$$\begin{split} &\Delta_2 = (k+2)\Theta(\infty,G) + (k+3)\Theta(\infty,F) + \Theta(0,F) + \Theta(0,G) + 2\delta_{k+1}(0,F) + \delta_{k+1}(0,G) \\ &\geq (2k+5)\left(\frac{n+m-1}{n+m}\right) + 2\left(\frac{n+m-1-m^*}{n+m}\right) + 3\left(\frac{n-k-1}{n+m}\right) \\ &= (2k+5)\left(1-\frac{1}{n+m}\right) + 2\left(1-\frac{1+m^*}{n+m}\right) + 3\left(\frac{n-k-1}{n+m}\right) \\ &= (2k+7) - \left(\frac{2k+5}{n+m} + \frac{2+2m^*}{n+m} - \frac{3(n-k-1)}{n+m}\right) \\ &= (2k+10) - \left(\frac{5k+2m^*+3m+10}{n+m}\right) \end{split}$$

From (ii) of lemma(5), we have  $n \le 5k + 2m^* + 2m + 10$ 

which contradicts our hypothesis that  $n > 5k + 2m^* + m + 10$ .

By lemma (5), either  $F^{(k)}G^{(k)} \equiv 1$  or  $F \equiv G$ .

**Case 3:** let l = 0

$$\begin{split} &\Delta_3 = (2k+4)\Theta(\infty,F) + (2k+3)\Theta(\infty,G) + \Theta(0,F) + \Theta(0,G) + 3\delta_{k+1}(0,F) + 2\delta_{k+1}(0,G) \\ &\geq (4k+7)\left(\frac{n+m-1}{n+m}\right) + 2\left(\frac{n+m-1-m^*}{n+m}\right) + 5\left(\frac{n-k-1}{n+m}\right) \\ &= (4k+7)\left(1-\frac{1}{n+m}\right) + 2\left(1-\frac{1+m^*}{n+m}\right) + 5\left(\frac{n-k-1}{n+m}\right) \\ &= (4k+9) - \left(\frac{4k+7}{n+m} + \frac{2+2m^*}{n+m} - \frac{5(n-k-1)}{n+m}\right) \\ &= (4k+14) - \left(\frac{9k+2m^*+5m+14}{n+m}\right) \end{split}$$

From (iii) of lemma(5), we have  $n \le 9k + 2m^* + 4m + 14$ 

which contradicts our hypothesis that  $n > 5k + 2m^* + m + 10$ .

By lemma (5), either  $F^{(k)}G^{(k)} \equiv 1$ , or  $F \equiv G$ .

Suppose  $F^{(k)}G^{(k)} \equiv 1$  then by lemma (7), P(z) as defined in Theorem 1 reduces to a nonzero monomial. That is

$$P(z) = a_i z^i \neq 0$$
 for some  $i = 01, 2, ..., m$ .

By hypothesis of theorem (1), we arrive at a contradiction.

Hence we deduce that  $F(z) \equiv G(z)$ , that is

$$f^{n}(a_{m}f^{m} + a_{m-1}f^{m-1}... + a_{0}) = g^{n}(a_{m}g^{m} + a_{m-1}g^{m-1}... + a_{0})$$

Let h = f/g. If h is a constant then substituting f = gh, we deduce,

$$a_m g^{n+m} (h^{n+m} - 1) + a_{m-1} g^{n+m-1} (h^{n+m-1} - 1) + \dots + a_0 g^n (h^n - 1) = 0$$
 © 2012, IJMA. All Rights Reserved

which implies that  $h^d = 1$  where  $d = (n + m, ..., n + m - i, ..., n), a_{m-i} \neq 0$  for some i = 0, 1, ..., m

Thus f(z) = tg(z) for a constant t such that  $t^d = 1$ ,

where  $d = (n + m, ..., n + m - i, ..., n), a_{m-i} \neq 0$ , for some i = 0, 1, ..., m.

If h is not a constant then f and g satisfy the algebraic equation R(f,g) = 0,

where 
$$R(\omega_1, \omega_2) = \omega_1^n (a_m \omega_1^m + a_{m-1} \omega_1^{m-1} + \dots + a_0) - \omega_2^n (a_m \omega_2^m + a_{m-1} \omega_2^{m-1} + \dots + a_0)$$

This proves the theorem.

#### Proof of theorem 2.

Since f and g are entire functions N(r, f) = N(r, g) = 0. Proceeding as in theorem 1 and using lemma (5), we easily prove theorem 2.

### Proof of theorem 3.

Let 
$$F = [f^n P(f)]^{(k)}$$
,  $G = [g^n P(g)]^{(k)}$ ,  $F_1 = F/a$ ,  $G_1 = G/a$ ,  $F^* = f^n P(f)$ ,  $G^* = g^n P(g)$ 

then by hypothesis  $F_1$  and  $G_1$  share 1 CM.

