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ABSTRACT
In this paper,we investigate the uniqueness of meromorphic functions concerning differential polynomials with weighted
sharing method.Also study the uniqueness of meromorphic functions sharing a small function and a positive answer is
given to the open problem possed by Dyavanal[11].
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1. INTRODUCTION AND MAIN RESULTS

In this paper, meromorphic function means meromorphic in the complex plane.We adopt the standard notations in
Nevanlinna theory of meromorphic functions as explained in [1,2]. Let E denote any set of positive real numbers of finite
linear measure,not necessarily the same at each occurence.For a nonconstant meromorphic function f,we denote T(r, f)
the Nevanlinna characteristic of fand S(r, f) any quantity satisfying

S(r.f) = ofT(r, )} (r » co,7 % E).

Let f and g be two nonconstant meromorphic functions,and let a be a finite value. We say that f and g share the
value a CM, provided that f —a and g — a have the same zeros with same multiplicities.Similiarly,we say that f and
g share the value a IM,provided that f —a and g — a have the same zeros with ignoring multiplicities.

For convenience ,we give following notations and definitions .

For any constant a,we denote by N, (r, }%a) the counting function for zeros of f(z) —a with multiplicity no more
than k and Nk)(r,)%a) the corresponding for which multiplicity is not counted.Let N(k(r,)%a) be the counting

function for zeros of f(z) — a with multiplicity atleast k and N(k (r, }%a) the corresponding for which the multiplicity
iS not counted.

—a

1 — 1 — 1 — 1
SEt Nk(r!f_) - N(r,):) +N(2(r,):) + "'+N(k(1”,):)

We define,
M=)
6 (a,f)=1-Ilimsup, . W
)
0(a, f) =1—limsup, W

Let I be non-negative integer or co. For any a € C U oo, we denote by E;(a, f) the set of all a-points of f(z) wherean
a-points of multiplicity m is counted m times if m <l and [ + 1 times if m > LIf E;(a, f) = E;(a, g), we say that
f and g share the value a with weight . When [ =0, f and g share 1 IM.[8]

In 2007, Bhoosnurmath and Dyavanal[3] proved the following theorem.
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Theorem A. Let f and g be two nonconstant meromorphic functions, and n, k be two positive integers with
n > 3k + 8.1f [f*]® and [g"]® share 1 CM then either f = tg for some n* root of unity or f(z) = c;e® and
g(2) = c,e™%, where c,c¢; and ¢, are constants satisfying (—1)*(c,c,)" (nc)?* =1

Theorem B. Let f and g be two nonconstant meromorphic functions satisfying 0 (o, f) > n% and let n, k be two
positive integers with n > 3k + 13. If [f*(f — 1)]% and [g"(g — 1)]® share 1 CM,then f(z) = g(2)

In 2008, A Banerjee[4] proved the following theorem.

Theorem C. Let f and g be two trancedental meromorphic functions and let n,k be two positive integers with
n > 9k + 14.Suppose [f™]% and [g"]® share a nonzero constant b IM,then either f(z) = c;e* and g(z) = c,e™,
where c¢,c; and c, are constants satisfying (—1)* (c;c,)*(nc)?* = b? or f =tg for some n* root of unity.

In 2010, Pulak Sahoo[5] obtained the following result.

Theorem D. Let f and g be two trancedental meromorphic functions and let n(= 1),k(= 1) and m(= 0) be three
integers. Let [f*(f — D™]® and [g" (g — 1)™]% share 1 IM.Then one of the following holds:

i) when m =0 if f(2) # o, g(z) # o and n > 9k + 14, then either f(z) = ;e and g(z) = c,e™, where
c,c;and ¢, are constants satisfying (—1) (c;c;)"(nc)?* =1 or f = tg for a constant ¢ such that t" = 1.

ii) when m = 1, n > 9k + 20 and ©(co, f) > =, the either [ (f — )" ®[g"(g— D)™]® =1 or f = g.

iii) when m > 2, n > 9k + 4m + 16 then either [f*(f — D)™ ]®[g"(g—1D™]® =1 0or f=g or f and g satisfy
the algebraic equation R(f,g) = 0 where R(x,y) = x"(x —1)™ —y"(y — 1)™.

