FIXED POINT THEOREMS FOR E-NONEXPANSIVE MAPPINGS

S. Shyamala Malini¹, P. Thangavelu¹ and P. Jeyanthi²

¹Department of Mathematics, Aditanar College, Tiruchendur, India- 628216.

Email: shyamalamalini@yahoo.co.in

²Department of Mathematics, Govindammal Aditanar College for Women,

Tiruchendur, India - 628 215.

(Received on: 17-02-11; Accepted on: 27-02-11)

ABSTRACT

Youness introduced the concept of E-convex sets in \mathbb{R}^n . Following this Sheiba Grace and Thangavelu discussed the algebraic properties of E-convex sets. Wataru Takahashi introduced a convex structure in metric spaces and formulated some fixed point theorems for nonexpansive mappings. The authors[6] introduced E-convex structure in metric spaces. The purpose of this paper is to formulate some fixed point theorems in E-convex metric spaces.

Key words: Fixed points, E-convex metric spaces and E-nonexpansive mappings.

MSC 2010: 47H10

1. INTRODUCTION AND PRELIMINARIES:

Youness[8] introduced the concept of E-convex sets in Rⁿ. Sheiba Grace and Thangavelu[5] discussed the algebraic properties of E-convex sets. Wataru Takahashi[7] studied some fixed point theorems for nonexpansive mappings of convex metric spaces. The authors[6] introduced the concept of E-convex metric spaces. In this paper we discuss some fixed point theorems in E-convex metric spaces. We also extend some theorems and results of Wataru Takahashi [7] to E-convex metric spaces. We recall the following definitions and results.

Definition: 1.1

Let (X, d) be a metric space and I = [0, 1]. Let $W: X \times X \times I \to X$ be a mapping and $E: X \to X$ be a map. Then (i) W is a convex structure [7] on X if for each $(x, y; \lambda) \in X \times X \times I$ and $u \in X$, $d(u, W(x, y; \lambda)) \le \lambda d(u, x) + (1-\lambda)d(u, y)$ in which case the triplet (X, d, W) is called a convex metric space. (ii) $W: X \times X \times I \to X$ is an E-convex structure [6] on X if for each $(x, y; \lambda) \in X \times X \times I$ and $u \in X$, $d(E(u), W(x, y; \lambda)) \le \lambda d(E(u), E(x)) + (1-\lambda)d(E(u), E(y))$ in which case the 4-tuple (X, d, W, E) is called an E-convex metric space.

Definition: 1.2

Let $M\subseteq X$. (i) M is a convex[7] subset of a convex metric space (X, d, W) if $W(x, y; \lambda) \in M$ for all $x, y \in M$ and λ $(0 \le \lambda \le 1)$ and (ii) M is an E-convex[6] subset of an E-convex metric space (X, d, W, E) if $W(x, y; \lambda) \in M$ for all $x, y \in M$ and λ $(0 \le \lambda \le 1)$.

Definition: 1.3

A convex metric space (X, d, W) is said to have the Property(C)[7] if every bounded decreasing sequence of nonempty closed convex subsets of (X, d, W) has a nonempty intersection.

Definition: 1.4

An E-convex metric space (X, d, W, E) has the Property (C_E) [6] if every bounded decreasing sequence of nonempty closed E-convex subsets of (X, d, W, E) has a nonempty intersection.

Definition: 1.5

Let A be a subset of (X, d, W). A point $x \in A$ is a diametral point [7] of A provided the diameter of $A = \delta(A) = \sup\{d(x, y): y \in A\}$.

Definition: 1.6

Let A be a subset of (X, d, W, E). A point $x \in A$ is an E-diametral point [6] of A provided the E-diameter of $A = \delta_E(A) = \sup\{d(E(x), E(y)): y \in A\}$.

S. Shyamala Malini¹ et al./Fixed point theorems for E-nonexpansive mappings / IJMA- 2(3), Mar.-2011, Page: 310-314 Definition: 1.7

A convex metric space (X, d, W) is said to have normal structure [7] if for each closed bounded convex subset A of (X, d, W) which contains at least two points, there exists $x \in A$ which is not a diametral point of A.