By case(i) of lemma (4), we have

$$T(r,F) \le N_2(r,\frac{1}{F}) + N_2(r,\frac{1}{G}) + 3\overline{N}(r,F) + S(r,F) + S(r,G)$$
(1)

By lemma(2), with p = 2, we obtain,

$$T(r,F^*) \le T(r,F) - N_2(r,\frac{1}{F}) + N_{k+2}(r,\frac{1}{F^*}) + S(r,F)$$
(2)

$$N_2(r, \frac{1}{G}) \le N_{k+2}(r, \frac{1}{G^*}) + k\overline{N}(r, G) + S(r, G)$$
 (3)

By (1) and (2), we have

$$T(r, F^*) \le N_2\left(r, \frac{1}{G}\right) + 3\overline{N}(r, F) + N_{k+2}\left(r, \frac{1}{F^*}\right) + S(r, F) + S(r, G)$$

using (3), we get

$$\begin{split} T(r,F^*) & \leq N_{k+2}(r,\frac{1}{G^*}) + k\overline{N}(r,G) + 3\overline{N}(r,F) + N_{k+2}(r,\frac{1}{F^*}) + S(r,F) + S(r,G) \\ & \leq (k+2)\overline{N}\left(r,\frac{1}{g}\right) + N\left(r,\frac{1}{P(G)}\right) + k\overline{N}(r,G) + 3\overline{N}(r,F) + (k+2)\overline{N}\left(r,\frac{1}{f}\right) + N(r,\frac{1}{P(f)}) + S(r,F) + S(r,G) \end{split}$$

By our assumption, zeros and poles are of multiplicities at least s, that is,  $\overline{N}(r,g) \le \frac{1}{s}N(r,g) \le \frac{1}{s}T(r,g)$  and we deduce the above inequality as,

$$\begin{split} T(r,F^*) & \leq \left(\frac{k+2}{s}\right) T(r,g) + mT(r,g) + \frac{k}{s} T(r,g) + \frac{3}{s} T(r,f) + (\frac{k+2}{s}) T(r,f) + mT(r,f) + S(r,F) + S(r,G) \\ & \leq \left(\frac{k+2}{s} + \frac{3}{s} + m\right) T(r,f) + \left(\frac{k+2}{s} + \frac{k}{s} + m\right) T(r,g) + S(r,F) + S(r,G) \end{split}$$

$$(n+m)T(r,f) \le \left(\frac{ms+k+5}{s}\right)T(r,f) + \left(\frac{2k+ms+2}{s}\right)T(r,g) + S(r,F) + S(r,G)$$

$$(ns - k - 5)T(r, f) \le (2k + ms + 2)T(r, g) + S(r, F) + S(r, G)$$

Similarly,

$$(ns - k - 5)T(r, g) \le (2k + ms + 2)T(r, g) + S(r, F) + S(r, G)$$

$$(ns - k - 5)(T(r, f) + T(r, g)) \le (2k + ms + 2)(T(r, f) + T(r, g) + S(r, f) + S(r, g))$$

$$(ns - ms - 3k - 7)(T(r, f) + T(r, g)) \le S(r, f) + S(r, g)$$

which contradicts (n-m)s > 3k + 7

Therefore by Lemma(4), either  $F^{(k)}G^{(k)} \equiv 1$  or  $F \equiv G$ .

Proceeding as in proof of theorem 1 we obtain theorem 3.

### 6. ACKNOWLEDGMENT

This research work is supported by Department of Science and Technology Government of India ,Ministry of Science and Technology, Technology Bhavan, New Delhi under the sanction letter No (*SR/S4/MS*: 520/08)

### REFERENCES

- [1] W.K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs Clarendon Press, Oxford (1964).
- [2] H.X. Yi and C.C. Yang, Uniqueness Theory of Meromorphic Functions, Science Press, Beijing (1995).
- [3] S S Bhoosnurmath and R S Dyavanal, *Uniqueness and Valule Sharing of Meromorphic Functions*, Comput Math.Appl.53(2007), 1191-1205
- [4] A.Banerjee, Uniqueness of certain Non linear Differential Polynomials Sharing the Same value, Int.J.Pure.Appl, 53(2007)
- [5] Pulak Sahoo, Uniqueness of Meromorphic Functions when Two Differential Polynomials Share one value IM, Mat Vesnik 62; 2(2010),169-182.
- [6] Xiao Bin Zhang, Jun-Feng Xu, *Uniqueness of Meromorphic Functions sharing a small function and its applications*, Comput.math.Appl, 61(2011).722-730
- [7] Hong Yan Xu and Ting Bin Cao, *Uniqueness of entire or Meromorphic Functions Sharing One Valulor a Function With Finite Weight*, Jou of Inequalities in pure and applied mathematics, Vol 10(2009), issue 3, Art 88,14 ppS.
- [8] I lahiri, Weighted Value Sharing and uniqueness of meromorphic functions, Complex variables, 46(2001).
- [9] C C yang, O Deficiencies of Differential Polynomials, Math Z., 152(1972), 107-112.
- [10] Q C Zhang, *Meromorphic Functions that Share One small Function With its derivative*, Jou of Inequalities in pure and applied mathematics,6(4), 2005, Art 116.
- [11] Renukadevi S.Dyavanal, *Uniqueness and Value Sharing of Differential Polynomial of Meromorphic Functions*.J.Math.Annal.Appl.374, 335-345,(2011).
- [12] Lin W.C, Yi H X, Uniqueness Theorems for Meromorphic Functions, Indian J. PureAppl . Math, 35, 121-132, (2004).
- [13] Lipei Liu, Uniqueness of Meromorphic Functions and Differential Polynomials, Comput Math.Appl. 56(2008), 3236-3245).

Source of support: Department of Science and Technology Government of India, Ministry of Science and Technology, Technology Bhavan, New Delhi, India, Conflict of interest: None Declared