THE EASY WHITNEY EMBEDDING THEOREM IN THE COMPLEX CASE

Hamdi M. Genedi
Mathematics and Statistics Department, Faculty of Science, Taif University, Kingdom of Saudi Arabia
E-mail: hmgenedy1954@hotmail.com

(Received on: 18-02-11; Accepted on: 27-02-11)

Abstract

Whitney proved that if M is compact n-dimensional manifold with analytic structure, then there is an analytic structure embedding of M in $\mathbb{R}^{2 n+1}$. In this paper we prove this theorem in the complex case.

Keywords: Embeddings, Immersions, complex manifolds and analytic structure.

1. INTRODUCTION:

In [4], Whitney proved that if M is compact Hausdorff C^{r} n-dimensional manifold, $2 \leq r \leq \infty$, then there is a C^{r} embedding of M in $\mathbb{R}^{2 n+1}$. The aim of this paper is to prove the theorem but in complex case, i.e., if M is compact complex n-dimensional manifold with analytic structure, then there is an analytic structure embedding of M in \mathbb{C}^{n+2}. The definitions and fundamental concepts which will be required throughout the paper may be found in $[1,2,3]$.

2. MAIN THEOREM:

We need the following lemmas:
Lemma: 1 Let M be an analytic compact complex n-dimensional manifold. Then there exists an analytic embedding of M into \mathbb{C}^{n}.

Proof: $D^{n}(r)=\left\{z \in \mathbb{C}^{n}:|z| \leq r\right\}$, this is closed disk of radius r and centre o in \mathbb{C}^{n}. Since M is compact it satisfies the finite intersection property and so one can easily find an atlas $\left\{\varphi_{i}, U_{i}\right\}_{i=1}^{n}$ having the following properties:
(a) for every $\varphi_{i}\left(U_{i}\right) \supset D^{n}(2)$, where $D^{n}(2)$ is the interior of the unit complex sphere S^{n}.
(b) $\mathrm{M}=U \operatorname{Int} \varphi_{\mathrm{i}}^{-1}\left(\Delta^{\mathrm{n}}\right)$, where Δ^{n} denotes a unit closed disk in \mathbb{C}^{n}, i.e. $\Delta^{\mathrm{n}}=\mathrm{D}^{\mathrm{n}}(1)$.

Let \quad : $\mathbb{C}^{n} \rightarrow S^{2}$ be an analytic map such that $\lambda\left|\Delta^{n}=|z|, \quad\left(\lambda \mid \mathbb{C}^{n}\right) \backslash D^{n}(2)=0\right.$. Define an C^{ω} - map $\lambda_{i}: M \rightarrow S^{2}$ such that:

$$
\lambda_{i}= \begin{cases}\lambda \varphi_{i} & \text { on } U_{i} \\ 0 & \text { on } U_{i}^{c}\end{cases}
$$

It follows that the sets $B_{i}=\lambda_{i}^{-1}(|z|) \subset U_{i}$ cover M. Define maps $f_{i}: M \rightarrow \mathbb{C}^{n}$ such that:

$$
f_{i}=\left\{\begin{array}{ccc}
\lambda_{i}(z) \varphi_{i}(z) & \text { if } & z \in U_{i} \\
0 & \text { if } & z \in U_{i}^{c}
\end{array}\right.
$$

Put $g_{i}=\left(f_{i}, \lambda_{i}\right) \rightarrow \mathbb{C}^{n} \times \mathbb{C}=\mathbb{C}^{n+1}$ and $g=\left(g_{1}, \ldots, g_{m}\right): \mathrm{M} \rightarrow \underbrace{\mathbb{C}^{n+1} \times \ldots \times \mathbb{C}^{n+1}}_{m \text {-times }}=\mathbb{C}^{m(n+1)}$. Clearly g is C^{ω} map. If $z_{1} \in B_{i}$ then g_{i}, and hence g, is immersive at z_{1}, so g is an immersion. To see that g is injective, suppose $z_{1} \neq z_{2}$ with $z_{2} \in B_{i}$. If $z_{1} \in B_{i}$ then $g\left(z_{1}\right)=g\left(z_{2}\right)$ since $f_{i}\left|B_{i}=\varphi_{i}\right| B_{i}$. If $z_{1} \notin B_{i}$ then $\lambda_{i}\left(z_{2}\right)=1 \neq \lambda_{i}\left(z_{1}\right)$, so $g\left(z_{1}\right) \neq g\left(z_{2}\right)$. Therefore g is an injective C^{ω} - immersion. Since M is compact, then g is an embedding.

