International Journal of Mathematical Archive-3(8), 2012, 2899-2902
Available online through www.ijma.info ISSN 2229-5046

COMMUTANT OF THE DIRECT SUM OF MULTIPLICATION OPERATORS

K. Hedayatian*
Department of Mathematics, College of Sciences, Shiraz University, Shiraz 71454, Iran

(Received on: 12-08-12; Revised \& Accepted on: 31-08-12)

Abstract

$\boldsymbol{F}_{\text {or }} i=1, \ldots, n$, suppose that B_{i} is Banach space of analytic functions on a bounded domain G_{i} in the complex plane, and $G_{i} \cap G_{j}=\phi$ for $i \neq j$. Let M_{i} denote the operator of multiplication by Z on B_{i}. It is shown that the commutatnt and the double commutatnt of $M_{1} \oplus \cdots \oplus M_{n}$ are equal; furthermore, the commutant of $M_{1} \oplus \cdots \oplus M_{n}$ split. That is, $\left\{M_{1} \oplus \cdots \oplus M_{n}\right\}^{\prime}=\left\{M_{1}\right\}^{\prime} \oplus \cdots \oplus\left\{M_{n}\right\}^{\prime}$. Also, we prove that the direct sum of an upper or lower triangular operator on $\mathrm{B}_{1} \oplus \cdots \oplus \mathrm{~B}_{1}$ and another one on $\mathrm{B}_{2} \oplus \cdots \oplus \mathrm{~B}_{2}$ split. ${ }^{1} 2000$ Mathematics subject Classification: 47B38.

Keywords and Phrases: Commutant, Direct sum, Multiplication operators.

1. INTRODUCTION

Let G be bounded domain in the complex plane \mathbb{C}. Suppose that B is a reflexive Banach space of analytic functions on G. Denote the operator of multiplication by Z on B by M_{Z}. The operator M_{Z} and many properties of this operator have been studied in literature (see, for example, [1], [3-12]).

A complex-valued function ϕ on G is called a multiplier of B if $\phi \mathrm{B} \subseteq \mathrm{B}$. The set of all multipliers will be denoted by $M(B)$. It is known that $M(\mathrm{~B}) \subseteq \mathrm{B} \cap H^{\infty}(G)$, whenever $H^{\infty}(G)$ is the space of bounded analytic functions on G with the supremum norm. ([2, Proposition 3]). Each multiplier ϕ of B determines a multiplication operator M_{ϕ} defined by $M_{\phi} f=\phi f$, for all $f \in \mathrm{~B}$. For every scalar λ, let us denote by e_{λ} the functional of evaluation at λ on B , defined by $e_{\lambda} f:=<f, e_{\lambda}>=f(\lambda)$. It is well known that $M_{\phi}^{*} e_{\lambda}=\phi(\lambda) e_{\lambda}$.

2. MAIN RESULTS

If T is a bounded linear operator on a Banach space B , the commutant of T, denoted by $\{T\}^{\prime}$, consists of all bounded linear operators on B which commute with T. That is, $\{T\}^{\prime}=\{S \in L(\mathrm{~B}): S T=T S\}$. Let $\{T\}^{\prime \prime}$ denote the double commutant of T;i.e., $\left\{\{T\}^{\prime}\right\}^{\prime}$. In [9] and [10], the commutant of the direct sum of some operators on certain Banach spaces of functions are characterized. For $i=1,2, \cdots, n$, suppose that B_{i} is a Banach space of analytic functions on the bounded domains G_{i} in the complex plane \mathbb{C}. Let M_{i} be the operator of multiplication by z on B_{i} defined by $\left(M_{i} f\right)(z)=z f(z)$, for every $f \in \mathrm{~B}_{i}$, such that $\sigma\left(M_{i}\right)=\overline{G_{i}}$, and dim $\operatorname{ker}\left(M_{i}-\lambda\right)^{*}=1$ for every $\lambda \in G_{i}$.

It follows from [12] that $\left\{M_{i}\right\}^{\prime}=\left\{M_{\phi}: \phi \in M\left(\mathrm{~B}_{i}\right)\right\}$, for $i=1,2, \cdots, n$. The matrix of every operator S acting on the Banach space $\mathrm{B}_{1} \oplus \mathrm{~B}_{2} \oplus \cdots \oplus \mathrm{~B}_{n}$ can be written as $S=\left(S_{i j}\right)_{1 \leq i, j \leq n}$, where the operator $S_{i j}: \mathrm{B}_{j} \rightarrow \mathrm{~B}_{i}, i, j=1,2, \cdots, n$ is defined by $S_{i j}=\left.P_{i} S\right|_{B_{j}}$ in which P_{i} is the projection from $B_{1} \oplus \cdots \oplus B_{n}$ onto B_{i}.

