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ABSTRACT 

The comparative growth rates of composite entire or meromorphic functions and differential monomials, differential 
polynomials generated by one of the factors have been investigated in this paper. 
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1. INTRODUCTION, DEFINITIONS AND NOTATIONS 
 
For any two transcendental entire functions 𝑓𝑓 and 𝑔𝑔 defined in the open complex plane ℂ, Clunie [4] proved that                     

lim
𝑟𝑟→∞

𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑇𝑇(𝑟𝑟, 𝑓𝑓)

= ∞         𝑎𝑎𝑎𝑎𝑎𝑎           lim
𝑟𝑟→∞

𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑇𝑇(𝑟𝑟,𝑔𝑔)

= ∞.  

 
Singh [13] proved some comparative growth properties of 𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔) and 𝑇𝑇(𝑟𝑟, 𝑓𝑓). He also raised the problem of 
investigating the comparative growth of 𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔) and 𝑇𝑇(𝑟𝑟, 𝑓𝑓) which he was unable to solve. However, some 
results on the comparative growth of 𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)) and 𝑇𝑇(𝑟𝑟,𝑔𝑔) are proved in [8]          
 
Let 𝑓𝑓 be a non-constant meromorphic function defined in the open complex plane ℂ . Also let 𝑎𝑎0𝑗𝑗 ,𝑎𝑎1𝑗𝑗 , … .𝑎𝑎𝑘𝑘𝑗𝑗 (𝑘𝑘 ≥ 1) 

be non-negative integers such that for each ∑
=

≥
k

i
ijnj

0
.1, We call 𝑀𝑀𝑗𝑗 [𝑓𝑓] = 𝐴𝐴𝑗𝑗 (𝑓𝑓)𝑎𝑎0𝑗𝑗 �𝑓𝑓(1)�

𝑎𝑎1𝑗𝑗 … �𝑓𝑓(𝑘𝑘)�
𝑎𝑎𝑘𝑘𝑗𝑗  where 

𝑇𝑇�𝑟𝑟,𝐴𝐴𝑗𝑗 � = 𝑆𝑆(𝑟𝑟, 𝑓𝑓) to be a differential monomial generated by 𝑓𝑓. The number ∑
=

=
k

i
ijM n

i
0

γ  and ∑
=

+=Γ
k

i
ijM ni

i
0

)1(  

are called respectively the degree and weight of 𝑀𝑀𝑗𝑗 [𝑓𝑓] {[6],[12]}. The expression ∑
=

=
s

j
j fMfP

1
][][

 

is called a 

differential polynomial generated by 𝑓𝑓. The numbers 
jMsjP γγ

≤≤
=

1
max and 

jMsjP Γ=Γ
≤≤1

max  are called respectively the 

degree and weight of 𝑃𝑃[𝑓𝑓] {[6],[12]}. Also we call the numbers 
jMsjP

γγ
≤≤−

=
1
min and 𝑘𝑘 (the order of the highest 

derivative of (𝑓𝑓) the lower degree and the order of 𝑃𝑃[𝑓𝑓]  respectively. If 𝛾𝛾𝑝𝑝 = 𝛾𝛾𝑃𝑃 ,𝑃𝑃[𝑓𝑓]  is called a homogeneous 
differential polynomial. In the paper we further investigate the question of Singh [13] mentioned earlier and prove 
some new results relating to the comparative growths of composite entire or meromorphic functions and differential 
monomials, differential polynomials generated by one of the factors. We do not explain the standard notations and 
definitions of the theory of entire and meromorphic functions because those are available in [16] and [7]. Throughout 
the paper we consider only the non-constant differential polynomials and we denote by 𝑃𝑃0[𝑓𝑓] a differential polynomial 
not containing 𝑓𝑓 i.e., for which 𝑎𝑎0𝑗𝑗 = 0 for 𝑗𝑗 = 1,2, … 𝑠𝑠. We consider only those 𝑃𝑃[𝑓𝑓],  𝑃𝑃0[𝑓𝑓 ] singularities of whose 
individual terms do not cancel each other. We also denote by 𝑀𝑀[𝑓𝑓]  a differential monomial generated by 
transcendental meromorphic function 𝑓𝑓. 
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The following definitions are well known.   
 
