International Journal of Mathematical Archive-3(8), 2012, 2899-2902

COMMUTANT OF THE DIRECT SUM OF MULTIPLICATION OPERATORS

K. Hedayatian*

Department of Mathematics, College of Sciences, Shiraz University, Shiraz 71454, Iran

(Received on: 12-08-12; Revised & Accepted on: 31-08-12)

ABSTRACT

For i = 1, ..., n, suppose that B_i is Banach space of analytic functions on a bounded domain G_i in the complex plane, and $G_i \cap G_j = \phi$ for $i \neq j$. Let M_i denote the operator of multiplication by z on B_i . It is shown that the commutant and the double commutant of $M_1 \oplus \cdots \oplus M_n$ are equal; furthermore, the commutant of $M_1 \oplus \cdots \oplus M_n$ is plit. That is, $\{M_1 \oplus \cdots \oplus M_n\}' = \{M_1\}' \oplus \cdots \oplus \{M_n\}'$. Also, we prove that the direct sum of an upper or lower triangular operator on $B_1 \oplus \cdots \oplus B_1$ and another one on $B_2 \oplus \cdots \oplus B_2$ split. ¹ 2000 Mathematics subject Classification: 47B38.

Keywords and Phrases: Commutant, Direct sum, Multiplication operators.

1. INTRODUCTION

Let G be bounded domain in the complex plane \mathbb{C} . Suppose that B is a reflexive Banach space of analytic functions on G. Denote the operator of multiplication by z on B by M_z . The operator M_z and many properties of this operator have been studied in literature (see, for example, [1], [3-12]).

A complex-valued function ϕ on G is called a multiplier of B if $\phi B \subseteq B$. The set of all multipliers will be denoted by M(B). It is known that $M(B) \subseteq B \cap H^{\infty}(G)$, whenever $H^{\infty}(G)$ is the space of bounded analytic functions on G with the supremum norm. ([2, Proposition 3]). Each multiplier ϕ of B determines a multiplication operator M_{ϕ} defined by $M_{\phi}f = \phi f$, for all $f \in B$. For every scalar λ , let us denote by e_{λ} the functional of evaluation

at λ on **B**, defined by $e_{\lambda}f := \langle f, e_{\lambda} \rangle = f(\lambda)$. It is well known that $M_{\phi}^* e_{\lambda} = \phi(\lambda)e_{\lambda}$.

2. MAIN RESULTS

If T is a bounded linear operator on a Banach space B, the commutant of T, denoted by $\{T\}'$, consists of all bounded linear operators on B which commute with T. That is, $\{T\}' = \{S \in L(B) : ST = TS\}$. Let $\{T\}''$ denote the double commutant of T; *i.e.*, $\{\{T\}'\}'$. In [9] and [10], the commutant of the direct sum of some operators on certain Banach spaces of functions are characterized. For $i = 1, 2, \dots, n$, suppose that B_i is a Banach space of analytic functions on the bounded domains G_i in the complex plane \mathbb{C} . Let M_i be the operator of multiplication by z on B_i defined by $(M_i f)(z) = zf(z)$, for every $f \in B_i$, such that $\sigma(M_i) = \overline{G_i}$, and dim $\ker(M_i - \lambda)^* = 1$ for every $\lambda \in G_i$.

It follows from [12] that $\{M_i\}' = \{M_{\phi} : \phi \in M(B_i)\}$, for $i = 1, 2, \dots, n$. The matrix of every operator S acting on the Banach space $B_1 \oplus B_2 \oplus \dots \oplus B_n$ can be written as $S = (S_{ij})_{1 \le i, j \le n}$, where the operator $S_{ij} : B_j \to B_i$, $i, j = 1, 2, \dots, n$ is defined by $S_{ij} = P_i S|_{B_j}$ in which P_i is the projection from $B_1 \oplus \dots \oplus B_n$ onto B_i .