An operator $X \in L\left(B_{2}, B_{1}\right)$ is said to intertwines the operators $T_{1} \in L\left(B_{1}\right)$ and $T_{2} \in L\left(B_{2}\right)$ if and only if $T_{1} X=X T_{2}$.

Theorem 1. If $G_{i} \cap G_{j}=\phi$, for all $i, j=1, \cdots, n$ with $i \neq j$, then the algebra $\left\{M_{1} \oplus \cdots \oplus M_{n}\right\}^{\prime}$ splits; that is,

$$
\left\{M_{1} \oplus \cdots \oplus M_{n}\right\}^{\prime}=\left\{M_{1}\right\}^{\prime} \oplus \cdots \oplus\left\{M_{n}\right\}^{\prime}
$$

Furthermore,

$$
\begin{aligned}
\left\{M_{1} \oplus \cdots \oplus M_{n}\right\}^{\prime \prime} & =\left\{M_{1} \oplus \cdots \oplus M_{n}\right\}^{\prime} \\
& =\left\{M_{\phi_{1}} \oplus \cdots \oplus M_{\phi_{n}}: \phi_{i} \in M\left(B_{i}\right), i=1, \cdots, n\right\} .
\end{aligned}
$$

Proof: Suppose that $S=\left(S_{i j}\right)_{1 \leq i, j \leq n} \in\left\{M_{1} \oplus \cdots \oplus M_{n}\right\}^{\prime}$. The matrix of the operator $M_{1} \oplus \cdots \oplus M_{n}$ is a diagonal matrix $M=\left(M_{i j}\right)_{1 \leq i, j \leq n}$ where $M_{i i}=M_{i}$, and $M_{i j}=0$ for $i \neq j$. Then the operator $S_{i j}$ intertwines M_{i} and M_{j}; i.e., $M_{i} S_{i j}=S_{i j} M_{j}$. Consequently, $S_{i i} \in\left\{M_{i}\right\}^{\prime}=\left\{M_{\phi}: \phi \in M\left(B_{i}\right)\right\}$. Also, $S_{i j}^{*}$ intertwines M_{i}^{*} and M_{j}^{*}. So, if $\lambda \in G_{i}$ then $M_{j}^{*} S_{i j}^{*} e_{\lambda}=\lambda S_{i j}^{*} e_{\lambda}$. If $i \neq j$ and $S_{i j}^{*} e_{\lambda} \neq 0$, then $\lambda \in \sigma\left(M_{j}^{*}\right)=\sigma\left(M_{j}\right)=\overline{G_{j}}$, which is a contradiction, because $G_{i} \cap G_{j}=\phi$. Thus, if $i \neq j$, then for all $\lambda \in G_{i}$, we see that $S_{i j}^{*} e_{\lambda}=0$.

Now, since the linear span of $\left\{e_{\lambda}: \lambda \in G_{i}\right\}$ is dense in B_{i}^{*}, we conclude that $S_{i j}^{*}=0$, and so $S_{i j}=0$, for $i \neq j$. It follows that

$$
\begin{aligned}
\left\{M_{1} \oplus \cdots \oplus M_{n}\right\}^{\prime} & =\left\{\hat{M} \quad \phi_{1} \oplus \cdots \oplus M_{\phi_{n}}: \phi_{i} \in M\left(B_{i}\right)\right\} \\
& =\left\{M_{1}\right\}^{\prime} \oplus \cdots \oplus\left\{M_{n}\right\}^{\prime} .
\end{aligned}
$$

To show that $\left\{M_{1} \oplus \cdots \oplus M_{n}\right\}^{\prime \prime}=\left\{M_{1} \oplus \cdots \oplus \neq M_{n}\right\}^{\prime}$, first note that $\left\{M_{i}\right\}^{\prime \prime} \subseteq\left\{M_{i}\right\}^{\prime}$, for $i=1, \cdots, n$, and $\left\{M_{1} \oplus \cdots \oplus M_{n}\right\}^{\prime \prime} \subseteq\left\{M_{1} \oplus \cdots \oplus M_{n}\right\}^{\prime}$.