Definition 1: The order 𝜌𝜌𝑓𝑓  and lower order 𝜆𝜆𝑓𝑓  of a meromorphic function 𝑓𝑓 are defined as 

ρ𝑓𝑓 = limsup
𝑟𝑟→∞

log𝑇𝑇(𝑟𝑟, 𝑓𝑓)
log 𝑟𝑟

  𝑎𝑎𝑎𝑎𝑎𝑎    λ𝑓𝑓 = liminf
𝑟𝑟→∞

log𝑇𝑇(𝑟𝑟, 𝑓𝑓)
log 𝑟𝑟

  

 
If 𝑓𝑓 is entire, one can easily verify that  

ρ𝑓𝑓 = limsup
𝑟𝑟→∞

log[2]𝑀𝑀(𝑟𝑟, 𝑓𝑓)
log𝑟𝑟

  𝑎𝑎𝑎𝑎𝑎𝑎  λ𝑓𝑓 = liminf
𝑟𝑟→∞

log[2]𝑀𝑀(𝑟𝑟, 𝑓𝑓)
log𝑟𝑟

 , 

 
Where 𝑙𝑙𝑓𝑓𝑔𝑔[𝑘𝑘]𝑥𝑥 = 𝑙𝑙𝑓𝑓𝑔𝑔(𝑙𝑙𝑓𝑓𝑔𝑔[𝑘𝑘−1]𝑥𝑥) for 𝑘𝑘 = 1,2,3, … and 𝑙𝑙𝑓𝑓𝑔𝑔[0]𝑥𝑥 = 𝑥𝑥. 
 
If 𝜌𝜌𝑓𝑓 < ∞ then 𝑓𝑓 is of finite order. Also 𝜌𝜌𝑓𝑓 = 0 means that 𝑓𝑓 is of order zero. In this connection Datta and Biswas [5] 
gave the following definition. 
 
Definition 2: [5] Let 𝑓𝑓 be a meromorphic function of order zero. Then the quantities 𝜌𝜌𝑓𝑓∗∗ and 𝜆𝜆𝑓𝑓∗∗ of 𝑓𝑓 are defined by: 

𝜌𝜌𝑓𝑓∗∗ = limsup
𝑟𝑟→∞

𝑇𝑇(𝑟𝑟, 𝑓𝑓)
𝑙𝑙𝑓𝑓𝑔𝑔𝑟𝑟

  𝑎𝑎𝑎𝑎𝑎𝑎  𝜆𝜆𝑓𝑓∗∗ = liminf
𝑟𝑟→∞

𝑇𝑇(𝑟𝑟, 𝑓𝑓)
𝑙𝑙𝑓𝑓𝑔𝑔𝑟𝑟

 . 

 
If 𝑓𝑓 is an entire function then clearly 

𝜌𝜌𝑓𝑓∗∗ = limsup
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔𝑀𝑀(𝑟𝑟, 𝑓𝑓)
𝑙𝑙𝑓𝑓𝑔𝑔𝑟𝑟

 𝑎𝑎𝑎𝑎𝑎𝑎  𝜆𝜆𝑓𝑓∗∗ = liminf
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔𝑀𝑀(𝑟𝑟, 𝑓𝑓)
𝑙𝑙𝑓𝑓𝑔𝑔𝑟𝑟

 . 

 
Definition 3: Let ′𝑎𝑎′ be a complex number, finite or infinite. The Nevanlinna deficiency and the Valiron deficiency of 
′𝑎𝑎′  with respect to a meromorphic function 𝑓𝑓 are defined as 

𝛿𝛿(𝑎𝑎; 𝑓𝑓) = 1 − limsup
𝑟𝑟→∞

𝑁𝑁(𝑟𝑟, 𝑎𝑎; 𝑓𝑓)
𝑇𝑇(𝑟𝑟, 𝑓𝑓)

= liminf
𝑟𝑟→∞

𝑚𝑚(𝑟𝑟, 𝑎𝑎; 𝑓𝑓)
𝑇𝑇(𝑟𝑟, 𝑓𝑓)

 

and  

∆(𝑎𝑎; 𝑓𝑓) = 1 − liminf
𝑟𝑟→∞

𝑁𝑁(𝑟𝑟, 𝑎𝑎;𝑓𝑓)
𝑇𝑇(𝑟𝑟, 𝑓𝑓)

= limsup
𝑟𝑟→∞

𝑚𝑚(𝑟𝑟, 𝑎𝑎; 𝑓𝑓)
𝑇𝑇(𝑟𝑟,𝑓𝑓)

. 

 
Definition 4: The quantity Θ(𝑎𝑎; 𝑓𝑓)  of a meromorphic function 𝑓𝑓 is defined as follows 

Θ(𝑎𝑎;𝑓𝑓) = 1 − limsup
𝑟𝑟→∞

𝑁𝑁�(𝑟𝑟, 𝑎𝑎; 𝑓𝑓)
𝑇𝑇(𝑟𝑟, 𝑓𝑓)

. 