International Journal of Mathematical Archive- 3 (8), August – 2012

An operator $X \in L(B_2, B_1)$ is said to intertwines the operators $T_1 \in L(B_1)$ and $T_2 \in L(B_2)$ if and only if $T_1X = XT_2$.

Theorem 1. If $G_i \cap G_j = \phi$, for all $i, j = 1, \dots, n$ with $i \neq j$, then the algebra $\{M_1 \oplus \dots \oplus M_n\}'$ splits; that is,

$$\{M_1 \oplus \cdots \oplus M_n\}' = \{M_1\}' \oplus \cdots \oplus \{M_n\}'.$$

Furthermore,

$$\begin{split} \{M_1 \oplus \cdots \oplus M_n\}'' &= \{M_1 \oplus \cdots \oplus M_n\}' \\ &= \{M_{\phi_1} \oplus \cdots \oplus M_{\phi_n} : \phi_i \in M \ (B_i \), i = 1, \cdots, n\}. \end{split}$$

Proof: Suppose that $S = (S_{ij})_{1 \le i, j \le n} \in \{M_1 \oplus \cdots \oplus M_n\}'$. The matrix of the operator $M_1 \oplus \cdots \oplus M_n$ is a diagonal matrix $M = (M_{ij})_{1 \le i, j \le n}$ where $M_{ii} = M_i$, and $M_{ij} = 0$ for $i \ne j$. Then the operator S_{ij} intertwines M_i and M_j ; *i.e.*, $M_i S_{ij} = S_{ij} M_j$. Consequently, $S_{ii} \in \{M_i\}' = \{M_{\phi} : \phi \in M(B_i)\}$. Also, S_{ij}^* intertwines M_i^* and M_j^* . So, if $\lambda \in G_i$ then $M_j^* S_{ij}^* e_{\lambda} = \lambda S_{ij}^* e_{\lambda}$. If $i \ne j$ and $S_{ij}^* e_{\lambda} \ne 0$, then $\lambda \in \sigma(M_j^*) = \sigma(M_j) = \overline{G_j}$, which is a contradiction, because $G_i \cap G_j = \phi$. Thus, if $i \ne j$, then for all $\lambda \in G_i$, we see that $S_{ij}^* e_{\lambda} = 0$.

Now, since the linear span of $\{e_{\lambda} : \lambda \in G_i\}$ is dense in B_i^* , we conclude that $S_{ij}^* = 0$, and so $S_{ij} = 0$, for $i \neq j$. It follows that

$$\{M_1 \oplus \dots \oplus M_n\}' = \{\hat{M} \ \phi_1 \oplus \dots \oplus M_{\phi_n} : \phi_i \in M(B_i)\}$$
$$= \{M_1\}' \oplus \dots \oplus \{M_n\}'.$$

To show that $\{M_1 \oplus \cdots \oplus M_n\}'' = \{M_1 \oplus \cdots \oplus \neq M_n\}'$, first note that $\{M_i\}'' \subseteq \{M_i\}'$, for $i = 1, \dots, n$, and $\{M_1 \oplus \cdots \oplus M_n\}'' \subseteq \{M_1 \oplus \cdots \oplus M_n\}'$.

Let $X \in \{M_i\}'$. Then $X = M_{\psi}$, for some $\psi \in M(B_i)$, which implies that M_{ψ} commutes with M_{ϕ} for all $\phi \in M(B_i)$; thus $M_{\psi} \in \{M_{\phi} : \phi \in M(B_i)\}' = \{M_i\}''$. Therefore, $\{M_i\}'' = \{M_i\}'$, for $i = 1, \dots, n$. Now,

$$M_{1} \oplus \dots \oplus M_{n} \}' = \{M_{1}\}' \oplus \dots \oplus \{M_{n}\}'$$
$$= \{M_{1}\}'' \oplus \dots \oplus \{M_{n}\}''$$
$$\subseteq \{\{M_{1}\}' \oplus \dots \oplus \{M_{n}\}'\}$$
$$= \{\{M_{1} \oplus \dots \oplus M_{n}\}'\}'$$
$$= \{M_{1} \oplus \dots \oplus M_{n}\}''$$

Lemma 1. Suppose that $G_1 \cap G_2 = \emptyset$, and X and Y are operators in $L(B_2, B_1)$ such that $M_1X - XM_2 = M_1Y - YM_2$. Then X = Y. In particular, if X intertwines M_1 and M_2 then X = 0.