Definition: 1.8

An E-convex metric space (X, d, W, E) is said to have E-normal structure[6] if for each closed bounded E-convex subset A of (X, d, W, E) which contains at least two points, there exists $x \in A$ which is not an E-diametral point of A.

Definition: 1.9

A convex metric space (X, d, W) is said to be strictly convex [7] if for any $x, y \in X$ and λ $(0 \le \lambda \le 1)$, there exist a unique element $z \in X$ such that $\lambda d(x, y) = d(z, y)$ and $(1 - \lambda)d(x, y) = d(x, z)$.

Definition: 1.10

Let E: $X \rightarrow X$ be a map and (X, d, W, E) be an E-convex metric space with EW=W. Then (X, d, W, E) is said to be strictly E-convex [6] if for any $x, y \in X$ and $\lambda(0 \le \lambda \le 1)$, there exist a unique element $z \in X$ such that

$$\lambda d(E(x), E(y)) = d(E(z), E(y))$$
 and $(1 - \lambda)d(E(x), E(y)) = d(E(x), E(z))$.

Definition: 1.11

Let (X, d, W) be a convex metric space and K be a subset of (X, d, W). A mapping T of K into X is said to be nonexpansive [7] if for each pair of elements x and y of K, we have $d(Tx, Ty) \le d(x, y)$.

Definition: 1.12

Let (X, d, W, E) be an E-convex metric space and K be a subset of an E - convex metric space (X, d, W, E). A mapping T of K into X is said to be E- nonexpansive[6] if for each pair of elements x and y of K, we have $d(TE(x), TE(y)) \le d(E(x), E(y))$.

Wataru Takahashi [7] used the following notations for a subset A of X.

$$\begin{split} S(x, r) &= \{ y \in X : d(x, y) < r \}; \\ S[x, r] &= \{ y \in X : d(x, y) \le r \}; \\ R_x(A) &= \sup \{ d(x, y) : y \in A \}; \\ R(A) &= \inf \{ R_x(A) : x \in A \}; \\ A_c &= \{ x \in A : R_x(A) = R(A) \}. \end{split}$$

Lemma: 1.13 (Proposition 4, [7])

If (X, d, W) has Property(C), then A_c is nonempty, closed and convex.

Lemma: 1.14 (Proposition 5, [7])

Let M be a nonempty compact subset of (X, d, W) and let K be the least closed convex set containing M. If the diameter $\delta(M)$ is positive, then there exists an element $u \in K$ such that $\sup\{d(x, u): x \in M\} < \delta(M)$.

Lemma: 1.15 (Theorem 1, [7])

Suppose that (X, d, W) has Property(C). Let K be a nonempty bounded closed convex subset of (X, d, W) with normal structure. If T is a nonexpansive mapping of K into itself, then T has a fixed point in K.

Lemma: 1.16 (Theorem 2, [7])

Suppose (X, d, W) being strictly convex with Property(C). Let K be a nonempty bounded closed convex subset of (X, d, W) with normal structure. If \mathscr{F} is a commuting family of nonexpansive mappings of K into itself, then the family has a common fixed point in K.

The authors [6] used the following notations for a subset A of X.

$$\begin{split} S_E(x, r) &= \{ y \in X \colon d(E(x), E(y)) < r \}; \\ S_E[x, r] &= \{ y \in X \colon d(E(x), E(y)) \le r \}; \\ (R_x)_E(A) &= \sup \{ d(E(x), E(y)) \colon y \in A \}; \\ R_E(A) &= \inf \{ (R_x)_E(A) \colon x \in A \}; \\ (A_c)_F &= \{ x \in A \colon (R_x)_E(A) = R_F(A) \}. \end{split}$$

S. Shyamala Malini¹ et al./Fixed point theorems for E-nonexpansive mappings / IJMA- 2(3), Mar.-2011, Page: 310-314 Lemma: 1.17 (Theorem 2.11, [6])

Let E: $X \rightarrow X$ be a map and (X, d, W, E) be an E-convex metric space with EW = W. If (X, d, W, E) has the Property (EC), then $(A_c)_E$ is nonempty closed and convex.

