THE EASY WHITNEY EMBEDDING THEOREM IN THE COMPLEX CASE

Hamdi M. Genedi

Mathematics and Statistics Department, Faculty of Science, Taif University, Kingdom of Saudi Arabia E-mail: hmgenedy1954@hotmail.com

(Received on: 18-02-11; Accepted on: 27-02-11)

ABSTRACT

Whitney proved that if M is compact n-dimensional manifold with analytic structure, then there is an analytic structure embedding of M in \mathbb{R}^{2n+1} . In this paper we prove this theorem in the complex case.

Keywords: Embeddings, Immersions, complex manifolds and analytic structure.

1. INTRODUCTION

In [4], Whitney proved that if M is compact Hausdorff C^r n-dimensional manifold, $2 \le r \le \infty$, then there is a C^r embedding of M in \mathbb{R}^{2n+1} . The aim of this paper is to prove the theorem but in complex case, i.e., if M is compact complex n-dimensional manifold with analytic structure, then there is an analytic structure embedding of M in \mathbb{C}^{n+2} . The definitions and fundamental concepts which will be required throughout the paper may be found in [1, 2, 3].

2. MAIN THEOREM:

We need the following lemmas:

Lemma: 1 Let M be an analytic compact complex n-dimensional manifold. Then there exists an analytic embedding of M into \mathbb{C}^n .

Proof: $D^n(r) = \{z \in \mathbb{C}^n : |z| \le r\}$, this is closed disk of radius r and centre o in \mathbb{C}^n . Since M is compact it satisfies the finite intersection property and so one can easily find an atlas $\{\varphi_i, U_i\}_{i=1}^n$ having the following properties:

- (a) for every $\varphi_i(U_i) \supset D^n(2)$, where $D^n(2)$ is the interior of the unit complex sphere S^n .
- **(b)** $M = \bigcup \operatorname{Int} \varphi_i^{-1}(\Delta^n)$, where Δ^n denotes a unit closed disk in \mathbb{C}^n , i.e. $\Delta^n = D^n(1)$.

Let $\lambda: \mathbb{C}^n \to S^2$ be an analytic map such that $\lambda \mid \Delta^n = |z|$, $(\lambda \mid \mathbb{C}^n) \setminus D^n(2) = 0$. Define an C^{ω} - map $\lambda_i: M \to S^2$ such that:

$$\mathbf{\lambda}_i = \begin{cases} \mathbf{\lambda} & \varphi_i & on \ U_i \\ 0 & on \ U_i^c \end{cases}$$

It follows that the sets $B_i = \lambda_i^{-1}(|z|) \subset U_i$ cover M. Define maps $f_i: M \to \mathbb{C}^n$ such that:

$$f_i = \begin{cases} \lambda_i(z) \, \varphi_i(z) & if & z \in U_i \\ 0 & if & z \in U_i^c \end{cases}$$

Put $g_i = (f_i, \lambda_i) \to \mathbb{C}^n \times \mathbb{C} = \mathbb{C}^{n+1}$ and $g = (g_1, \dots, g_m) : \mathbb{M} \to \underbrace{\mathbb{C}^{n+1} \times \dots \times \mathbb{C}^{n+1}}_{m-times} = \mathbb{C}^{m(n+1)}$. Clearly g is C^ω map. If

 $z_1 \in B_i$ then g_i , and hence g, is immersive at z_1 , so g is an immersion. To see that g is injective, suppose $z_1 \neq z_2$ with $z_2 \in B_i$. If $z_1 \in B_i$ then $g(z_1) = g(z_2)$ since $f_i \mid B_i = \varphi_i \mid B_i$. If $z_1 \notin B_i$ then $\lambda_i(z_2) = 1 \neq \lambda_i(z_1)$, so $g(z_1) \neq g(z_2)$. Therefore g is an injective C^ω - immersion. Since M is compact, then g is an embedding.

Lemma: 2 Let M^m and N^n be complex manifolds with n > m. If $f: M^m \to N^n$ is a C^{ω} - map, then $f(M^m)$ is nowhere dense.

Proof: It suffices to show that $f(M^m)$ has measure zero this follows from:

If $g: U \to \mathbb{C}^n$ which is analytic and with m < n and if $U \subset \mathbb{C}^m$ is open, then $g(U) \subset \mathbb{C}^n$ has measure zero. To prove