Lemma: 2 Let M^{m} and N^{n} be complex manifolds with $n>m$. If $f: M^{m} \rightarrow N^{n}$ is a C^{ω} - map, then $f\left(M^{m}\right)$ is nowhere dense.

Proof: It suffices to show that $f\left(M^{m}\right)$ has measure zero this follows from:
If $g: U \rightarrow \mathbb{C}^{n}$ which is analytic and with $m<n$ and if $U \subset \mathbb{C}^{m}$ is open, then $g(U) \subset \mathbb{C}^{n}$ has measure zero. To prove
*Corresponding author: Hamdi M. Genedi, E-mail: hmgenedy1954@hotmail.com

Hamdi M. Genedi /The Easy Whitney Embedding Theorem in the Complex Case / IJMA- 2(3), Mar.-2011, Page: 320-322 this assertion, write g as a composition of C^{ω} - maps $U=U \times\{0\} \subset U \times \mathbb{C}^{n-m} \xrightarrow{\pi} U \xrightarrow{g} \mathbb{C}^{n} . U \times\{0\}$ has n-measure zero in $U \times \mathbb{C}^{n-m} \subset \mathbb{C}^{n} \times \mathbb{C}^{m}=\mathbb{C}^{n}$. Now every point of V, where $V \subset U$, belongs to an open ball $B \subset U$ such that the norm $\|D g(z)\|$ is uniformly bounded on B, say $\beta>0$, where β is a real number. Then $|f(z)-f(z)| \leq \beta|z-z|$ for all $z, z \in B$. It follows that if $K \subset B$ is an n-cube of edge λ, then $f(K)$ is contained in an n-cube K of edge less than $\lambda \sqrt{n \beta}=\lambda L$. Therefore $\mu(K)<L^{n} \mu(K)$. Now write $V=\bigcup_{j=1}^{\infty} V_{j}$ where each V_{j} is a compact subset of a ball B as above. For each $\varepsilon>0, V_{j}=\bigcup_{i} K_{i}$, where each K_{i} is an n-cube in \mathbb{C}^{n} and $\sum \mu\left(K_{i}\right)<\varepsilon$. It follows that $f\left(V_{j}\right) \subset \bigcup_{i} K_{i}$ where the sum of the measure of the n-cube K_{i} is less than $L^{n} \varepsilon$. Hence $f\left(V_{j}\right)$ has measure zero, and so V has measure. Then $f(M)$ has measure zero by prolongation.

The inverse function theorem 3 ([5]).Suppose
(a) W is an open subset of a banach space X,
(b) $f: W \rightarrow X$ is continuously differentiable,
(c) for every $z \in W$ and $(D f)_{z}$ is an invertible member of the collection of all bounded linear mappings of X into X.

Every point $a \in W$ has then a neighbourhood U such that
(i) f is one-to-one in U,
(ii) $f(U)=V$ is an open subset of X, and
(iii) $f^{-1}: V \rightarrow U$ is uniformly continuous.

Lemma: 4 Let N^{n} be a C^{ω}-manifold. A subset $A \subset N^{n}$ is a C^{ω} - submanifold if and only if A is the image of a $C^{\omega_{-}}$ embedding .