2. PROPERTIES:

In this section we discuss some properties of E-convex metric spaces that will be useful in sequel. Let $E: X \to X$ be an idempotent map. Let (X, d) be a metric space. Then (EX, d) is a metric subspace of (X, d). Suppose $W: X \times X \times I \to X$ is an E-convex structure of (X, d) with the property that W maps the elements of $EX \times EX \times I$ to the elements of EX. Then

$$d(E(u), W(E(x), E(y); \lambda)) \le \lambda d(E(u), E^{2}(x)) + (1-\lambda)d(E(u), E^{2}(y))$$

= $\lambda d(E(u), E(x)) + (1-\lambda)d(E(u), E(y)).$

Therefore the triplet (EX, d, W_E) is a convex metric space defined by $W_E(E(x), E(y); \lambda) = W(E(x), E(y); \lambda)$ for all $x, y \in X$.

Proposition: 2.1

Suppose E is idempotent, injective with $EW(x, y; \lambda) = W(E(x), E(y); \lambda)$ where W_E is defined as before. Let $A \subseteq X$. Then A is E-convex in (X, d, W, E) if and only if EA is convex in (EX, d, W_E) .

Proof: Suppose A is E-convex in (X, d, W, E). Let E(x), $E(y) \in EA$ and λ $(0 \le \lambda \le 1)$. Since E is injective, $x, y \in A$. Since A is E-convex in (X, d, W, E), by Definition 1.2, $E(x) \in EA$ that is $E(E(x), E(y)) \in EA$. Since $E(E(x), E(y)) \in EA$. This shows that EA is convex in $E(E(x), E(y)) \in EA$. This shows that EA is convex in $E(E(x), E(y)) \in EA$.

Conversely, assume that EA is convex in (EX, d, W_E). Now let $x, y \in A$ and λ ($0 \le \lambda \le 1$). Then E(x), E(y) \in EA. Since EA is convex in EX, by Definition 1.2, W(E(x), E(y); λ) \in EA. Again since EW(x, y; λ) = W(E(x), E(y); λ), E(W(x, y)) \in EA. Since E is one-one, W(x, y; λ) \in A. This shows that A is E-convex in (X, d, W, E). This completes the proof.

The next Lemma gives the relationships between the notations used in [6] and the notations used in [7].

Lemma: 2.2

Let (X,d) be a metric space. Suppose E: $X \rightarrow X$ is injective. Then for any subset A of X

```
 \begin{split} &(i) \ \ R_x(E(A)) = (R_x)_E \ (A); \\ &(ii) \ R(E(A)) = \ R_E(A); \\ &(iii) \ E(A_c) = (A_c)_E \ , \ provided \ E(A) = A; \\ &(iv) \ \delta(E(A)) = \delta_E(A). \end{split}
```

```
\begin{aligned} \textbf{Proof:} \ R_x(E(A)) &= \sup \{ \ d(E(x), E(y)) \colon E(y) \in EA \} = \sup \{ d(E(x), E(y)) \colon y \in A \} = (R_x)_E \ (A). \\ R(E(A)) &= \inf \{ \ R_x \ (E(A)) \colon E(x) \in EA \} = \inf \{ \ (R_x)_E \ (A) \colon x \in A \} = R_E(A). \\ E(A_c) &= \{ \ E(x) \in EA \colon R_{Ex}(E(A)) = R(E(A)) \} = \{ \ E(x) \in EA \colon (R_{Ex})_E(A) = R_E(A) \} \\ &= \{ y \in EA \colon (R_y)_E \ (A) = R_E \ (A) \} = (A_c)_E. \\ \delta(E(A)) &= \sup \{ d(E(x), E(y)) \colon E(x), E(y) \in EA \} = \sup \{ d(E(x), E(y)) \colon x, y \in A \} = \delta_E(A). \end{aligned}
```

Proposition: 2.3

Suppose E is idempotent with $EW(x, y; \lambda) = W(E(x), E(y); \lambda)$ where W_E is defined as before. Then

```
(i) E(S_E(x, r)) = S(E(x), r);
(ii) E(S_E[x, r]) = S[E(x), r].
```

