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ABSTRACT 

Youness introduced the concept of E-convex sets in R
n
. Following this Sheiba Grace and Thangavelu discussed the 

algebraic properties of E-convex sets. Wataru Takahashi introduced a convex structure in metric spaces and 

formulated some fixed point theorems for nonexpansive mappings. The authors[6] introduced E-convex structure in  

metric spaces. The purpose of this paper is to formulate some fixed point theorems in E-convex metric spaces. 
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1. INTRODUCTION AND PRELIMINARIES:  

Youness[8] introduced the concept of E-convex sets in Rn. Sheiba Grace and Thangavelu[5] discussed the algebraic 

properties of E-convex sets. Wataru Takahashi[7] studied some fixed point theorems for nonexpansive mappings of 

convex metric spaces.  The authors[6] introduced the concept of E-convex metric spaces. In this paper we discuss some 

fixed point theorems in E-convex metric spaces. We also extend some theorems and results of Wataru Takahashi [7] to 

E-convex metric spaces. We recall the following definitions and results. 

  

Definition: 1.1 

Let (X, d) be a metric space and I = [0, 1]. Let W: X×X×I→X be a mapping and E: X→X be a map. Then (i) W is  a 

convex structure[7] on X if for each (x, y; λ) ∈ X ×X × I and u∈X,  d(u, W(x, y; λ)) ≤ λd(u, x ) + (1-λ)d(u, y) in which 

case the triplet (X, d, W) is called a convex metric space.  (ii) W:X×X×I→X is an E-convex structure[6] on X if for 

each (x, y; λ)∈X×X×I and u∈X, d(E(u), W(x, y; λ))≤ λd(E(u), E(x))+ (1-λ)d(E(u), E(y)) in which case the 4-tuple (X, 

d, W, E) is called an E-convex metric space. 

 

Definition: 1.2 

Let M⊆X. (i) M is a convex[7] subset of a convex metric space (X, d, W) if W(x, y; λ)∈M for  all x, y∈M and λ 

(0�λ�1) and (ii) M is an E-convex[6] subset of an E-convex metric space  (X, d, W, E) if W (x, y; λ)∈M for all x, y∈M 

and λ (0�λ�1). 

 

Definition: 1.3 

A convex metric space (X, d, W) is said to have the Property(C)[7] if every bounded decreasing sequence of nonempty 

closed convex subsets of (X, d, W) has a nonempty intersection. 

 

Definition: 1.4 

An E-convex metric space (X, d, W, E) has the Property (CE) [6] if every bounded decreasing sequence of nonempty 

closed E-convex subsets of (X, d, W, E) has a nonempty intersection. 

 

Definition: 1.5 

Let A be a subset of (X, d, W). A point x∈A is a diametral point [7] of A provided  the diameter of A =δ(A) = sup{d(x, 

y): y∈A}. 

 

Definition: 1.6 

Let A be a subset of (X, d, W, E).  A point x∈A is an E-diametral point [6] of A provided the E-diameter of A =δE(A) = 

sup{d(E(x), E(y)): y∈A}. 
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Definition: 1.7 

A convex metric space (X, d, W) is said to have normal structure[7] if for each closed bounded convex subset A of  (X, 

d, W) which contains at least two points, there exists  x∈ A which is not a diametral point of A. 

 

Definition: 1.8 

An E-convex metric space (X, d, W, E) is said to have E-normal structure[6] if for each closed bounded E-convex 

subset A of   (X, d, W, E) which contains at least two points, there exists x∈A which is not an E- diametral point  of A. 

 

Definition: 1.9 

A convex metric space (X, d, W) is said to be strictly convex [7] if for 

any x, y∈X and λ (0�λ�1), there exist a unique element z∈X such that λd(x, y) = d(z, y) and (1- λ)d(x, y) = d(x, z).  

 

Definition: 1.10 

Let E: X→X be a map and (X, d, W, E) be an E-convex metric space with EW=W. Then (X, d, W, E) is said to be 

strictly E-convex [6] if for any x, y∈X and λ(0�λ�1), there exist a unique element z∈X such that   

 

λd(E(x), E(y)) = d(E(z), E(y)) and  (1- λ)d(E(x), E(y)) = d(E(x), E(z)). 

 

Definition: 1.11 

Let (X, d, W) be a convex metric space and K be a subset of (X, d, W). A mapping T of K into X is said to be 

nonexpansive [7] if for each pair of elements x and y of K, we have  d(Tx, Ty) � d(x, y). 