Let $X \in\left\{M_{i}\right\}^{\prime}$. Then $X=M_{\psi}$, for some $\psi \in M\left(B_{i}\right)$, which implies that M_{ψ} commutes with M_{ϕ} for all $\phi \in M\left(B_{i}\right)$; thus $M_{\psi} \in\left\{M_{\phi}: \phi \in M\left(B_{i}\right)\right\}^{\prime}=\left\{M_{i}\right\}^{\prime \prime}$. Therefore, $\left\{M_{i}\right\}^{\prime \prime}=\left\{M_{i}\right\}^{\prime}$, for $i=1, \cdots, n$. Now,

$$
\begin{aligned}
\left\{M_{1} \oplus \cdots \oplus M_{n}\right\}^{\prime} & =\left\{M_{1}\right\}^{\prime} \oplus \cdots \oplus\left\{M_{n}\right\}^{\prime} \\
& =\left\{M_{1}\right\}^{\prime \prime} \oplus \cdots \oplus\left\{M_{n}\right\}^{\prime \prime} \\
& \subseteq\left\{\left\{M_{1}\right\}^{\prime} \oplus \cdots \oplus\left\{M_{n}\right\}^{\prime}\right\}^{\prime} \\
& =\left\{\left\{M_{1} \oplus \cdots \oplus M_{n}\right\}^{\prime}\right\}^{\prime} \\
& =\left\{M_{1} \oplus \cdots \oplus M_{n}\right\}^{\prime \prime}
\end{aligned}
$$

Lemma 1. Suppose that $G_{1} \cap G_{2}=\varnothing$, and X and Y are operators in $L\left(B_{2}, B_{1}\right)$ such that $M_{1} X-X M_{2}=M_{1} Y-Y M_{2}$. Then $X=Y$. In particular, if X intertwines M_{1} and $\quad M_{2}$ then $X=0$.

Proof. Take an arbitrary $\lambda \in G_{1}$. From the hypothesis, it follows that

$$
\begin{gathered}
X{ }^{*} M_{1}^{*} e_{\lambda}-M_{2}^{*} X{ }^{*} e_{\lambda}=Y{ }^{*} M_{1}^{*} e_{\lambda}-M_{2}^{*} Y^{*} e_{\lambda} ; \\
\left(\lambda-M_{2}^{*}\right)\left(X{ }^{*} e_{\lambda}\right)=\left(\lambda-M_{2}^{*}\right)\left(Y{ }^{*} e_{\lambda}\right) .
\end{gathered}
$$

or equivalently,

K. Hedayatian*/ Commutant of the Direct Sum of Multiplication Operators/ IJMA- 3(8), August-2012.

This along with the invertibility of $\lambda-M_{2}^{*}$ imply that $X{ }^{*} e_{\lambda}=Y{ }^{*} e_{\lambda}$. But since the linear span of $\left\{e_{\lambda}: \lambda \in G_{1}\right\}$ is dense in B_{1}^{*}, it follows that $X=Y$.

An operator T acting on the Banach space $B_{1} \oplus \cdots \oplus B_{n}$ is called upper triangular, if $T_{i j}=0$ for $i>j$; that is, every entry below the main diagonal is zero. Furthermore, T is called lower triangular if $T_{i j}=0$ for $i<j$; that is every entry above the main diagonal is zero. In the next result, we investigate when the direct sum of certain upper triangular and lower triangular operators split.

Theorem 2. Suppose that $G_{1} \cap G_{2}=\varnothing$. Let T and S be upper or lower triangular operators, respectively, on $\underbrace{B_{1} \oplus \cdots \oplus B_{1}}_{n \text {-times }}$ and $\underbrace{B_{2} \oplus \cdots \oplus B_{2}}_{n \text {-times }}$ with diagonals $T_{i i}=M_{1}$, and $S_{i i}=M_{2}, i=1, \cdots, n$. Then $\{T \oplus S\}^{\prime}=\{T\}^{\prime} \oplus\{S\}^{\prime}$.

Proof. We only prove the theorem, where T and S are both upper triangular operators. The other cases are proved by similar arguments.

Obviously, $\{T\}^{\prime} \oplus\{S\}^{\prime} \subseteq\{T \oplus S\}^{\prime}$. To show that $\{T \oplus S\}^{\prime} \subseteq\{T\}^{\prime} \oplus\{S\}^{\prime}$, let $X=\left[\begin{array}{ll}C & E \\ F & D\end{array}\right]$ commutes with $T \oplus S$; that is

$$
\left[\begin{array}{ll}
T & 0 \\
0 & S
\end{array}\right]\left[\begin{array}{ll}
C & E \\
F & D
\end{array}\right]=\left[\begin{array}{ll}
C & E \\
F & D
\end{array}\right]\left[\begin{array}{ll}
T & 0 \\
0 & S
\end{array}\right]
$$