 
Definition 5: [15] For 𝑎𝑎𝑎𝑎ℂ ∪ {∞}we denote by𝑎𝑎(𝑟𝑟, 𝑎𝑎; 𝑓𝑓| = 1), the number of simple zeros of 𝑓𝑓 − 𝑎𝑎 in 

 rz ≤ ,𝑁𝑁(𝑟𝑟, 𝑎𝑎; 𝑓𝑓| = 1) is defined in terms of 𝑎𝑎(𝑟𝑟, 𝑎𝑎; 𝑓𝑓| = 1)in the usual way. We put  

𝛿𝛿1(𝑎𝑎; 𝑓𝑓) = 1 − limsup
𝑟𝑟→∞

𝑁𝑁(𝑟𝑟, 𝑎𝑎; 𝑓𝑓| = 1)
𝑇𝑇(𝑟𝑟, 𝑓𝑓) , 

 
the deficiency of ′𝑎𝑎′ corresponding to the simple 𝑎𝑎 -points of 𝑓𝑓 i.e.,  simple zeros of 𝑓𝑓 − 𝑎𝑎. 
  
Yang [14] proved that there exists at most a denumerable number of complex numbers 𝑎𝑎𝑎𝑎ℂ ∪ {∞} for which  

𝛿𝛿1(𝑎𝑎; 𝑓𝑓) > 0 and ∑
∞∪∈ }{Ca
𝛿𝛿1(𝑎𝑎;𝑓𝑓) ≤ 4. 

 
Definition 6: [9] For 𝑎𝑎 ∈ ℂ⋃{∞} let 𝑎𝑎𝑝𝑝(𝑟𝑟, 𝑎𝑎;𝑓𝑓) denotes the number of zeros of 𝑓𝑓 − 𝑎𝑎 in |𝑧𝑧| ≤r where a zero of 
“multiplicity < 𝑝𝑝 is counted according to its multiplicity and a zero of multiplicity ≥ 𝑝𝑝 is counted exactly 𝑝𝑝 times; 
and 𝑁𝑁𝑝𝑝(𝑟𝑟, 𝑎𝑎; 𝑓𝑓) is defined in terms of 𝑎𝑎𝑝𝑝(𝑟𝑟, 𝑎𝑎; 𝑓𝑓) in the usual way”. We define 

𝛿𝛿𝑝𝑝(𝑎𝑎; 𝑓𝑓) = 1 − limsup
𝑟𝑟→∞

𝑁𝑁𝑝𝑝(𝑟𝑟, 𝑎𝑎;𝑓𝑓)
𝑇𝑇(𝑟𝑟, 𝑓𝑓) . 

 
Definition 7: [3] 𝑃𝑃[𝑓𝑓] is said to be admissible if 
 
(i)𝑃𝑃[𝑓𝑓] is homogeneous, or 
 
(ii)𝑃𝑃[𝑓𝑓] is non homogeneous and 𝑚𝑚(𝑟𝑟, 𝑓𝑓) = 𝑆𝑆(𝑟𝑟, 𝑓𝑓). 
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2. LEMMAS 
 
In this section we present some lemmas which will be needed in the sequel.  
 
Lemma 1: [1] If 𝑓𝑓 is meromorphic and 𝑔𝑔 is entire then for all sufficiently large values of 𝑟𝑟, 

𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔) ≤ {1 + 𝑓𝑓(1)}
𝑇𝑇(𝑟𝑟,𝑔𝑔)

𝑙𝑙𝑓𝑓𝑔𝑔𝑀𝑀(𝑟𝑟,𝑔𝑔)𝑇𝑇
(𝑀𝑀(𝑟𝑟,𝑔𝑔), 𝑓𝑓). 

  
Lemma 2: [2] Let 𝑓𝑓 be meromorphic and 𝑔𝑔 be entire and suppose that0 < 𝜇𝜇 < 𝜌𝜌𝑔𝑔 ≤ ∞. Then for a sequence of values 
of 𝑟𝑟 tending to infinity, 

𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔) ≥ 𝑇𝑇(𝑒𝑒𝑥𝑥𝑝𝑝(𝑟𝑟𝜇𝜇 ), 𝑓𝑓). 
 
Lemma 3: [5] If 𝑓𝑓 be any meromorphic function of order zero. Then 

lim
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓)
𝑙𝑙𝑓𝑓𝑔𝑔[2]𝑟𝑟

= 1. 