 

Definition: 1.12 

Let (X, d, W, E) be an E-convex metric space and K be a subset of  an E - convex metric space (X, d, W, E). A 

mapping T of  K into X is said to be E- nonexpansive[6] if for each pair of elements x and y of K, we have  d(TE(x), 

TE(y)) � d(E(x), E(y)). 

 

Wataru Takahashi [7] used the following notations for a subset A of X. 

 

S(x, r) ={y∈X: d(x, y) < r}; 

 S[x, r] = {y∈ X: d(x, y) � r}; 

Rx (A) = sup{d(x, y): y∈A}; 

R(A)   = inf{ Rx (A): x∈A}; 

              Ac = { x∈A : Rx(A) = R(A)}. 

 

Lemma: 1.13 (Proposition 4, [7]) 

If (X, d, W) has Property(C), then Ac is nonempty, closed and convex. 

 

Lemma: 1.14 (Proposition 5, [7]) 

Let M be a nonempty compact subset of (X, d, W) and let K be the least closed convex set containing M. If the 

diameter δ(M) is positive, then there exists an element u∈ K such that sup{d(x, u): x∈ M} < δ(M). 

 

Lemma: 1.15 (Theorem 1, [7] ) 

Suppose that (X, d, W) has Property(C). Let K be a nonempty bounded closed convex subset of (X, d, W) with normal 

structure. If T is a nonexpansive mapping of K into itself, then T has a fixed point in K. 

 

Lemma: 1.16 (Theorem 2, [7] ) 

Suppose (X, d, W) being strictly convex with Property(C). Let K be a nonempty bounded closed convex subset of (X, 

d, W) with normal structure.  If ����� is a commuting family of nonexpansive mappings of K into itself, then the family 

has a common fixed point in K. 

 

The authors [6] used the following notations for a subset A of X. 

 

                                                                  SE(x, r) = {y∈X: d(E(x), E(y)) < r}; 

 

SE[x, r] = {y∈ X: d(E(x), E(y)) � r}; 

 

                                                                (Rx)E (A) = sup{d(E(x), E(y)): y∈A}; 

 

                                                                     RE(A) = inf{ (Rx)E (A): x∈A}; 

 

                                                                       (Ac)E = {x∈A : (Rx)E (A) = RE(A)}. 
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Lemma: 1.17 (Theorem 2.11, [6]) 

Let E: X→X be a map and (X, d, W, E) be an E-convex metric space with EW = W. If (X, d, W, E) has the Property 

(EC), then (Ac) E is nonempty closed and convex. 

 

2. PROPERTIES: 

In this section we discuss some properties of E-convex metric spaces that will be useful in sequel. Let E: X→ X be an 

idempotent map.  Let (X, d) be a metric space .Then (EX, d) is a metric subspace of (X, d). Suppose W: X×X×I→X is 

an   E-convex structure of (X, d) with the property that W maps the elements of    EX × EX × I to the elements of EX. 

Then  

 

d(E(u), W(E(x), E(y); λ)) ≤ λd(E(u), E2(x) ) + (1-λ)d(E(u), E2(y)) 

                              = λd(E(u), E(x) ) + (1-λ)d(E(u), E(y)). 

 

Therefore the triplet (EX, d, WE) is a convex metric space defined by WE(E(x), E(y);λ) = W(E(x), E(y);λ) for all x, 

y∈X.        

 

Proposition: 2.1 

Suppose E is idempotent, injective with EW(x, y;λ) = W(E(x), E(y);λ) where WE is defined as before. Let A ⊆ X. Then 

A is E-convex in (X, d, W, E) if and only if EA is convex in (EX, d, WE). 

 

Proof: Suppose A is E-convex in (X, d, W, E). Let E(x), E(y)∈EA and λ (0 ≤ λ≤1). Since E is injective, x, y∈A. Since 

A is E-convex in (X, d, W, E), by Definition 1.2, W(x, y;λ)∈A that is E(W(x, y;λ))∈EA. Since EW(x, y;λ) = W (E(x), 

E(y);λ), W (E(x), E(y);λ) ∈EA. This shows that EA is convex in  (EX, d, WE). 