Then $T C=C T, T E=E S, S F=F T$, and $S D=D S$. So it is sufficient to show that E and F are the zero operators. Since $T E=E S$, by the matrix representation of operators, we have

$$
\begin{gathered}
{\left[\begin{array}{ccccc}
M_{1} & T_{12} & T_{13} & \cdots & T_{1 n} \\
0 & M_{1} & T_{23} & \cdots & T_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & M_{1}
\end{array}\right]\left[\begin{array}{cccc}
E_{11} & E_{12} & \cdots & E_{1 n} \\
\vdots & \vdots & & \vdots \\
E_{n 1} & E_{n 2} & \cdots & E_{n n} \\
& & \\
=\left[\begin{array}{cccc}
E_{11} & E_{12} & \cdots & E_{1 n} \\
\vdots & \vdots & & \vdots \\
E_{n 1} & E_{n 2} & \cdots & E_{n n}
\end{array}\right]\left[\begin{array}{ccccc}
M_{2} & S_{12} & S_{13} & \cdots & S_{1 n} \\
0 & M_{2} & S_{23} & \cdots & S_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & M_{2}
\end{array}\right] ;
\end{array}, ;\right. \text {; }}
\end{gathered}
$$

so the following relations are obtained:

$$
\begin{aligned}
& (T E)_{n 1}=M_{1} E_{n 1}=(E S)_{n 1}=E_{n 1} M_{2}, \\
& (T E)_{n 2}=M_{1} E_{n 2}=(E S)_{n 2}=E_{n 1} S_{12}+E_{n 2} M_{2} \\
& \quad \vdots \\
& (T E)_{n n}=M_{1} E_{n n}=\sum_{i=1}^{n-1} E_{n i} S_{i n}+E_{n n} M_{2} .
\end{aligned}
$$

Then, applying the preceding lemma, we conclude that $E_{n i}=0$ for $i=1, \cdots, n$. The second step is to show that $E_{(n-1) i}=0$, for $i=1, \cdots, n$. Similar to the above computations, we obtain

K. Hedayatian*/ Commutant of the Direct Sum of Multiplication Operators/ IJMA- 3(8), August-2012.

$$
\begin{aligned}
(T E)_{(n-1) 1} & =M_{1} E_{(n-1) 1}+T_{(n-1) n} E_{n 1}=(E S)_{(n-1) 1}=E_{(n-1) 1} M_{2} \\
(T E)_{(n-1) 2} & =M_{1} E_{(n-1) 2}+T_{(n-1) n} E_{n 2}=E_{(n-1) 1} S_{12}+E_{(n-1) 2} M_{2} \\
& \vdots \\
(T E)_{(n-1) n} & =M_{1} E_{(n-1) n}+T_{(n-1) n} E_{n 2}=\sum_{i=1}^{n-1} E_{(n-1) i} S_{i n}+E_{(n-1) n} M_{2} .
\end{aligned}
$$

So, again applying the preceding lemma, we observe that the $(n-1)$ th row of E is zero. Continuing the above process, every row of the matrix representation of E and so E becomes zero.

Since $S F=F T$, by the same way, we can show that $F=0$.

ACKNOWLEDGEMENT

This research was in part supported by a grant from Shiraz University Research Council.

REFERENCES

[1] P. S. Bourdon and J. H. Shapiro, Spectral synthesis and common cyclic vectors, Michigan. Math. J. 37 (1990), 7190.
[2] L. Brown and A. L. Shields, Cyclic vectors in the Dirichlet space, Trans. Amer. Math. Soc. 285 (1984), No.1, 269304
[3] M. Faghih - Ahmadi and K. Hedayatian, Commutants and hyper-reflexivity of multiplication operators, Turk.J. Math. (to appear).
[4] K. Hedayatian, Reflexivity of powers of multiplication operators, Intern. Math. Journal, 3 (2003), 811 -818.
[5] K. Hedayatian, Univalent mapping and wandering property in the space of analytic functions, Korean Annals of Math. 23 (2006), 19-25.
[6] K. Hedayatian, On the reflexivity of the multiplication operator on Banach spaces of formal Laurent series, International Journal of Mathematics, 18 (2007), 231-234.
[7] K. Hedayatian and B. Khani Robati, Some properties of invariant subspaces in Banach spaces of analytic functions, Honam Mathematical J. 29 (2007) 523-533.
[8] K. Hedayatian, A remark on invariant subspaces of index one in $p^{t}(\mu)$-spaces, International Journal of Mathematical Archire 2 (9) (2011), 1742-1746.
[9] B. Khani Robati and K. Seddighi, On the commutant of the direct sum of the direct sum of operators on spaces of functions, Bull. Iranian Math. Soc. 21 (1995), 45-57.
[10] B. Khani Robati and K. Seddighi, On the commutant of the direct sum of operators of multiplication by the independent variable, J. Operator Theory 42 (2000), 199-210.
[11] K. Seddighi, K. Hedayatian and B. Yousefi, Operators acting on certain Banach spaces of analytic functions, Inter. J. Math. And Math. Sci., 18 (1994), 107-110.
[12] A. L. Shields and L. Wallen, The commutatnts of certain Hilbert space operators, Ind. Univ. Math. J. 20 (1971), 777-788.

Source of support: Grant from Shiraz University Research Council Iran, Conflict of interest: None Declared

