International Journal of Mathematical Archive-2(3), Mar. - 2011, Page: 320-322
@§MA Available online through www.ijma.info I1SSN 2229 - 5046

THE EASY WHITNEY EMBEDDING THEOREM IN THE COMPLEX CASE
Hamdi M. Genedi

Mathematics and Statistics Department, Faculty of Science, Taif University, Kingdom of Saudi Arabia
E-mail: hmgenedyl1954@hotmail.com

(Received on: 18-02-11; Accepted on: 27-02-11)

ABSTRACT

Whitney proved that if M is compact n-dimensional manifold with analytic structure, then there is an analytic
structure embedding of M in R?*"*, In this paper we prove this theorem in the complex case.
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1. INTRODUCTION:

In [4], Whitney proved that if M is compact Hausdorff C” n-dimensional manifold, 2 < r < oo, then there is a C”
embedding of M in R***1, The aim of this paper is to prove the theorem but in complex case, i.e., if M is compact
complex n-dimensional manifold with analytic structure, then there is an analytic structure embedding of M in C**2,
The definitions and fundamental concepts which will be required throughout the paper may be found in [1, 2, 3].

2. MAIN THEOREM:
We need the following lemmas:

Lemma: 1 Let M be an analytic compact complex n-dimensional manifold. Then there exists an analytic embedding of
M into C".

Proof: D"(r) = {z € C"™: |z| < r}, this is closed disk of radius r and centre o0 in C*. Since M is compact it satisfies the
finite intersection property and so one can easily find an atlas {o,, U;}iL; having the following properties:

(a) for every ¢,(U;) © D"(2), where D"(2) is the interior of the unit complex sphere S™.
(b) M =UlInt (pi_l(An), where A" denotes a unit closed disk in C®, i.e. A= D"(1).

Let 3 C" — S? be an analytic map such that 3| A"= |z|, (3 ]C")\ D™(2) = 0. Define an C*- map 2, : M — §?
such that:

1= 2, onU;
t|o on Uf

It follows that the sets B; = Al._l(|z|) C U; cover M. Define maps f;: M — C" such that:

f' _{ Ji(Z) (Pi(z) Lf ZEUL-
o if zeUf

Put g; = (f;, 2,) > C"xC=C""and g = (g1, ..., gm) M= C™*! X ... X C™*1 = ¢ Clearly g is C© map. If
m-—times
Z, € B; then g;, and hence g, is immersive at z;, so g is an immersion. To see that g is injective, suppose z; # z, with

7, € B;. If z; € B; then g(z;) = g(z;) since f; | B; = @; | B;. If z; & B; then 2,(z,) = 1 # 1,(2), so g(z1) # g(z2).
Therefore g is an injective C“- immersion. Since M is compact, then g is an embedding.

Lemma: 2 Let M™ and N" be complex manifolds with n>m. If f:M™ — N™ is a C®- map, then f(M™) is
nowhere dense.

Proof: It suffices to show that f(M™) has measure zero this follows from:
If g:U — C™ which is analytic and with m <n and if U c C™ is open, then g(U) c C™ has measure zero. To prove
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this assertion, write g as a composition of C“-maps U =U X {0} c U x C*™™ Sudcux {0} has n-measure
zeroin U X C*™™ < €™ x €™ = C™. Now every point of V, where V c U, belongs to an open ball B ¢ U such that
the norm ||Dg(z)|| is uniformly bounded on B, say 8 > 0, where f is a real number. Then |f(z) — f(z )| < Blz — z|
for all z,z € B. It follows that if K < B is an n-cube of edge 2, then f(K) is contained in an n-cube K of edge less
than AW:JL. Therefore u(K ) < L"u(K). Now write V = UL, V; where each V; is a compact subset of a ball B as
above. For each € > 0, V; = U; K;, where each K; is ann-cubein €™ and ¥ u(K;) < e. It follows that f(V;) € U; K;
where the sum of the measure of the n-cube K; is less than L"e. Hence f(V;) has measure zero, and so V has measure.
Then f (M) has measure zero by prolongation.

The inverse function theorem 3 ([5]).Suppose

(a) W is an open subset of a banach space X,

(b) f:W — X is continuously differentiable,

(c) forevery z € W and (Df), is an invertible member of the collection of all
bounded linear mappings of X into X.

Every point a € W has then a neighbourhood U such that

(i) f is one-to-one in U,
(i) f(U)=V is an open subset of X, and
(iii) f~1:V > U is uniformly continuous.

Lemma: 4 Let N™ be a C®-manifold. A subset A € N™ is a C®- submanifold if and only if 4 is the image of a C*-
embedding .