Proof: Let $z \in E(S_E(x, r))$ with z = E(y) for some $y \in S_E(x, r)$. Then d(E(x), E(y)) < r. This implies $z = E(y) \in S(E(x), r)$. Conversely let $z \in S(E(x), r)$. Then d(E(x), z) < r and $z \in EX$. Therefore z = E(y) for some $y \in X$ that implies d(E(x), E(y)) < r. This shows $y \in S_E(x, r)$ that implies $z \in E(S_E(x, r))$. This shows that $E(S_E(x, r)) = S(E(x), r)$. This completes the proof for (i) and the proof for (ii) is analog.

Proposition: 2.4

Suppose E is idempotent with $EW(x, y; \lambda) = W(E(x), E(y); \lambda)$ where W_E is defined as before. Let (X, d, W, E) be an Econvex metric space. Then for $x, y \in X$,

```
d(E(x), E(y)) = d(E(x), W(E(x), E(y); \lambda)) + d((W(E(x), E(y); \lambda), E(y)), \text{ for } 0 \le \lambda \le 1.
```

Proof: Let x, $y \in X$. Then E(x), $E(y) \in EX$. Since (EX, d, W_E) is a convex metric space © 2010, IJMA. All Rights Reserved

$$\begin{split} d(E(x), E(y)) &= d(E(x), W_E(E(x), E(y); \lambda)) + d((W_E(E(x), E(y); \lambda), E(y)) \\ &= d(E(x), W(E(x), E(y); \lambda)) + d((W(E(x), E(y); \lambda), E(y)). \end{split}$$

Proposition: 2.5

Let A be a subset of X. Suppose E is idempotent, injective, E(A)=A. Suppose (EX, d, W_E) has the property (C) and E is a closed map. Then $E(A_c)$ is nonempty, closed and convex in (EX, d, W_E) .

Proof: By Lemma 1.17, $(A_c)_E$ is nonempty, closed and E-convex in (X, d, W, E). By Lemma 2.2 $E(A_c) = (A_c)_E$ that implies $E(A_c)$ is nonempty closed and E-convex in (X, d, W, E).

Now by using Proposition 2.1, $E(E(A_c))$ is convex in $(E(X), d, W_E)$. Since E is idempotent, $E(A_c)$ is nonempty and convex in $(E(X), d, W_E)$. Since E is a closed map, $E(A_c)$ is nonempty, closed and convex $(E(X), d, W_E)$. This completes the proof.

Proposition: 2.6

Let E be idempotent and injective. Let M be a non empty compact subset of $(E(X), d, W_E)$ and let K be the least closed convex set containing M. If the diameter $\delta(M)$ is positive, then there exists an element $u \in K$ such that sup $\{d(x, u): x \in M\} < \delta(M)$.

Proof: Since (EX, d, W_E) is a convex metric space, the proof follows from Lemma 1.14.

3. FIXED POINT THEOREMS:

Lemma: 3.1

Suppose E is idempotent, injective with $EW(x, y; \lambda) = W(E(x), E(y); \lambda)$ where W_E is defined as in section 2. Suppose the map E satisfies the property that for every bounded closed subset B of E(X), there exists a bounded closed subset A of X with E(A) = B. If (X, d, W, E) has E-normal structure, then $(E(X), d, W_E)$ has normal structure.

Proof: Suppose the E-convex metric space (X, d, W, E) has E-normal structure. Clearly $(E(X), d, W_E)$ is a convex metric space. Let B be a closed bounded convex subset of E(X), containing at least two points. Then B = E(A) for some bounded closed subset A of X. Since B is convex in $(E(X), d, W_E)$, by Proposition 2.1, A is E-convex in (X, d, W, E). This shows that A is closed bounded and E-convex in (X, d, W, E). Since (X, d, W, E) has E-normal structure, by Definition 1.8, there exists $y \in A$ such that y is not an E-diametral point of A. Since $\delta(E(A)) = \delta_E(A)$, $\sup\{d(E(x), E(y)): x \in A\} \neq \delta(E(A))$ that is $E(y) \in EA$ is not a diametral point of E(A). Therefore E(X), E(X) has normal structure. This completes the proof.