Lemma 4: [3] Let 𝑃𝑃0[𝑓𝑓] be admissible. If 𝑓𝑓 is of finite order or of non-zero lower order and ∑
∞≠a

Θ(𝑎𝑎; 𝑓𝑓) = 2 then 

lim
r→∞

𝑇𝑇(𝑟𝑟,𝑃𝑃0[𝑓𝑓])
𝑇𝑇(𝑟𝑟, 𝑓𝑓)

= 𝛤𝛤𝑃𝑃0[𝑓𝑓]. 

 
Lemma 5: [3] Let 𝑓𝑓 be either of finite order or of non-zero lower order such that Θ(∞; 𝑓𝑓) = ∑ 𝛿𝛿𝑝𝑝(𝑎𝑎; 𝑓𝑓) = 1𝑎𝑎≠∞  or 
𝛿𝛿(∞, 𝑓𝑓) = ∑ 𝛿𝛿(𝑎𝑎; 𝑓𝑓) = 1𝑎𝑎≠∞  Then for homogeneous  𝑃𝑃0[𝑓𝑓], 

lim
r→∞

𝑇𝑇(𝑟𝑟,𝑃𝑃0[𝑓𝑓])
𝑇𝑇(𝑟𝑟, 𝑓𝑓)

= 𝛾𝛾𝑃𝑃0[𝑓𝑓]. 

 
Lemma 6: Let 𝑓𝑓 be a meromorphic function of finite order or of non zero lower order. If ∑ Θ(𝑎𝑎; 𝑓𝑓)a≠∞ = 2, then the 
order (lower order) of homogeneous 𝑃𝑃0[𝑓𝑓] is same as that of 𝑓𝑓  if 𝑓𝑓 is of positive finite order. 
 
Proof: By Lemma 4 

lim
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟,𝑃𝑃0[𝑓𝑓])
𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓)

 

exists and is equal to 1. 

𝜌𝜌𝑃𝑃0[𝑓𝑓] = limsup
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟,𝑃𝑃0[𝑓𝑓])
𝑙𝑙𝑓𝑓𝑔𝑔𝑟𝑟

 

                                       = limsup
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓)
𝑙𝑙𝑓𝑓𝑔𝑔𝑟𝑟

lim
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟,𝑃𝑃0[𝑓𝑓])
𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓)

 

 = 𝜌𝜌𝑓𝑓 . 1 = 𝜌𝜌𝑓𝑓 .            
In a similar manner, 𝜆𝜆𝑃𝑃0[𝑓𝑓] = 𝜆𝜆𝑓𝑓 . 
 
This proves the lemma. 
 
Lemma 7: Let 𝑓𝑓 be a meromorphic function of finite order or of non-zero lower order such that Θ(∞;𝑓𝑓) =
∑ 𝛿𝛿𝑝𝑝(𝑎𝑎; 𝑓𝑓) = 1𝑎𝑎≠∞ .Then the order (lower order) of homogenous 𝑃𝑃0[𝑓𝑓] and 𝑓𝑓 are same when 𝑓𝑓 is of finite positive 
order. 
 
We omit the proof of the lemma because it can be carried out in the line of lemma 7 and with the help of Lemma 6. 
 
In a similar manner we can state the following lemma without proof. 
 
Lemma 8: Let 𝑓𝑓 be a meromorphic function of finite order or of non-zero lower order such that 𝛿𝛿(∞, 𝑓𝑓) =
∑ 𝛿𝛿(𝑎𝑎; 𝑓𝑓) = 1𝑎𝑎≠∞ . Then for every homogenous 𝑃𝑃0[𝑓𝑓] the order (lower order) of 𝑃𝑃0[𝑓𝑓] is same as that of 𝑓𝑓 when 𝑓𝑓 is of 
finite positive order. 
 
Lemma 9: [10] Let 𝑓𝑓 be a transcendental meromorphic function of finite order or of non-zero lower order and 
∑ 𝛿𝛿1(𝑎𝑎; 𝑓𝑓)𝑎𝑎𝑎𝑎ℂ∪{∞} = 4, Then  

lim
𝑟𝑟→∞

𝑇𝑇(𝑟𝑟,𝑀𝑀[𝑓𝑓])
𝑇𝑇(𝑟𝑟, 𝑓𝑓) = ΓM − �ΓM − γM�Θ(∞;𝑓𝑓), 

where  Θ(∞; 𝑓𝑓) = 1 − limsup𝑟𝑟→∞
𝑁𝑁�(𝑟𝑟 ,𝑓𝑓)
𝑇𝑇(𝑟𝑟 ,𝑓𝑓)

. 
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Lemma 10: If  𝑓𝑓 be a transcendental meromorphic function of finite order or of non-zero lower order and 
∑ 𝛿𝛿1(𝑎𝑎; 𝑓𝑓)𝑎𝑎𝑎𝑎ℂ∪{∞} = 4, then the order and lower order of 𝑀𝑀[𝑓𝑓] are same as those of  𝑓𝑓 when 𝑓𝑓 is of finite positive order. 
 