Proof: Suppose A isa C®- manifold. Then A has a natural analytic structure derived from a covering by submanifold
charts. For this analytic structure, the inclusion of A in N™ is C®- embedding. Conversely, suppose f: M™ — N™ is
a C®- embedding, f(M™) = A. The property of being a C®- submanifold has local character, That is true if 4 ¢ M™
if and only if it is true if A; € N; where {4;} is an open cover of A and each N; is an open subset of M™ containing
A;. It is also invariant under C® -holeomorphic map, thatis, A € N isa C® - submanifold if and only if g(A) € N is
a C“- submanifold where g:N — N is a C“-holeomorphic map (or even a C®-embedding). To exploit local
character and invariance under holeomorphic map, let ¥ = {;: N; = C"};c be a family of charts on N™ which covers A.
Then find an atlas @ = {¢;: M; - C™};c for M™ such that f(M;) € N; . Since f is an embedding, @ and ¥ can be
chosen so that f(M;) = AN N; . By invariance it is enough to show that ;f(M;) c C"is a C® - submanifold. Put
Ui = ¢i(M;) = C™,

fi=i°f°@;*:U; > C" Then f; is a C*- embedding and g;(U;) = ; > f(M;). Thus we have reduced the
lemma to the special case where N = C", M is an open set U c C™, and f:U — C"is a C®- embedding. In this case a
corollary of the inverse function theorem implies that there is a C®- submanifold chart for (C", f(U)) at each point of

f@).

Lemma: 5 Let f:M > N be a C®-map. If z € f(M) is an analytic value i.e. it satisfies the Cauchy-Riemann
equations. Then f~1(z) is a C%- submanifold of M.

Proof: By using local character and invariance, as in the proof of lemma 4, we reduce the lemma to the case where M
is an open set in C™ and N = C™. Again the lemma follows from the inverse function theorem.

Theorem: (Main) Let M be a compact complex n- dimensional manifold with analytic structure. Then there is an
analytic structure embedding of M in C**2,

Proof: By lemma 1, M embeds in some C9. If ¢ = n + 1 there is nothing to prove; hence we assume the case that
q > n+ 1. We may replace M by its image under an embedding. Therefore we assume that M is a C®- submanifold of

€Y. Tt is sufficient to prove that such an M embeds in €972, for repetition of the argument will eventually embed M in
(Cn+1.

Suppose then that M c €9, > n + 1. Identify C97* with {z € C%:z, = 0}. If v € C7 — C7"* denote by f,:CI -
€971 the projection parallel to v . We seek a vector v such that folM: M- €971 is aC®- embedding. We limit our
search to unit vectors.

For f, | M to be injective means that v is not parallel to any secant of M. Thatis, if z;,z, are any two distinct points
of M, then
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More subtle is the requirement that f, | M be an immersion. The kernel of the analytic map f, is obviously the circle
|z| = 1 through v. Therefore a tangent vector z € M, is in the kernel of T ,°f, only if z is parallel to v. We can

guarantee that f;, | M is an immersion by requiring, for all nonzero z € T(M ):

z

vt Lo @)
Here z is identified with a vector in C7; thus |z| makes sense. Condition (1) is analyzed by means of the map

p:MXM—A- S971

( ) Z1— 23
Z2y,2y) = ———,

P2z |z — z,]

where A is the diagonal, i.e. ,
A={(a,h))EMXM:a=b}

Now v satisfies (1) if and only if v is not in the image of p ; we consider M x M — A as an open submanifold

of M X M;the map p isthen C®. Note that
dim (M x M — A) = 2n < dim S971,

The existence of a v satisfying (1) follows from lemma 2. In the case at hand, put M X M — A and S97! instead of
M™ and N™, respectively, in lemma 2. We know that every nonvoid open subset of S~ contains a point v which is
not in the image of p. To analyze condition (2) we note that it holds for all z € T(M) provided it holds whenever
|z] = 1. Let

This is the unit tangent bundle of M. Itis C®- submanifold of T(M). To see this, observe that T;(M) = v~1(|z])
where v:T(M) - C, v isdefined by v(z) = |z|?. Since v is the restriction to T(M) of the C®-map T(C?) -
C,z - |z|? itis C®. Itis clear that (1, 0) is a regular value for v ; forif v(z) = 1, then

d
7 ()i % 0.

Hence v~1 (|z|) is a C®- submanifold by lemma 4. It is easy to see that it is compact because M is compact. Define a
C®-map 7: T;(M) — S9! as follows. Identify T(M) with a subset of M X C? ; then T;(M) is a subset of M X
§971 Define 7 to be the restriction to T; (M) of the projection onto S%~1. Geometrically T is just parallel translation
of unit vectors based at points of M to unit vectors based at 0. Clearly 7 is C®. Noting that dimT; (M) =n—1<
dimS?71, we apply lemma (2) to conclude that the image of T is nowhere dense. Since T;(M) is compact, it follows
that the complement W of the image of T is a dense open set in S971 . Therefore W meets S9N (C? —C971) ina
nonempty open set W,. As we have seen previously, W, contains a vector v which is not in the image of p. This
vector v has the property that f, | M : M — C9 is an injective immersion. Since M is compact and Hausdorff,

fo | M is also an embedding.
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