*Corresponding author: Hamdi M. Genedi, E-mail: hmgenedy1954@hotmail.com

Hamdi M. Genedi / The Easy Whitney Embedding Theorem in the Complex Case / IJMA- 2(3), Mar.-2011, Page: 320-322

this assertion, write g as a composition of C^{ω} - maps $U = U \times \{0\} \subset U \times \mathbb{C}^{n-m} \xrightarrow{\pi} U \xrightarrow{g} \mathbb{C}^n$. $U \times \{0\}$ has n-measure zero in $U \times \mathbb{C}^{n-m} \subset \mathbb{C}^n \times \mathbb{C}^m = \mathbb{C}^n$. Now every point of V, where $V \subset U$, belongs to an open ball $B \subset U$ such that the norm $\|Dg(z)\|$ is uniformly bounded on B, say $\beta > 0$, where β is a real number. Then $|f(z) - f(z)| \leq \beta |z - z|$ for all $z, z \in B$. It follows that if $K \subset B$ is an n-cube of edge λ , then f(K) is contained in an n-cube K of edge less than $\lambda \sqrt{n\beta} = \lambda L$. Therefore $\mu(K) < L^n \mu(K)$. Now write $V = \bigcup_{j=1}^{\infty} V_j$ where each V_j is a compact subset of a ball B as above. For each $\varepsilon > 0$, $V_j = \bigcup_i K_i$, where each K_i is an n-cube in \mathbb{C}^n and $\sum \mu(K_i) < \varepsilon$. It follows that $f(V_j) \subset \bigcup_i K_i$ where the sum of the measure of the n-cube K_i is less than $L^n \varepsilon$. Hence $f(V_j)$ has measure zero, and so V has measure. Then f(M) has measure zero by prolongation.

The inverse function theorem 3 ([5]). Suppose

- (a) W is an open subset of a banach space X,
- **(b)** $f: W \to X$ is continuously differentiable,
- (c) for every $z \in W$ and $(Df)_z$ is an invertible member of the collection of all bounded linear mappings of X into X.

Every point $a \in W$ has then a neighbourhood U such that

- (i) f is one-to-one in U,
- (ii) f(U) = V is an open subset of X, and
- (iii) $f^{-1}: V \to U$ is uniformly continuous.

Lemma: 4 Let N^n be a C^{ω} -manifold. A subset $A \subset N^n$ is a C^{ω} - submanifold if and only if A is the image of a C^{ω} -embedding.

Proof: Suppose A is a C^{ω} - manifold. Then A has a natural analytic structure derived from a covering by submanifold charts. For this analytic structure, the inclusion of A in N^n is C^{ω} - embedding. Conversely, suppose $f\colon M^m\to N^n$ is a C^{ω} - embedding, $f(M^m)=A$. The property of being a C^{ω} - submanifold has local character, That is true if $A\subset M^m$ if and only if it is true if $A_i\subset N_i$ where $\{A_i\}$ is an open cover of A and each N_i is an open subset of M^m containing A_i . It is also invariant under C^{ω} -holeomorphic map, that is, $A\subset N$ is a C^{ω} - submanifold if and only if $g(A)\subset N$ is a C^{ω} - submanifold where $g\colon N\to N$ is a C^{ω} -holeomorphic map (or even a C^{ω} -embedding). To exploit local character and invariance under holeomorphic map, let $\Psi=\{i\colon N_i\to \mathbb{C}^n\}_{i\in}$ be a family of charts on N^n which covers A. Then find an atlas $\Phi=\{\varphi_i\colon M_i\to \mathbb{C}^m\}_{i\in}$ for M^m such that $f(M_i)\subset N_i$. Since f is an embedding, Φ and Ψ can be chosen so that $f(M_i)=A\cap N_i$. By invariance it is enough to show that $f(M_i)\subset \mathbb{C}^n$ is a C^{ω} - submanifold. Put $U_i=\varphi_i(M_i)\subset \mathbb{C}^m$,

 $f_i = {}_i \circ f \circ \varphi_i^{-1} : U_i \to \mathbb{C}^n$. Then f_i is a C^ω - embedding and $g_i(U_i) = {}_i \circ f(M_i)$. Thus we have reduced the lemma to the special case where $N = \mathbb{C}^n$, M is an open set $U \subset \mathbb{C}^m$, and $f: U \to \mathbb{C}^n$ is a C^ω - embedding. In this case a corollary of the inverse function theorem implies that there is a C^ω - submanifold chart for $(\mathbb{C}^n, f(U))$ at each point of f(U)

Lemma: 5 Let $f: M \to N$ be a C^{ω} -map. If $z \in f(M)$ is an analytic value i.e. it satisfies the Cauchy-Riemann equations. Then $f^{-1}(z)$ is a C^{ω} - submanifold of M.

Proof: By using local character and invariance, as in the proof of lemma 4, we reduce the lemma to the case where M is an open set in \mathbb{C}^m and $N = \mathbb{C}^n$. Again the lemma follows from the inverse function theorem.

Theorem: (Main) Let M be a compact complex n- dimensional manifold with analytic structure. Then there is an analytic structure embedding of M in \mathbb{C}^{n+2} .

Proof: By lemma 1, M embeds in some \mathbb{C}^q . If q = n + 1 there is nothing to prove; hence we assume the case that q > n + 1. We may replace M by its image under an embedding. Therefore we assume that M is a C^{ω} - submanifold of \mathbb{C}^q . It is sufficient to prove that such an M embeds in \mathbb{C}^{q-1} , for repetition of the argument will eventually embed M in \mathbb{C}^{n+1} .