We omit the proof of the lemma because it can be carried out in the line of lemma 6 and with the help of Lemma 9. 
 
3. THEOREMS 
  
In this section we present the main results of the paper.  
 
Theorem 1: Let 𝑓𝑓 be a meromorphic function and 𝑔𝑔 be an entire function such that 0 < 𝜆𝜆𝑓𝑓 ≤ 𝜌𝜌𝑓𝑓 < 𝜌𝜌𝑔𝑔 < ∞. Also let  
∑ Θ(𝑎𝑎; 𝑓𝑓)𝑎𝑎≠∞ = 2.  Then  

limsup
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑇𝑇(𝑟𝑟,𝑃𝑃0[𝑓𝑓])

= ∞. 

 
Proof:  Since 𝜌𝜌𝑓𝑓 < 𝜌𝜌𝑔𝑔  we can choose 𝜀𝜀 (>0) in such a way that  

     𝜌𝜌𝑓𝑓 + 𝜀𝜀 < 𝜌𝜌𝑔𝑔 − 𝜀𝜀 < 𝜌𝜌𝑔𝑔 .                                                                            (1)         
                                                                      

Now in view of lemma 2 we obtain for a sequence of values of 𝑟𝑟 tending to infinity that                                        
                                                   𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔) ≥ 𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇{𝑒𝑒𝑥𝑥𝑝𝑝𝑟𝑟�𝜌𝜌𝑔𝑔−𝜀𝜀�, 𝑓𝑓} 
 
                                                   𝑖𝑖. 𝑒𝑒., 𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔) ≥ �𝜆𝜆𝑓𝑓 − 𝜀𝜀�𝑙𝑙𝑓𝑓𝑔𝑔𝑒𝑒𝑥𝑥𝑝𝑝𝑟𝑟(𝜌𝜌𝑔𝑔−𝜀𝜀)  
 

  𝑖𝑖. 𝑒𝑒., 𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔) ≥ �𝜆𝜆𝑓𝑓 − 𝜀𝜀� 𝑟𝑟(𝜌𝜌𝑔𝑔−𝜀𝜀).                                                                                  (2)   
 
Again by lemma 6, we have for all sufficiently large values of𝑟𝑟,  
   
                                𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟,𝑃𝑃0[𝑓𝑓]) ≤ �𝜌𝜌𝑃𝑃0[𝑓𝑓] + 𝜀𝜀�𝑙𝑙𝑓𝑓𝑔𝑔𝑟𝑟 
                         
                                                           𝑖𝑖. 𝑒𝑒. , 𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟,𝑃𝑃0[𝑓𝑓]) ≤ �𝜌𝜌𝑓𝑓 + 𝜀𝜀�𝑙𝑙𝑓𝑓𝑔𝑔𝑟𝑟                                                                             (3) 
 

𝑖𝑖. 𝑒𝑒. ,𝑇𝑇(𝑟𝑟,𝑃𝑃0[𝑓𝑓]) ≤ 𝑟𝑟�𝜌𝜌𝑓𝑓+𝜀𝜀�.                                                                                            (4) 
 
 
Therefore from (2) and (4) it follows for a sequence of values of 𝑟𝑟 tending to infinity, 

𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑇𝑇(𝑟𝑟,𝑃𝑃0[𝑓𝑓])

≥
(𝜆𝜆𝑓𝑓 − 𝜀𝜀)𝑟𝑟(𝜌𝜌𝑔𝑔−𝜀𝜀)

𝑟𝑟�𝜌𝜌𝑓𝑓+𝜀𝜀�
.                                                             (5) 

 
Now in view of (1) it follows from (5) that    

limsup
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑇𝑇(𝑟𝑟,𝑃𝑃0[𝑓𝑓])

= ∞. 

This proves the theorem. 
 
 
In the line of Theorem 1 the following corollary may be deduced.  
 
Corollary 1: Let 𝑓𝑓 be a meromorphic function and 𝑔𝑔 be an entire function with 0 < 𝜆𝜆𝑓𝑓 ≤ 𝜌𝜌𝑓𝑓 < 𝜆𝜆𝑔𝑔 < ∞. Also let  
∑ Θ(𝑎𝑎; 𝑓𝑓)𝑎𝑎≠∞ = 2. Then  

limsup
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑇𝑇(𝑟𝑟,𝑃𝑃0[𝑓𝑓])

= ∞. 