 

Conversely, assume that EA is convex in (EX, d, WE). Now let x, y∈A and λ (0 ≤ λ≤1). Then E(x), E(y)∈EA. Since 

EA is convex in EX, by Definition 1.2, W(E(x), E(y);λ)∈EA. Again since EW(x, y;λ) = W(E(x), E(y);λ),  E(W(x, 

y;λ))∈EA. Since E is one-one, W(x, y;λ) ∈A. This shows that A is E-convex in (X, d, W, E).    This completes the 

proof. 

 

The next Lemma gives the relationships between the  notations used in[6] and the notations used in [7]. 

 

Lemma: 2.2 

Let (X,d) be a metric space. Suppose E: X→ X is injective. Then for any subset A of X 

 

(i) Rx(E(A)) = (Rx)E (A); 

(ii) R(E(A))  =  RE(A); 

(iii) E(Ac ) = (Ac)E , provided E(A) = A; 

(iv) δ(E(A))  = δE(A). 

 

Proof: Rx(E(A)) = sup{ d(E(x), E(y)): E(y)∈EA}= sup{d(E(x), E(y)): y∈A}= (Rx)E (A). 

R(E(A)) = inf{ Rx (E(A)): E(x)∈EA} = inf{ (Rx)E (A): x∈A} = RE(A). 

E(Ac) = { E(x)∈EA: REx(E(A)) = R(E(A))}   = { E(x)∈EA : (REx)E(A) = RE(A)} 

                                            = {y∈EA: (Ry) E (A) = RE (A)} = (Ac) E. 

δ(E (A))  = sup {d(E(x), E(y)): E(x), E(y)∈EA} = sup {d(E(x), E(y)): x, y∈A} = δE(A). 

                                      

Proposition: 2.3 

Suppose E is idempotent with EW(x, y;λ) =W (E(x), E(y);λ) where WE is defined as before. Then  

 

(i) E (SE(x, r)) = S (E(x), r);  

(ii) E(SE[x, r]) = S[E(x), r].     

                             

Proof:  Let z∈E(SE(x, r)) with z = E(y) for some y∈SE(x, r). Then d(E(x), E(y))< r. This implies z = E(y)∈S(E(x), r).  

Conversely let z∈S(E(x), r). Then d(E(x), z)<r and z∈EX. Therefore z = E(y) for some y∈X that implies d(E(x), E(y)) 

< r. This shows y∈SE(x, r) that implies z∈E(SE(x, r)). This shows that  E(SE(x, r)) = S(E(x), r). This completes the 

proof for (i) and the proof for (ii) is analog. 

 

Proposition: 2.4 

Suppose E is idempotent with EW(x, y;λ) =W(E(x), E(y);λ) where WE is defined as before. Let (X, d, W, E) be an E- 

convex metric space. Then for x, y∈X,  

 

d(E(x), E(y)) = d(E(x),W(E(x), E(y); λ))+d((W(E(x),E(y); λ), E(y)),  for 0 � λ �1. 

 

Proof: Let x, y∈X. Then E(x), E(y)∈EX. Since (EX, d, WE) is a convex metric space   
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d(E(x), E(y)) = d(E(x), WE(E(x), E(y); λ)) + d((WE(E(x), E(y); λ), E(y)) 

                     = d (E(x), W (E(x), E(y); λ)) + d((W(E(x), E(y); λ), E(y)). 

 

Proposition: 2.5 

Let A be a subset of X. Suppose E is idempotent, injective, E(A)=A. Suppose (EX, d, WE) has the property(C) and  E is 

a closed map. Then E(A c) is nonempty, closed and convex in (EX, d, WE).  

 

Proof: By Lemma 1.17, (Ac)E is nonempty, closed and E-convex in (X, d, W, E). By Lemma 2.2 E(Ac) = (Ac)E that 

implies E(Ac)  is nonempty closed and  E-convex in (X, d, W, E).  

Now by using  Proposition  2.1, E(E(Ac))   is convex in (E(X), d, WE).  Since E is idempotent, E(Ac) is nonempty and 

convex  in (E(X), d, WE). Since E is a closed map, E(Ac) is nonempty, closed and convex (E(X), d, WE). This 

completes the proof.       

 

Proposition: 2.6 

Let E be idempotent and injective.  Let M be a non empty compact subset of (E(X), d, WE) and let K be the least closed 

convex set containing M.  If the diameter δ(M) is positive, then there exists an element u∈K such that sup {d(x, u): 

x∈M} < δ(M). 

 

Proof: Since (EX, d, WE) is a convex metric space, the proof follows from Lemma 1.14. 