In 2011, Xiao Bin Zhang,JunFeng Xu[6] considered more general differential polynomial and obtained the following
theorem:

Theorem E. Let f and g be two non constant meromorphic functions and a(z)(# 0, ) be small function with
respect to f. Let n,k and m be three positive integers with n > 3k + m+ 7 and P(w) = a, o™ + a,,_;o™ ! +
-+ +a, where ay # 0,a;, " ay,_1,a, + 0 are complex constants.If [f*P(f)]*) and [g"P(g)]* share a CM, f
and g share oo IM, then

i) f(z) = tz for a constant t such that t¢ = 1,

where d = GCD(n+m,--,n+m—1i,---,n),a,_; # 0, forsome i =0,1,---,m

ii) f and g satisfy the algebraic equation R(f,g) = 0,

where R(wq, w;) = @} (@ o + @101+ +ay) — 0} (anwh + a0+ -+ ag)

P P(9]® = a?.

In 2009, using the notion of weighted sharing of values, Hong yan Xu and Ting Bin Cao[7] obtained following result.

Theorem F. Let f and g be two nonconstant entire functions and let m, n and k be three positive integers. If
[f"P()]® and [g"P(g)]® share

i) (1,0) with n>5m+ 5k +8
i) (1,1) with n > Zm + 4k +2
iii) (1,2) with n > 3m+ 3k + 5

(1) when P(2) = a,,z™ + a,,_;z™ ' + -+ a,z + a,, then either f = tg, for a constant ¢ such that t¢ = 1 where
d=Mn+m,.,n+m-—1i,..,n),a,_; #0 for some i=0,1,2,..,m or f and g satisfy the algebraic equation
R(f,9) =0, where, R(w;,w;) = w} (o + ap_10T 1 + -+ ay) — w3 (@, 0 + a,_qwF 1+ +ap)
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_ - _ c1 _ C
(2) When P(z) = 0,then either f = Mo’ g = Mo e

. where ¢, ¢, and c are three constants satisfying

(—1D*(c;¢)"(nc)?* =1 or f =tg for some constant t such that t™ = 1.
In this paper with the notion of weighted sharing of values,we investigate result for meromorphic function.

Theorem 1. Let f and g be two nonconstant transcendental meromorphic functions and let n(= 1), k(= 1),l(= 0) be
three integers.Let P(z) = a,,z™ + a,,_1z™ ! + -+ +a, where ay # 0,a,, - a,,_1,a,, # 0 are complex constants.If
[f*P(f)]® and [g"P(g)]* share (1,1) and if

Jl=2andn>3k+2m"+m+8

ii)l=1and n>5k+2m " +m+11

ii)l=0and n>9% +2m"+4m+ 14

then either

f =tg, foraconstant t suchthat t* =1 where d = (n+m,..,n+m—i,..,n),a,_; # 0 for some
i=0,1,2,..,mor f and g satisfy the algebraic equation R(f,g) =0,

where R(wy, ;) = W} (@ @ + @107 L+ -+ ag) — 03 (@ @F + ap_q@0F 1+ + ag)

Theorem 2. Let f and g be two nonconstant entire functions and n, m and k be three positive integers.If
[f*P(f)]® and [g"P(g)]* share (1,1) and if

l=2andn>2k+m+2m*+3
ijl=1andn>3k+3m+2m*+5
iii)l=0and n>5k+4m+2m*+7
then conclusion of Theorem 1 still holds.

In 2004, Lin and Yi[ 12] proved the following theorems.

Theorem G. Let f and g be two noncontant meromorphic funcitons,n = 12 an integer. If f*(f —1)f" and
g™ (g — 1)g’ share the value 1 CM, then g = (n + 2)(1 — h**)/(n + 1)(1 — h**2),

f=m+2)h(1l—-h"")/(n+ 1)(1 —h**?), where h is a nonconstant meromorphic function.

Theorem H.Let f and g be two noncontant meromorphic funcitons,n > 13 an integer. If f*(f — 1)?f’ and
g"(g — 1)?g’ share the value 1 CM, then f(z) = g(2).

In 2011, Renukadevi S Dyavanal [11] obtained following results.

Theorem I. Let f and g be two non-constant meromorphic functions, whose zeros and poles are of multiplicities atleast
s, where s isa positive integer. Let n > 2 be an integer satisfying (n + 1)s = 12. If f*f" and g™ g’ share the value 1
CM, then either f = dg for some (n+1) th root of unity d or f(z) = c,e™ and g(z) = c,e, where c¢,c; and c,
are constants satisfying (c;c,)"*'c? = -1

Theorem J. Let f and g be two non-constant meromorphic functions, whose zeros and poles are of multiplicities
atleast s, where s is a positive integer. Let n be an integer satisfying

(n—2)s =10.