 
Remark 1: The conclusion of Theorem 1and Corollary 1 can also be drawn under the hypothesis Θ(∞; 𝑓𝑓) =
∑ 𝛿𝛿𝑝𝑝(𝑎𝑎; 𝑓𝑓) = 1𝑎𝑎≠∞  or 𝛿𝛿(∞; 𝑓𝑓) = ∑ 𝛿𝛿(𝑎𝑎; 𝑓𝑓) = 1𝑎𝑎≠∞  instead of  ∑ Θ(𝑎𝑎; 𝑓𝑓)𝑎𝑎≠∞ = 2. 
 
In the line of Theorem 1 and with the help of Lemma 10 we may state the following theorem without proof. 
 
Theorem 2: Let 𝑓𝑓 be a meromorphic function and 𝑔𝑔 be an entire function such that 0 < 𝜆𝜆𝑓𝑓 ≤ 𝜌𝜌𝑓𝑓 < 𝜌𝜌𝑔𝑔 < ∞. Also let  
∑ 𝛿𝛿1(𝑎𝑎;𝑓𝑓)𝑎𝑎∈ℂ∪{∞} = 4. Then 

limsup
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑇𝑇(𝑟𝑟,𝑀𝑀[𝑓𝑓])

= ∞. 
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In view of theorem 2, the following corollary may also be deduced. Hence the proof is omitted. 
 
Corollary 2: Let 𝑓𝑓 be a meromorphic function and 𝑔𝑔 be an entire function such that  0 < 𝜆𝜆𝑓𝑓 ≤ 𝜌𝜌𝑓𝑓 < 𝜆𝜆𝑔𝑔 < ∞. Also let 
∑ 𝛿𝛿1(𝑎𝑎;𝑓𝑓)𝑎𝑎∈ℂ∪{∞} = 4. Then 

limsup
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑇𝑇(𝑟𝑟,𝑀𝑀[𝑓𝑓])

= ∞. 

 
Theorem 3: Let 𝑓𝑓 be a meromorphic function such that 0 < 𝜆𝜆𝑓𝑓 ≤ 𝜌𝜌𝑓𝑓 < ∞, 𝛿𝛿(∞; 𝑓𝑓) = ∑ 𝛿𝛿(𝑎𝑎; 𝑓𝑓) = 1𝑎𝑎≠∞  and 𝑔𝑔 be an 
entire function with finite order, then for every positive constant 𝐴𝐴 and every real number 𝛼𝛼 

limsup
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
{𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟𝐴𝐴 ,𝑃𝑃0[𝑓𝑓])}1+𝛼𝛼 = ∞. 

 
Proof: Let us suppose that  

0 < 𝜀𝜀 < min�λf , λg�. 
 
If α is such that1 + α ≤ 0, then the theorem is trivial. So we suppose that  1 + α > 0. Now from Lemma 2 we get for a 
sequence of values of 𝑟𝑟 tending to infinity 
 
                                                  𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔) ≥ 𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑒𝑒𝑥𝑥𝑝𝑝𝑟𝑟�𝜌𝜌𝑔𝑔−𝜀𝜀�, 𝑓𝑓) 
 
                                                  𝑖𝑖. 𝑒𝑒. ,   𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔) ≥ (𝜆𝜆𝑓𝑓 − 𝜀𝜀)𝑙𝑙𝑓𝑓𝑔𝑔𝑒𝑒𝑥𝑥𝑝𝑝𝑟𝑟�𝜌𝜌𝑔𝑔−𝜀𝜀� 
 

                            𝑖𝑖. 𝑒𝑒. ,   𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔) ≥ �𝜆𝜆𝑓𝑓 − 𝜀𝜀�𝑟𝑟�𝜌𝜌𝑔𝑔−𝜀𝜀�.                                                                                  (6)        
 
Again from the definition of 𝜌𝜌𝑃𝑃0[𝑓𝑓] it follows for all sufficiently large values of 𝑟𝑟 
 
                                                             𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟𝐴𝐴 ,𝑃𝑃0[𝑓𝑓]) ≤ (𝜌𝜌𝑃𝑃0[𝑓𝑓] + 𝜀𝜀)𝐴𝐴𝑙𝑙𝑓𝑓𝑔𝑔𝑟𝑟 
 
                                                             𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟𝐴𝐴 ,𝑃𝑃0[𝑓𝑓]) ≤ (𝜌𝜌𝑓𝑓 + 𝜀𝜀)𝐴𝐴𝑙𝑙𝑓𝑓𝑔𝑔𝑟𝑟  
 