 

3. FIXED POINT THEOREMS: 

Lemma: 3.1 

Suppose E is idempotent, injective with EW(x, y; λ) = W(E(x), E(y);λ) where WE is defined as in section 2. Suppose 

the map E satisfies the property that for every bounded closed subset B of E(X), there exists a bounded closed subset A 

of X with E(A) =B. If (X, d, W, E) has E-normal structure, then   (E(X), d, WE) has normal structure. 

 

Proof: Suppose the E-convex metric space (X, d, W, E) has E-normal structure. Clearly (E(X), d, WE) is a convex 

metric space.  Let B be a closed bounded convex subset of  E(X), containing at least two points.  Then B = E(A) for 

some bounded closed subset A of X. Since B is convex in (E(X), d, WE), by Proposition 2.1, A is E-convex in (X, d, W, 

E). This shows that A is closed bounded and E-convex in (X, d, W, E). Since (X, d, W, E) has E-normal structure, by 

Definition 1.8, there exists y∈A such that y is not an E-diametral point of A. Since δ(E(A))= δE(A), sup{d(E(x), E(y)): 

x∈ A} ≠ δ(E(A)) that is E(y)∈EA is not a diametral point of  E(A). Therefore (E(X), d, WE) has normal structure. This 

completes the proof.  

 

Lemma: 3.2 

Suppose E is idempotent, injective with EW(x, y;λ) = W(E(x), E(y);λ) where WE is defined as in section 2. Suppose the 

map E satisfies the property that for every bounded closed subset B of E(X), there exists a bounded closed subset A of 

X with E(A)=B. If (X, d, W, E) has Property (CE), then (E(X), d, WE) has Property(C). 

 

Proof: Let B1⊇B2⊇… be a decreasing sequence of nonempty, bounded closed convex subsets of  E(X). By the 

assumption there exists a nonempty bounded closed subsets of A1, A2,… of  X such that E(Ai )=Bi for every  i=1,2…. 

Since E is injective,  A1⊇A2⊇…   is a decreasing sequence of nonempty, bounded closed subsets of  X. Since (X, d, W, 

E) has the Property (CE),  �
∞

=1

iA
i

 ≠∅ that is E(�
∞

=1

iA
i

) ≠∅. Since E(�
∞

=1

iA
i

) ⊆ �
∞

=1

iEA
i

= �
∞

=1

i

i

B . Now �
∞

=1

i

i

B ≠ ∅. 

This shows that (E(X), d, WE) has Property(C).  

 

Lemma: 3.3 

Suppose E is idempotent, injective with EW(x, y;λ) = W(E(x), E(y);λ) where WE is defined as in section 2 and E(K) = 

K for some K⊆ X. If T is an E-nonexpansive mapping of K into itself, then T is a nonexpansive mapping of K into 

itself. 

 

Proof: If T is an E-nonexpansive mapping of K then for each pair of elements x, y  of  K,  d(TE(x), TE(y)) ≤ d(E(x), 

E(y)). Since x, y∈K, E(x), E(y)∈E(K). Since E(K)=K,   E(x), E(y)∈K that implies d(TE2(x), TE2(y)) ≤ d(E2(x), E2(y)) 

that is d(TE(x), TE(y)) ≤ d(E(x), E(y)). This shows that T is a nonexpansive mapping of E (K) into E (K). Since E (K) 

= K, T is a nonexpansive mapping of K into itself. This completes the proof. 

 

Lemma: 3.5 

Suppose E is idempotent, injective with EW(x, y;λ) = W (E(x), E(y);λ) where WE is defined as in section 2. If (X, d, 

W, E) is strictly E-convex, then   (E(X), d, WE) is strictly convex. 

 

Proof: Suppose (X, d, W, E) is strictly E-convex. Then by Definition 1.10, for any x, y∈X and λ, there exist a unique 

z∈X such that λd(E(x), E(y))=d(EW(x, y;λ), E(y)) and (1-λ)d(E(x), E(y)) = d(E(x), EW(x, y;λ)). Since E is injective x,  
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y∈X,     E(x), E(y)∈E(X) and λ such that   

   

λd (E2(x), E2(y)) =  d(W(E(x), E(y);λ), E2(y)) 

 and 

(1-λ)d(E2(x), E2(y)) = d(E2(x), EW(E(x), E(y);λ))  

that is 

     λd(E(x),E(y)) = d(W(E2(x),E2(y);λ),E(y)) 

and 

(1-λ)d(E(x),E(y)) = d(E(x),W(E2(x),E2(y);λ)). 