Lemma: 3.2

Suppose E is idempotent, injective with $EW(x, y; \lambda) = W(E(x), E(y); \lambda)$ where W_E is defined as in section 2. Suppose the map E satisfies the property that for every bounded closed subset B of E(X), there exists a bounded closed subset A of X with E(A)=B. If (X, d, W, E) has Property (C_E) , then $(E(X), d, W_E)$ has Property (C).

Proof: Let $B_1 \supseteq B_2 \supseteq ...$ be a decreasing sequence of nonempty, bounded closed convex subsets of E(X). By the assumption there exists a nonempty bounded closed subsets of $A_1, A_2,...$ of X such that $E(A_i) = B_i$ for every i = 1,2.... Since E is injective, $A_1 \supseteq A_2 \supseteq ...$ is a decreasing sequence of nonempty, bounded closed subsets of X. Since (X, d, W, d, W,

E) has the Property (C_E),
$$\bigcap_{i=1}^{\infty} A_i \neq \emptyset$$
 that is $E(\bigcap_{i=1}^{\infty} A_i) \neq \emptyset$. Since $E(\bigcap_{i=1}^{\infty} A_i) \subseteq \bigcap_{i=1}^{\infty} EA_i = \bigcap_{i=1}^{\infty} \mathbf{B}_i$. Now $\bigcap_{i=1}^{\infty} \mathbf{B}_i \neq \emptyset$. This shows that (E(X), d, W_E) has Property(C).

Lemma: 3.3

Suppose E is idempotent, injective with $EW(x, y; \lambda) = W(E(x), E(y); \lambda)$ where W_E is defined as in section 2 and E(K) = K for some $K \subseteq X$. If T is an E-nonexpansive mapping of K into itself, then T is a nonexpansive mapping of K into itself

Proof: If T is an E-nonexpansive mapping of K then for each pair of elements x, y of K, $d(TE(x), TE(y)) \le d(E(x), E(y))$. Since x, $y \in K$, E(x), $E(y) \in E(K)$. Since E(K) = K, E(x), $E(y) \in K$ that implies $d(TE^2(x), TE^2(y)) \le d(E^2(x), E^2(y))$ that is $d(TE(x), TE(y)) \le d(E(x), E(y))$. This shows that T is a nonexpansive mapping of E (K) into E (K). Since E (K) = K, T is a nonexpansive mapping of K into itself. This completes the proof.

Lemma: 3.5

Suppose E is idempotent, injective with $EW(x, y; \lambda) = W(E(x), E(y); \lambda)$ where W_E is defined as in section 2. If (X, d, W, E) is strictly E-convex, then $(E(X), d, W_E)$ is strictly convex.

Proof: Suppose (X, d, W, E) is strictly E-convex. Then by Definition 1.10, for any $x, y \in X$ and λ , there exist a unique $z \in X$ such that $\lambda d(E(x), E(y)) = d(EW(x, y; \lambda), E(y))$ and $(1-\lambda)d(E(x), E(y)) = d(E(x), EW(x, y; \lambda))$. Since E is injective x,

S. Shyamala Malini¹ et al./Fixed point theorems for E-nonexpansive mappings / IJMA- 2(3), Mar.-2011, Page: 310-314 $y \in X$, E(x), $E(y) \in E(X)$ and λ such that

$$\lambda d\left(E^2(x),E^2(y)\right)=d(W(E(x),E(y);\lambda),E^2(y))$$
 and
$$(1-\lambda)d(E^2(x),E^2(y))=d(E^2(x),EW(E(x),E(y);\lambda))$$
 that is
$$\lambda d(E(x),E(y))=d(W(E^2(x),E^2(y);\lambda),E(y))$$
 and
$$(1-\lambda)d(E(x),E(y))=d(E(x),W(E^2(x),E^2(y);\lambda)).$$

Taking $E(z) = W(E^2(x), E^2(y); \lambda)$ it follows that $E(z) \in EX$. This shows that $(E(X), d, W_E)$ is strictly convex. This completes the proof.