                           𝑖𝑖. 𝑒𝑒. , {𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟𝐴𝐴 ,𝑃𝑃0[𝑓𝑓])}1+𝛼𝛼 ≤ (𝜌𝜌𝑓𝑓 + 𝜀𝜀)1+𝛼𝛼𝐴𝐴1+𝛼𝛼(𝑙𝑙𝑓𝑓𝑔𝑔𝑟𝑟)1+𝛼𝛼 .                                    (7)  
 
Now from (6) and (7) it follows for a sequence of values of 𝑟𝑟 tending to infinity 
 

𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
{𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟𝐴𝐴 ,𝑃𝑃0[𝑓𝑓])}1+𝛼𝛼 ≥

�𝜆𝜆𝑓𝑓 − 𝜀𝜀�𝑟𝑟�𝜌𝜌𝑔𝑔−𝜀𝜀�

(𝜌𝜌𝑓𝑓 + 𝜀𝜀)1+𝛼𝛼𝐴𝐴1+𝛼𝛼(𝑙𝑙𝑓𝑓𝑔𝑔𝑟𝑟)1+𝛼𝛼  

 

Since 𝑟𝑟�𝜌𝜌𝑔𝑔−𝜀𝜀�

(𝑙𝑙𝑓𝑓𝑔𝑔𝑟𝑟 )1+𝛼𝛼 → ∞ as 𝑟𝑟 → ∞,  the theorem follows from above. 
 
Remark 2: The conclusion of Theorem (3) can also deduced if we replace  𝛿𝛿(∞; 𝑓𝑓) = ∑ 𝛿𝛿(𝑎𝑎; 𝑓𝑓) = 1𝑎𝑎≠∞  by Θ(∞;𝑓𝑓) =
∑ 𝛿𝛿𝑝𝑝(𝑎𝑎; 𝑓𝑓) = 1𝑎𝑎≠∞ or ∑ Θ(𝑎𝑎; 𝑓𝑓)𝑎𝑎≠∞ = 2 rspectivly.  
 
Theorem 4: Let 𝑓𝑓 be a meromorphic function such that 0 < 𝜆𝜆𝑓𝑓 ≤ 𝜌𝜌𝑓𝑓 < ∞, ∑ 𝛿𝛿1(𝑎𝑎; 𝑓𝑓)𝑎𝑎∈ℂ∪{∞} = 4 and 𝑔𝑔 be an entire 
function with finite order, then for every positive constant 𝐴𝐴 and every real number 𝛼𝛼 
 

limsup
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
{𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟𝐴𝐴 ,𝑀𝑀[𝑓𝑓])}1+𝛼𝛼 = ∞. 

 
The proof of the theorem can be established in the line of Theorem 3 and with the help of Lemma 10 and therefore is 
omitted.  
 
 
Remark 3: The conclusion of Theorem 3, Theorem 4 and Remark 2 can also deduced if we take 𝑔𝑔 be an entire 
function with non zero lower order instead of “finite order”. 
 
 In the line of Theorem 3 one may state the following theorem without proof. 
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Theorem 5: Let 𝑓𝑓 be a meromorphic function and 𝑔𝑔 be an entire function such that 0 < 𝜆𝜆𝑔𝑔 ≤ 𝜌𝜌𝑔𝑔 < ∞, and  
  Θ(∞;𝑔𝑔) = ∑ 𝛿𝛿𝑝𝑝(𝑎𝑎;𝑔𝑔) = 1𝑎𝑎≠∞  or  𝛿𝛿(∞;𝑔𝑔) = ∑ 𝛿𝛿(𝑎𝑎;𝑔𝑔) = 1𝑎𝑎≠∞    or ∑ Θ(𝑎𝑎;𝑔𝑔)𝑎𝑎≠∞ = 2, then for every positive 
constant 𝐴𝐴 and every real number 𝛼𝛼 

limsup
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
{𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟𝐴𝐴 ,𝑃𝑃0[𝑓𝑓])}1+𝛼𝛼 = ∞. 

 
In the line of Theorem 5 and with the help of Lemma 10 we may state the following theorem without proof. 
 
Theorem 6: Let 𝑓𝑓 be a meromorphic function and 𝑔𝑔 be an entire function such that 0 < 𝜆𝜆𝑔𝑔 ≤ 𝜌𝜌𝑔𝑔 < ∞ and 
∑ 𝛿𝛿1(𝑎𝑎;𝑔𝑔)𝑎𝑎∈ℂ∪{∞} = 4, Then for every positive constant 𝐴𝐴 and every real number 𝛼𝛼 

limsup
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
{𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟𝐴𝐴 ,𝑀𝑀[𝑔𝑔])}1+𝛼𝛼 = ∞. 