If f/A(f —1)f" and g"(g — 1)g’ share the value 1 CM, then g = (n + 2)(1 — h**1)/(n + 1)(1 — h™*?),
f=m+2)h(1l—-h""1)/(n+ 1)(1 — h**2),where h is a non-constant meromorphic function.

Theorem K. Let f and g be two non-constant meromorphic functions, whose zeros and poles are of multiplicities
atleast s, where s is a positive integer. Let n be an integer satisfying (n — 3)s > 10. If f*(f — 1)?f’ and
g"(g — 1)?g’ sharethe value 1 CM, then f = g.

At the end of this paper[11],she posed the question:Can the differential polynomials in theorems I, J and K be replaced by
the differential polynomials of the form [f*]®) and [f™(f — 1]®)?
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In this paper we consider more general differential polynomial of the form [f*P(f)]®), where P(f) is as defined in
Theorem 1, and give answer to open question(4.4) of [11]

Theorem 3. Let f and g be trancendental meromorphic functions,whose zeros and poles are of multiplicity atleast s.
where s is a positive integer.a(z)(# 0,0) be a small function with respect to f with finitely many zeros and poles. Let
n, k and m be three positive integers satisfying (n —m)s > 3k + 7.I1f [f*P(f)]®) and [g"P(g)]® share a CM
and f and g share oo IM, then one of the following cases holds:

i)f (2) = tg(z) for aconstant t such that t¢ = 1

whered =(n+m,..,.n+m-—1i,..,n),a,_; # 0 forsome i =0,1,...,m

il)f and g satisfy the algebraic equation R(f,g) = 0,

where, R(w;, ;) = W] (A, @ + Ay 0L + -+ ay) — 0§ (A, 0F + ap_0F 1+ +ay)

Remark:We set P(z) = (z — 1)™. With a,, = 1,a, = —1 and under condition (ii) of theorem 3, we have following
important results.

i) When m =0, ns >3k + 7 and if [f"]® and [¢g"]® share a CM and o IM then either f(z) = c,e* and
g(2) = c,e ™ where c,c,and ¢, are constants satisfying (—1)*(c,c,)"(nc)** =1 or f =tg for a constant t such
that t* = 1.

ii)When m=1, (n—1)s >3k +7 andif [f*(f — D]® and [g"(g — 1)]®) share a CMand oo IMthen f = g.

iii) When m > 2, (n—2)s >3k + 7 and if [f*(f — 1)™]® and [g"(g — 1)™]® share a CM and o IM then f
and g satisfy the algebraic equation R(f,g) = 0, where R(w;, w;) = o' (w; — 1™ — 0w} (w, — 1)™.

Remarks (i),(ii) and (iii) give answers to open problem (4.4) of [11].
2. LEMMAS
In order to prove our results, we need the following lemmas.

Lemmal [1]. Let P(z) =a,z"+a,_1z" ' +--+a, , where a,(#0), a,_q,..,a, are constants. If f(z) is a
meromorphic function, then

T(r,P(f)) =nT(r,f)+ S, f).

Lemma 2[12]. Let f(z) a nonconstant meromorphic and p, k be two positive integer. Then

1 1
Ny 755) ST FO) =T f) + Ny (1 7) + SC )

@ f
1 — 1
N, 7)< KNG ) + Ny () + SG )

Lemma 3 [2]. Let f(z) be nonconstant meromorphic functions and k be a positive integer.Suppose that f*) = 0, then
1 1
T, ]W) < N(‘I",]—c

Lemma 4[6]. Let f(z) and g(z) two be nonconstant meromorphic function and n, k be two positive integers and a be
a finite nonzero constant.If f(z) and g(z) share a CM and oolM,then one of the following cases holds:

N( )+ kN(r, f) + S(r, f)

DT (r, f) < Ny(r, )lc) + N, (r,é) +3N(r, f) + S(r, ) + S(r, g)the same inequality holds for T(r,g);

i)fg = a*,

iii)f=g.

Lemma 5[ 13]. Let f(z) and g(z) two be nonconstant meromorphic functions, k(= 1),l(=0) be two
integers.Suppose that £ and g®*) share (1,1). If one of the following conditions holds,

i) [>2and Ay =20(oo, f) + (k+2)0(c0,g) +0(0,f) +0(0,9) + 8,41(0,f) + 6,,.1(0,9) > (k+7)
© 2012, IIMA. All Rights Reserved 2966
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i)l =1 and A, = (k +3)0(o, f) + (k + 2)0(c0, g) + 0(0, £) + 0(0, g) + 28,41 (0, ) + 6,11(0,9) > 2k +9
ii)l=0 and A; = (2k +4)0(oo, f) + (2k +3)0(, g) + 0(0, f) + 0(0, g) + 38,41 (0, f) + 28,41(0,g) > 4k +
13 then either f®g®) =1 or f(2) = g(2).