Proof. Take an arbitrary $\lambda \in G_1$. From the hypothesis, it follows that

$$X^{*}M_{1}^{*}e_{\lambda} - M_{2}^{*}X^{*}e_{\lambda} = Y^{*}M_{1}^{*}e_{\lambda} - M_{2}^{*}Y^{*}e_{\lambda};$$

$$(\lambda - M_{2}^{*})(X^{*}e_{\lambda}) = (\lambda - M_{2}^{*})(Y^{*}e_{\lambda}).$$

or equivalently,

This along with the invertibility of $\lambda - M_2^*$ imply that $X^*e_{\lambda} = Y^*e_{\lambda}$. But since the linear span of $\{e_{\lambda} : \lambda \in G_1\}$ is dense in B_1^* , it follows that X = Y.

An operator T acting on the Banach space $B_1 \oplus \cdots \oplus B_n$ is called *upper triangular*, if $T_{ij} = 0$ for i > j; that is, every entry below the main diagonal is zero. Furthermore, T is called *lower triangular* if $T_{ij} = 0$ for i < j; that is every entry above the main diagonal is zero. In the next result, we investigate when the direct sum of certain upper triangular and lower triangular operators split.

Theorem 2. Suppose that $G_1 \cap G_2 = \emptyset$. Let T and S be upper or lower triangular operators, respectively, on $\underbrace{B_1 \oplus \cdots \oplus B_1}_{n-times}$ and $\underbrace{B_2 \oplus \cdots \oplus B_2}_{n-times}$ with diagonals $T_{ii} = M_1$, and $S_{ii} = M_2$, $i = 1, \dots, n$. Then $\{T \oplus S\}' = \{T\}' \oplus \{S\}'$.

Proof. We only prove the theorem, where T and S are both upper triangular operators. The other cases are proved by similar arguments.

Obviously, $\{T\}' \oplus \{S\}' \subseteq \{T \oplus S\}'$. To show that $\{T \oplus S\}' \subseteq \{T\}' \oplus \{S\}'$, let $X = \begin{bmatrix} C & E \\ F & D \end{bmatrix}$ commutes with $T \oplus S$; that is

$$\begin{bmatrix} T & 0 \\ 0 & S \end{bmatrix} \begin{bmatrix} C & E \\ F & D \end{bmatrix} = \begin{bmatrix} C & E \\ F & D \end{bmatrix} \begin{bmatrix} T & 0 \\ 0 & S \end{bmatrix}$$

Then TC = CT, TE = ES, SF = FT, and SD = DS. So it is sufficient to show that E and F are the zero operators. Since TE = ES, by the matrix representation of operators, we have

$$\begin{bmatrix} M_{1} & T_{12} & T_{13} & \cdots & T_{1n} \\ 0 & M_{1} & T_{23} & \cdots & T_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & M_{1} \end{bmatrix} \begin{bmatrix} E_{11} & E_{12} & \cdots & E_{1n} \\ \vdots & \vdots & & \vdots \\ E_{n1} & E_{n2} & \cdots & E_{nn} \end{bmatrix}^{M_{2}} \begin{bmatrix} S_{12} & S_{13} & \cdots & S_{1n} \\ 0 & M_{2} & S_{23} & \cdots & S_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & M_{2} \end{bmatrix}$$

so the following relations are obtained:

$$(TE)_{n1} = M_{1}E_{n1} = (ES)_{n1} = E_{n1}M_{2},$$

$$(TE)_{n2} = M_{1}E_{n2} = (ES)_{n2} = E_{n1}S_{12} + E_{n2}M_{2}$$

$$\vdots$$

$$(TE)_{nn} = M_{1}E_{nn} = \sum_{i=1}^{n-1} E_{ni}S_{in} + E_{nn}M_{2}.$$

Then, applying the preceding lemma, we conclude that $E_{ni} = 0$ for $i = 1, \dots, n$. The second step is to show that $E_{(n-1)i} = 0$, for $i = 1, \dots, n$. Similar to the above computations, we obtain

© 2012, IJMA. All Rights Reserved

K. Hedayatian*/ Commutant of the Direct Sum of Multiplication Operators/ IJMA- 3(8), August-2012.

$$\begin{split} (TE)_{(n-1)1} &= M_1 E_{(n-1)1} + T_{(n-1)n} E_{n1} = (ES)_{(n-1)1} = E_{(n-1)1} M_2, \\ (TE)_{(n-1)2} &= M_1 E_{(n-1)2} + T_{(n-1)n} E_{n2} = E_{(n-1)1} S_{12} + E_{(n-1)2} M_2 \\ &\vdots \\ (TE)_{(n-1)n} &= M_1 E_{(n-1)n} + T_{(n-1)n} E_{n2} = \sum_{i=1}^{n-1} E_{(n-1)i} S_{in} + E_{(n-1)n} M_2. \end{split}$$

So, again applying the preceding lemma, we observe that the (n-1)th row of E is zero. Continuing the above process, every row of the matrix representation of E and so E becomes zero.

Since SF = FT, by the same way, we can show that F = 0.

ACKNOWLEDGEMENT

This research was in part supported by a grant from Shiraz University Research Council.

REFERENCES

[1] P. S. Bourdon and J. H. Shapiro, Spectral synthesis and common cyclic vectors, Michigan. Math. J. 37 (1990), 71-90.

[2] L. Brown and A. L. Shields, Cyclic vectors in the Dirichlet space, Trans. Amer. Math. Soc. 285 (1984), No.1, 269-304

[3] M. Faghih – Ahmadi and K. Hedayatian, Commutants and hyper-reflexivity of multiplication operators, Turk.J. Math. (to appear).

[4] K. Hedayatian, Reflexivity of powers of multiplication operators, Intern. Math. Journal, 3 (2003), 811 -818.

[5] K. Hedayatian, Univalent mapping and wandering property in the space of analytic functions, Korean Annals of Math. **23** (2006), 19-25.

[6] K. Hedayatian, On the reflexivity of the multiplication operator on Banach spaces of formal Laurent series, International Journal of Mathematics, **18** (2007), 231-234.

[7] K. Hedayatian and B. Khani Robati, Some properties of invariant subspaces in Banach spaces of analytic functions, Honam Mathematical J. **29** (2007) 523-533.

[8] K. Hedayatian, A remark on invariant subspaces of index one in $p^{t}(\mu)$ -spaces, International Journal of Mathematical Archire **2** (9) (2011), 1742-1746.

[9] B. Khani Robati and K. Seddighi, On the commutant of the direct sum of the direct sum of operators on spaces of functions, Bull. Iranian Math. Soc. **21** (1995), 45-57.

[10] B. Khani Robati and K. Seddighi, On the commutant of the direct sum of operators of multiplication by the independent variable, J. Operator Theory 42 (2000), 199-210.

[11] K. Seddighi, K. Hedayatian and B. Yousefi, Operators acting on certain Banach spaces of analytic functions, Inter. J. Math. And Math. Sci., **18** (1994), 107-110.

[12] A. L. Shields and L. Wallen, The commutatnts of certain Hilbert space operators, Ind. Univ. Math. J. 20 (1971), 777-788.

Source of support: Grant from Shiraz University Research Council Iran, Conflict of interest: None Declared