 

Taking E(z) = W(E2(x),E2(y);λ) it follows  that E(z)∈EX. This shows that (E(X), d, WE) is strictly convex. This 

completes the proof. 

 

Theorem: 3.5  

Suppose E is idempotent, injective with EW(x, y;λ) = W (E(x), E(y);λ) where WE is defined as in section 2 and (X, d, 

W, E) has Property (CE). Let E be a map such that for every bounded closed subset B of E(X), there exists a bounded 

closed subset A of X with E(A) =B. Let K be an E-convex subset of  (X, d, W, E) with E-normal structure and E(K) = 

K for some K⊆X. If T is an E-nonexpansive mapping of K into itself, then T has a fixed point in K. 

 

Proof: Suppose T is E-nonexpansive mapping of K. Clearly (E(X), d, WE) is a convex metric space. Since (X, d, W, E) 

has Property(CE) then by Lemma 3.2 (E(X), d, WE) has Property(C). Since K is an E-convex subset of  (X, d, W, E) 

with E-normal structure then by Lemma 3.1 (E(X), d, WE) is a normal structure. If T is an E-nonexpansive mapping in 

(X, d, W, E), then by Lemma 3.3 T is a nonexpansive mapping in (E(X), d, WE). Now to prove T has a fixed point in 

E(K). T is a map from T(K) to T(K) . Let y∈E(K) with T(y) = y for some y=E(x)∈E(K). Since E(K)= K shows T has a 

fixed point in K. This completes the proof. 

 

Theorem: 3.6 

Suppose E is idempotent, injective with EW(x, y;λ) = W(E(x), E(y);λ) where WE is defined as in section 2. Let E be a 

map such that for every bounded closed subset B of E(X), there exists a bounded closed subset A of X with  E(A) =B. 

Suppose (X, d, W, E) is strictly E-convex with Property (CE). Let K be a nonempty bounded closed subset of (X, d, W, 

E) with E-normal structure and E(K) = K for some K⊆X. If �   is a commuting family of    E-nonexpansive mappings 

of K into itself, then the family has a common fixed point in K. 

 

Proof: If T is an E-nonexpansive mapping in (X, d, W, E) then by Lemma 3.3 T is a nonexpansive mapping in (E(X), 

d, WE). Clearly (E(X), d, WE) is a convex metric space. Since (X, d, W, E) is strictly E-convex, then by Lemma 3.4 

(E(X), d, WE) is strictly convex. Now (E(X), d, WE) is strictly convex with Property(C).  Since (X, d, W, E) has E-

normal structure by Lemma 3.2,  (E(X), d, WE) has normal structure. By the hypothesis E(K) = K shows that K is a 

nonempty bounded closed convex subsets of (E(X), d, WE) with normal structure. If �  is a commuting family of 

nonexpansive mappings of E(K) into E(K). By Theorem 3.5 the family has a common fixed point in E(K). Since     

E(K) = K this family has a common fixed point in K. This completes the proof. 

 

REFERENCES: 

[1]  Browder F.E., Nonexpansive nonlinear operators in a Banach space, Proc.Nat.Acad.Sci.U.S.A. 54(1965),1041-1044. 

[2] Day M.M., Fixed point theorems for compact convex sets, Illinois J.Math.5(1961),585-590. 

[3] De Marr R., Common fixed–points for commuting contraction mappings, Pacific J. Math.13(1963),1139-1141. 

[4] Kirk W.A., A fixed point theorem for mappings which do not increase distance, Amer.Math.Monthly 

72(1965),1004-1006. 

[5] Sheiba Grace J and Thangavelu P., Properties of E-Convex sets, Tamsui Oxford Journal of Mathematical Sciences 

25(1)(2009), 1-7. 

[6] Shyamala Malini S, Thangavelu P and Jeyanthi  P, Fixed point theorems in  E-Convex Metric Spaces, Journal of 

Ultra Scientist of Physical Sciences (to appear). 

[7] Wataru Takahashi., A convexity in metric space and nonexpansive mappings, I Kodai Math.Sem.Rep.22(1970),142-

149.                          

[8] Youness E.A., E-Convex sets, E-Convex functions and E-Convex programming, J.Optim.Theory Appn., 102(3) 

(1999), 439-450. 

 

 

 