Proof: Suppose A is a C^{ω} - manifold. Then A has a natural analytic structure derived from a covering by submanifold charts. For this analytic structure, the inclusion of A in N^{n} is C^{ω} - embedding. Conversely, suppose $f: M^{m} \rightarrow N^{n}$ is a C^{ω} - embedding, $f\left(M^{m}\right)=A$. The property of being a C^{ω} - submanifold has local character, That is true if $A \subset M^{m}$ if and only if it is true if $A_{i} \subset N_{i}$ where $\left\{A_{i}\right\}$ is an open cover of A and each N_{i} is an open subset of M^{m} containing A_{i}. It is also invariant under C^{ω}-holeomorphic map, that is, $A \subset N$ is a C^{ω} - submanifold if and only if $g(A) \subset N$ is a C^{ω} - submanifold where $g: N \rightarrow N$ is a C^{ω}-holeomorphic map (or even a C^{ω}-embedding). To exploit local character and invariance under holeomorphic map, let $\Psi=\left\{{ }_{i}: N_{i} \rightarrow \mathbb{C}^{n}\right\}_{i \in}$ be a family of charts on N^{n} which covers A. Then find an atlas $\Phi=\left\{\varphi_{i}: M_{i} \rightarrow \mathbb{C}^{m}\right\}_{i \in}$ for M^{m} such that $f\left(M_{i}\right) \subset N_{i}$. Since f is an embedding, Φ and Ψ can be chosen so that $f\left(M_{i}\right)=A \cap N_{i}$. By invariance it is enough to show that ${ }_{i} f\left(M_{i}\right) \subset \mathbb{C}^{n}$ is a C^{ω} - submanifold. Put $U_{i}=\varphi_{i}\left(M_{i}\right) \subset \mathbb{C}^{m}$,
$f_{i}={ }_{i} \circ f \circ \varphi_{i}^{-1}: U_{i} \rightarrow \mathbb{C}^{n}$. Then f_{i} is a C^{ω} - embedding and $g_{i}\left(U_{i}\right)={ }_{i} \circ f\left(M_{i}\right)$. Thus we have reduced the lemma to the special case where $N=\mathbb{C}^{n}, M$ is an open set $U \subset \mathbb{C}^{m}$, and $f: U \rightarrow \mathbb{C}^{n}$ is a C^{ω} - embedding. In this case a corollary of the inverse function theorem implies that there is a C^{ω} - submanifold chart for $\left(\mathbb{C}^{n}, f(U)\right)$ at each point of $f(U)$.

Lemma: 5 Let $f: M \rightarrow N$ be a C^{ω}-map. If $z \in f(M)$ is an analytic value i.e. it satisfies the Cauchy-Riemann equations. Then $f^{-1}(z)$ is a C^{ω} - submanifold of M.

Proof: By using local character and invariance, as in the proof of lemma 4, we reduce the lemma to the case where M is an open set in \mathbb{C}^{m} and $N=\mathbb{C}^{n}$. Again the lemma follows from the inverse function theorem.

Theorem: (Main) Let M be a compact complex n - dimensional manifold with analytic structure. Then there is an analytic structure embedding of M in \mathbb{C}^{n+2}.

Proof: By lemma $1, M$ embeds in some \mathbb{C}^{q}. If $q=n+1$ there is nothing to prove; hence we assume the case that $q>n+1$. We may replace M by its image under an embedding. Therefore we assume that M is a C^{ω} - submanifold of \mathbb{C}^{q}. It is sufficient to prove that such an M embeds in \mathbb{C}^{q-1}, for repetition of the argument will eventually embed M in \mathbb{C}^{n+1} 。

Suppose then that $M \subset \mathbb{C}^{q}, q>n+1$. Identify \mathbb{C}^{q-1} with $\left\{z \in \mathbb{C}^{q}: z_{q}=0\right\}$. If $\underline{v} \in \mathbb{C}^{q}-\mathbb{C}^{q-1}$ denote by $f_{\underline{v}}: \mathbb{C}^{q} \rightarrow$ \mathbb{C}^{q-1} the projection parallel to \underline{v}. We seek a vector \underline{v} such that $f_{\underline{v}} \mid M: M \rightarrow \mathbb{C}^{q-1}$ is a^{ω} - embedding. We limit our search to unit vectors.

For $f_{\underline{v}} \mid M$ to be injective means that \underline{v} is not parallel to any secant of M. That is, if z_{1}, z_{2} are any two distinct points of M, then