Theorem: 3.5

Suppose E is idempotent, injective with $EW(x, y; \lambda) = W(E(x), E(y); \lambda)$ where W_E is defined as in section 2 and (X, d, W, E) has Property (C_E) . Let E be a map such that for every bounded closed subset B of E(X), there exists a bounded closed subset A of X with E(A) = B. Let K be an E-convex subset of (X, d, W, E) with E-normal structure and E(K) = K for some $K \subseteq X$. If T is an E-nonexpansive mapping of K into itself, then T has a fixed point in K.

Proof: Suppose T is E-nonexpansive mapping of K. Clearly $(E(X), d, W_E)$ is a convex metric space. Since (X, d, W, E) has Property (C_E) then by Lemma 3.2 $(E(X), d, W_E)$ has Property(C). Since K is an E-convex subset of (X, d, W, E) with E-normal structure then by Lemma 3.1 $(E(X), d, W_E)$ is a normal structure. If T is an E-nonexpansive mapping in (X, d, W, E), then by Lemma 3.3 T is a nonexpansive mapping in $(E(X), d, W_E)$. Now to prove T has a fixed point in E(K). T is a map from F(K) to F(K) to F(K) and F(K) with F(K) is a map from F(K) to F(K). Let F(K) with F(K) is a map from F(K) to F(K) in F(K) in F(K) is a map from F(K) to F(K) in F(K

Theorem: 3.6

Suppose E is idempotent, injective with EW(x, y; λ) = W(E(x), E(y); λ) where W_E is defined as in section 2. Let E be a map such that for every bounded closed subset B of E(X), there exists a bounded closed subset A of X with E(A) =B. Suppose (X, d, W, E) is strictly E-convex with Property (C_E). Let K be a nonempty bounded closed subset of (X, d, W, E) with E-normal structure and E(K) = K for some K \subseteq X. If \mathscr{F} is a commuting family of E-nonexpansive mappings of K into itself, then the family has a common fixed point in K.

Proof: If T is an E-nonexpansive mapping in (X, d, W, E) then by Lemma 3.3 T is a nonexpansive mapping in $(E(X), d, W_E)$. Clearly $(E(X), d, W_E)$ is a convex metric space. Since (X, d, W, E) is strictly E-convex, then by Lemma 3.4 $(E(X), d, W_E)$ is strictly convex. Now $(E(X), d, W_E)$ is strictly convex with Property(C). Since (X, d, W, E) has E-normal structure by Lemma 3.2, $(E(X), d, W_E)$ has normal structure. By the hypothesis E(K) = K shows that K is a nonempty bounded closed convex subsets of $(E(X), d, W_E)$ with normal structure. If \mathcal{F} is a commuting family of nonexpansive mappings of E(K) into E(K). By Theorem 3.5 the family has a common fixed point in E(K). Since E(K) = K this family has a common fixed point in K. This completes the proof.

REFERENCES:

- [1] Browder F.E., Nonexpansive nonlinear operators in a Banach space, *Proc.Nat.Acad.Sci.U.S.A.* 54(1965),1041-1044.
- [2] Day M.M., Fixed point theorems for compact convex sets, *Illinois J.Math.*5(1961),585-590.
- [3] De Marr R., Common fixed–points for commuting contraction mappings, *Pacific J. Math.* 13(1963),1139-1141.
- [4] Kirk W.A., A fixed point theorem for mappings which do not increase distance, *Amer.Math.Monthly* 72(1965),1004-1006.
- [5] Sheiba Grace J and Thangavelu P., Properties of E-Convex sets, *Tamsui Oxford Journal of Mathematical Sciences* 25(1)(2009), 1-7.
- [6] Shyamala Malini S, Thangavelu P and Jeyanthi P, Fixed point theorems in E-Convex Metric Spaces, *Journal of Ultra Scientist of Physical Sciences* (to appear).
- [7] Wataru Takahashi., A convexity in metric space and nonexpansive mappings, I *Kodai Math.Sem.Rep.*22(1970),142-149.
- [8] Youness E.A., E-Convex sets, E-Convex functions and E-Convex programming, *J.Optim.Theory Appn.*, 102(3) (1999), 439-450.