Taking N(r, f) = N(r,g) = 0 and proceeding as in lemma 6[12], we get following lemma.

Lemma 6. Let f(z) and g(z) two be nonconstant entire functions, k(= 1),1(= 0) be two integers.Suppose that £
and g share (1,1). If one of the following conditions holds,

) =2and A, =0(0,f) +0(0,9) + 6,410, ) + 6,41(0,9) >3

i)l =1and A; = 0(0,f) +0(0,9) + 28,11(0,f) + 6,41(0,9) > 4

i)l = 0 and A = 0(0, ) + 0(0, g) + 38,41 (0, f) + 28,,1(0,g) > 6 then either f©g®) =1 or f(2) = g(2).

Lemma 7[6]. let f and g be two nonconstant meromorphic functions, let n and k be two integers with n > k + 2, let
P(z) = apz™ + ay,_1z2" 1 + - +a, where ay # 0,a;,a,_;,a, # 0 are constants, and let a(z)(# 0,) be
small function with respect to f with finitely many zeros and poles.

If [f"P(H)]®[g"P(g)]® =a* and f and g share oo IMthen P(z) is reduced to a nonzero
monomial,namely,P(z) = a;z # 0 for some i=0,1,..,m.

3. PROOF OF THEOREMS
Proof of theorem 1.
Let F = f"P(f) and G = g"P(g)

Then we have,

. — N@1/F)
0(0,f) =1-1lim,_ W _
T o N Y/ + N, 1/P())
- T(r,F)
A +mIT(,f)
ICEEDIC)

Therefore, (0, f) > Xt

n+m
where m*=0ifm=0 and m*=1ifm=>1

n+m-1-m*

Similarly, 0(0,G) = -

Next we have,

6k+1 (O'f) =1- limr—mo

Ny (r, 1/F)
T(r,F)
(A DN /) +Ng 41 (r,1/P(F))
(n+m)T(r.f)
(e + DN (riz)+mT r.f)

(n+m)T(r.f)

>1-lm, .,

>1-lm, .,

m+k+1
==
n—k—1
Therefore, 6,410, f) = ——
.. n—k—1
Similarly, §,,1(0,G) = -
—_ N ,F)
We have, 0(co,f) =1—1lim, T F)
=1-limr - 0o 2S)
T(r,F)
__TepH
- n+m)T(r,f)
n+m-—1
Therefore, ©O(oo, f) = ——
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Since F®) and G share (1,1) we consider following three cases.

Case 1l: Let [ = 2,
Ay = (k + 2)0(o0, G) + 20(00, F) + 0(0, F) + 0(0, G) + 8,41 (0, F) + 8,11 (0, G)
> (k + 4) (n+m—1) +2 (n+m—1—m )+ 2 (n—k—l)

n+m n+m / n+m
= (k+(1-—)+2(1- 20 42 (1)
=(k+6)— ("LLL 4 2m —2(“"“1))

n+m n+m n+m
_ (k + 8) _ (3k+2m*+2m+8)

n+m

from(i) of lemma(5),wehave n+m <3k +2m*+2m+8ien<3k+2m*"+m+8
which contradicts our hypothesis that n > 3k + 2m* +m + 8.

By lemma (5),we have either FOGH® =1 or F=G

Case2: Letl =1

Ay = (k +2)0(e0,G) + (k + 3)0(e0, F) + 0(0,F) + 0(0, ) + 28,1 (0, F) + 8.41(0,6)
> (Zk + 5) (n+m—1) +2 (n+rr;;:n—m ) +3 (n—k—l)

n+m / n+m
-9 (10 2 (1) 3 (1)
- k- (e 200
— (Zk + 10) _ (5k+2m*+3m+10)

n+m

From (ii) of lemma( 5 ), we have n < 5k + 2m* + 2m + 10
which contradicts our hypothesis that n > 5k + 2m* + m + 10.
By lemma (5),either FKG® =10r F =G.