Suppose then that $M \subset \mathbb{C}^q$, q > n+1. Identify \mathbb{C}^{q-1} with $\{z \in \mathbb{C}^q \colon z_q = 0\}$. If $\underline{v} \in \mathbb{C}^q - \mathbb{C}^{q-1}$ denote by $f_{\underline{v}} \colon \mathbb{C}^q \to \mathbb{C}^{q-1}$ the projection parallel to \underline{v} . We seek a vector \underline{v} such that $f_{\underline{v}} \mid M : M \to \mathbb{C}^{q-1}$ is a C^ω - embedding. We limit our search to unit vectors.

For $f_{\underline{v}} \mid M$ to be injective means that \underline{v} is not parallel to any secant of M. That is, if z_1, z_2 are any two distinct points of M, then

Hamdi M. Genedi / The Easy Whitney Embedding Theorem in the Complex Case / IJMA- 2(3), Mar.-2011, Page: 320-322

$$\underline{v} \neq \frac{z_1 - z_2}{|z_1 - z_2|} \cdots \tag{1}$$

More subtle is the requirement that $f_{\underline{v}} \mid M$ be an immersion. The kernel of the analytic map $f_{\underline{v}}$ is obviously the circle |z| = 1 through \underline{v} . Therefore a tangent vector $z \in M_z$ is in the kernel of $T_z \circ f_{\underline{v}}$ only if z is parallel to \underline{v} . We can guarantee that $f_v \mid M$ is an immersion by requiring, for all nonzero $z \in T(M)$:

$$\underline{v} \neq \frac{z}{|z|} \cdots \tag{2}$$

Here z is identified with a vector in \mathbb{C}^q ; thus |z| makes sense. Condition (1) is analyzed by means of the map

$$\rho: M \times M - \Delta \to S^{q-1}, \rho(z_1, z_2) = \frac{z_1 - z_2}{|z_1 - z_2|},$$

where Δ is the diagonal, i.e.,

$$\Delta = \{ (a, b) \in M \times M : a = b \}.$$

Now \underline{v} satisfies (1) if and only if \underline{v} is not in the image of ρ ; we consider $M \times M - \Delta$ as an open submanifold of $M \times M$; the map ρ is then C^{ω} . Note that

$$\dim (M \times M - \Delta) = 2n < \dim S^{q-1}.$$

The existence of a \underline{v} satisfying (1) follows from lemma 2. In the case at hand, put $M \times M - \Delta$ and S^{q-1} instead of M^m and N^n , respectively, in lemma 2. We know that every nonvoid open subset of S^{q-1} contains a point \underline{v} which is not in the image of ρ . To analyze condition (2) we note that it holds for all $z \in T(M)$ provided it holds whenever |z| = 1. Let

This is the unit tangent bundle of M. It is C^{ω} - submanifold of T(M). To see this, observe that $T_1(M) = \underline{v}^{-1}(|z|)$ where $\underline{v}: T(M) \to \mathbb{C}$, \underline{v} is defined by $\underline{v}(z) = |z|^2$. Since \underline{v} is the restriction to T(M) of the C^{ω} - map $T(\mathbb{C}^q) \to \mathbb{C}$, $z \to |z|^2$, it is C^{ω} . It is clear that (1,0) is a regular value for \underline{v} ; for if $\underline{v}(z) = 1$, then

$$\frac{d}{dt} |\underline{v}(tz)|_{t=1} \neq 0.$$

Hence $\underline{v}^{-1}(|z|)$ is a C^{ω} - submanifold by lemma 4. It is easy to see that it is compact because M is compact. Define a C^{ω} - map $\tau: T_1(M) \to S^{q-1}$ as follows. Identify T(M) with a subset of $M \times \mathbb{C}^q$; then $T_1(M)$ is a subset of $M \times S^{q-1}$. Define τ to be the restriction to $T_1(M)$ of the projection onto S^{q-1} . Geometrically τ is just parallel translation of unit vectors based at points of M to unit vectors based at 0. Clearly τ is C^{ω} . Noting that $\dim T_1(M) = n - 1 < \dim S^{q-1}$, we apply lemma (2) to conclude that the image of τ is nowhere dense. Since $T_1(M)$ is compact, it follows that the complement W of the image of τ is a dense open set in S^{q-1} . Therefore W meets $S^q \cap (\mathbb{C}^q - \mathbb{C}^{q-1})$ in a nonempty open set W_0 . As we have seen previously, W_0 contains a vector \underline{v} which is not in the image of ρ . This vector \underline{v} has the property that $f_{\underline{v}} \mid M : M \to \mathbb{C}^q$ is an injective immersion. Since M is compact and Hausdorff, $f_v \mid M$ is also an embedding.

REFERENCES:

- [1] S. S. CHERN, Complex manifold, mimeographic note, 1955-1956.
- [2] S. Elenbt and N. Steenrod, Algebraic topology, Princeton University Press, 1956.
- [3] D. M. Davis, Some new immersions and nonimmersion of real projective spaces, AMS Contemporary Math. 19 (1983) 51-64.
- [4] M. W. HIRSCH, Differential topology, Springer-verlag, 1976.
- [5] W. RUDIN, Functional Analysis, 1973.