Hamdi M. Genedi /The Easy Whitney Embedding Theorem in the Complex Case / IJMA- 2(3), Mar.-2011, Page: 320-322 $\underline{v} \neq \frac{z_{1}-z_{2}}{\left|z_{1}-z_{2}\right|} \cdots$
More subtle is the requirement that $f_{\underline{v}} \mid M$ be an immersion. The kernel of the analytic map $f_{\underline{v}}$ is obviously the circle $|z|=1$ through \underline{v}. Therefore a tangent vector $z \in M_{z}$ is in the kernel of $T_{z}{ }^{\circ} f_{\underline{v}}$ only if z is parallel to \underline{v}. We can guarantee that $f_{\underline{v}} \mid M$ is an immersion by requiring, for all nonzero $z \in T(M)$:
$\underline{v} \neq \frac{z}{|z|} \cdots$
Here z is identified with a vector in \mathbb{C}^{q}; thus $|z|$ makes sense. Condition (1) is analyzed by means of the map

$$
\begin{aligned}
& \rho: M \times M-\Delta \rightarrow S^{q-1} \\
& \rho\left(z_{1}, z_{2}\right)=\frac{z_{1}-z_{2}}{\left|z_{1}-z_{2}\right|}
\end{aligned}
$$

where Δ is the diagonal, i.e.,

$$
\Delta=\{(a, b) \in M \times M: a=b\}
$$

Now \underline{v} satisfies (1) if and only if \underline{v} is not in the image of ρ; we consider $M \times M-\Delta$ as an open submanifold of $M \times M$; the map ρ is then C^{ω}. Note that

$$
\operatorname{dim}(M \times M-\Delta)=2 n<\operatorname{dim} S^{q-1}
$$

The existence of a \underline{v} satisfying (1) follows from lemma 2 . In the case at hand, put $M \times M-\Delta$ and S^{q-1} instead of M^{m} and N^{n}, respectively, in lemma 2. We know that every nonvoid open subset of S^{q-1} contains a point \underline{v} which is not in the image of ρ. To analyze condition (2) we note that it holds for all $z \in T(M)$ provided it holds whenever $|z|=1$. Let
This is the unit tangent bundle of M. It is C^{ω} - submanifold of $T(M)$. To see this, observe that $T_{1}(M)=\underline{v}^{-1}(|z|)$ where $\underline{v}: T(M) \rightarrow \mathbb{C}, \underline{v}$ is defined by $\underline{v}(z)=|z|^{2}$. Since \underline{v} is the restriction to $T(M)$ of the C^{ω} - map $T\left(\mathbb{C}^{q}\right) \rightarrow$ $\mathbb{C}, z \rightarrow|z|^{2}$, it is C^{ω}. It is clear that $(1,0)$ is a regular value for \underline{v}; for if $\underline{v}(z)=1$, then

$$
\left.\frac{d}{d t} \underline{v}(t z)\right|_{t=1} \neq 0
$$

Hence $\underline{v}^{-1}(|z|)$ is a C^{ω} - submanifold by lemma 4. It is easy to see that it is compact because M is compact. Define a $C^{\omega}-\operatorname{map} \tau: T_{1}(M) \rightarrow S^{q-1}$ as follows. Identify $T(M)$ with a subset of $M \times \mathbb{C}^{q} ;$ then $T_{1}(M)$ is a subset of $M \times$ S^{q-1}. Define τ to be the restriction to $T_{1}(M)$ of the projection onto S^{q-1}. Geometrically τ is just parallel translation of unit vectors based at points of M to unit vectors based at 0 . Clearly τ is C^{ω}. Noting that $\operatorname{dim} T_{1}(M)=n-1<$ $\operatorname{dim} S^{q-1}$, we apply lemma (2) to conclude that the image of τ is nowhere dense. Since $T_{1}(M)$ is compact, it follows that the complement W of the image of τ is a dense open set in S^{q-1}. Therefore W meets $S^{q} \cap\left(\mathbb{C}^{q}-\mathbb{C}^{q-1}\right)$ in a nonempty open set W_{0}. As we have seen previously, W_{0} contains a vector \underline{v} which is not in the image of ρ. This vector \underline{v} has the property that $f_{\underline{v}} \mid M: M \rightarrow \mathbb{C}^{q}$ is an injective immersion. Since M is compact and Hausdorff, $f_{\underline{v}} \mid M$ is also an embedding.

REFERENCES:

[1] S. S. CHERN, Complex manifold, mimeographic note, 1955-1956.
[2] S. Elenbt and N. Steenrod, Algebraic topology, Princeton University Press, 1956.
[3] D. M. Davis, Some new immersions and nonimmersion of real projective spaces, AMS
Contemporary Math. 19 (1983) 51-64.
[4] M. W. HIRSCH, Differential topology, Springer-verlag, 1976.
[5] W. RUDIN, Functional Analysis, 1973.