Case3:letl=0

As = (2k +4)0(c0, F) + (2k +3)0(e0,6) + O(0, F) + 0(0, 6) + 3811 (0, F) + 2841(0, )
> (4k + 7) (n+m—1) +2 (n+m—1—m ) +5 (n—k—l)

n+m n+m n+m

= (4k +7) (1 - ﬁ) +2 (1 - ”m*) +5 (""“1)

n+m n+m
k 242m*  S—k-1
=(4k+9)_(ﬂ++_m_u)

n+m n+m n+m
9k +2m*+ 5m + 14)
n+m

=(4k+14)—(

From (iii) of lemma(5), we have n < 9k + 2m* + 4m + 14

which contradicts our hypothesis that n > 5k + 2m* + m + 10.

By lemma (5), either F®OG®) =1, or F =G.

Suppose F®G®) = 1 then by lemma (7), P(z) as defined in Theorem 1 reduces to a nonzero monomial. That is
P(z) = a;z' # 0 for some i = 01,2, ...,m.

By hypothesis of theorem (1), we arrive at a contradiction.

Hence we deduce that F(z) = G(z), thatis

P f™ + @y fm et ay) = g (@ g™ + a1 g™t o+ ag)

Let h = f/g.If h is a constant then substituting f = gh, we deduce,

amgn+m (hn+m _ 1) + am_lgn+m—1(hn+m—1 _ 1) + e aogn (hn _ 1) =0
© 2012, IIMA. All Rights Reserved 2968



Subhas S. Bhoosnurmath* & Smita R Kabbur/ Uniqueness of Meromorphic Functions/ IJMA- 3(8), August-2012.
which implies that h* = 1 where d = (n+m, ...,n+ m—1i,..,n),a,_; # 0 forsome i =0,1,...,m
Thus f(z) = tg(z) for a constant ¢ such that t¢ = 1,
whered=(n+m,..,n+m-—1i,..,n),a,_; #0, forsome i =0,1, ..., m.
If h isnota constantthen f and g satisfy the algebraic equation R(f,g) =0,
where R(w;, w,) = @ (@, @ + @@L+ -+ ag) — 03 (A, 0F + ap_q0F L+ +ay)
This proves the theorem.
Proof of theorem 2.
Since f and g are entire functions N(r, f) = N(r,g) = 0. Proceeding as in theorem 1 and using lemma (5) ,we easily
prove theorem 2.

Proof of theorem 3.

Let F = [f"P(N]®, G = [g"P(D]™, F, =F/a, G, = G/a,
F*=f"P(f), G" =g"P(g)

then by hypothesis F; and G; share 1 CM.

By case(i) of lemma (4),we have
T(r,F) < Np(r,3) + Ny () + 3N(r, F) + S(r, F) + S(r, ) (1)

By lemma(2),with p = 2,we obtain,

T(r,F*) S T(r,F) = Np(r,3) + Niyo (r,50) + S(r, F) )
Ny (,2) < Niyo (r,=) + kN (r, G) + S(r, G) ©)
By (1) and (2),we have

1 — 1
T(r, F*) < N, (r, 5) 4+ 3N(r, F) + N (r, F) +S(rF) + S, 6)

using (3), we get
1 — — 1
T(r,F*) < Nk+2(r,a) +kN(r,G)+3N(r, F) + Nk+2(r'F) +S(r,F)+S@,6)

S(k+2)ﬁ(r, )+N(r;

é > (G)) +kN(r,G) + 3N(r, F) + (k + 2)N (r, }() + N(r—) + S(r, F) + S(r, G)

P(f)
By our assumption,zeros and poles are of multiplicities at least s, that is,
N(r,g) < %N(r, g) =< fT(r, g) and we deduce the above inequality as,

T(r,F*) < (ksj) T(r,g) +mT(r,g) + gT(r,g) + ;T(r,f) + (%)T(r, f)+mT(@,f)+S, F)+S(,G)

k+2

< (242 4m) 1 ) + (22

N

+54+m)T(r,9) +S(r, F) + 5, 6)

m+m)T(r,f) <

T(r,f)+

(ms +sk . 5) T(r,g) + S, F)+S(r,6)

(2k+ms+ 2)
s

ms—k—=5T, ) <Ck+ms+2)T(r,g)+ S, F)+S(,G)
Similarly,
(ns—k—=5T(r,g) < 2k+ms+2)T(r,g) +S,F)+5(,G)

ns—k=5Twf)+Trg)<Ck+ms+2)(T(r,f)+T@,g)+S,f)+S7,9)
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ms—ms—=3k—=7)T(r,f)+T(r,g) <SS, f)+S5(,9)
which contradicts (n —m)s >3k + 7
Therefore by Lemma(4), either F®OG% =1 or F = G.
Proceeding as in proof of theorem 1 we obtain theorem 3.
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