 
Theorem 7: Let 𝑓𝑓 be a meromorphic function and 𝑔𝑔 be an entire function such that 0 < 𝜆𝜆𝑓𝑓 ≤ 𝜌𝜌𝑓𝑓 < ∞,  ∑ Θ(𝑎𝑎; 𝑓𝑓)𝑎𝑎≠∞ =
2 and 0 < 𝜌𝜌𝑔𝑔 < ∞.Then  

𝜌𝜌𝑔𝑔
𝜌𝜌𝑓𝑓

≤ limsup
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔[2]𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟,𝑃𝑃0[𝑓𝑓])

≤
𝜌𝜌𝑔𝑔
𝜆𝜆𝑓𝑓

. 

 
Proof:  Since𝑇𝑇(𝑟𝑟,𝑔𝑔) ≤ 𝑙𝑙𝑓𝑓𝑔𝑔+𝑀𝑀(𝑟𝑟,𝑔𝑔), we have from Lemma 1 for all sufficiently large values of 𝑟𝑟,  
 
                                                                  𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔) ≤ {1 + 𝑓𝑓(1)}𝑇𝑇(𝑀𝑀(𝑟𝑟,𝑔𝑔), 𝑓𝑓) 
 
                                                                  𝑖𝑖. 𝑒𝑒. , 𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔) ≤ �𝜌𝜌𝑓𝑓 + 𝜀𝜀�𝑙𝑙𝑓𝑓𝑔𝑔𝑀𝑀(𝑟𝑟,𝑔𝑔) + 𝑂𝑂(1) 
 

              𝑖𝑖. 𝑒𝑒. , 𝑙𝑙𝑓𝑓𝑔𝑔[2]𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔) ≤ 𝑙𝑙𝑓𝑓𝑔𝑔[2]𝑀𝑀(𝑟𝑟,𝑔𝑔) + 𝑂𝑂(1) 
 

𝑖𝑖. 𝑒𝑒. , 𝑙𝑙𝑓𝑓𝑔𝑔[2]𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔) ≤ �𝜌𝜌𝑔𝑔 + 𝜀𝜀�𝑙𝑙𝑓𝑓𝑔𝑔𝑟𝑟 + 𝑂𝑂(1).                                                   (8) 
  

Again from (6) we obtain for a sequence of values of 𝑟𝑟 tending to infinity that  
 
                         𝑙𝑙𝑓𝑓𝑔𝑔[2]𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔) ≥ �𝜌𝜌𝑔𝑔 − 𝜀𝜀�𝑙𝑙𝑓𝑓𝑔𝑔𝑟𝑟 + 𝑂𝑂(1).                                                          (9) 
 
Also from the definition of 𝜆𝜆𝑃𝑃0[𝑓𝑓] we have for all sufficiently large values of 𝑟𝑟,  
                                                                       𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟,𝑃𝑃0[𝑓𝑓]) ≥ �𝜆𝜆𝑃𝑃0[𝑓𝑓] − 𝜀𝜀�𝑙𝑙𝑓𝑓𝑔𝑔𝑟𝑟 
 

 𝑖𝑖. 𝑒𝑒. , 𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟,𝑃𝑃0[𝑓𝑓]) ≥ (𝜆𝜆𝑓𝑓 − 𝜀𝜀)𝑙𝑙𝑓𝑓𝑔𝑔𝑟𝑟.                                                            (10) 
 

Therefore from (8) and (10) we have for all sufficiently large values of 𝑟𝑟 that  
 𝑙𝑙𝑓𝑓𝑔𝑔[2]𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟,𝑃𝑃0[𝑓𝑓]) ≤

�𝜌𝜌𝑔𝑔 + 𝜀𝜀�𝑙𝑙𝑓𝑓𝑔𝑔𝑟𝑟 + 𝑂𝑂(1)
  (𝜆𝜆𝑓𝑓 − 𝜀𝜀)𝑙𝑙𝑓𝑓𝑔𝑔𝑟𝑟

 

 

limsup
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔[2]𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟,𝑃𝑃0[𝑓𝑓])

≤
𝜌𝜌𝑔𝑔
𝜆𝜆𝑓𝑓

.                                                                          (11) 

 
Again from (3) and (9) it follows for a sequence of values of 𝑟𝑟 tending to infinity   

 𝑙𝑙𝑓𝑓𝑔𝑔[2]𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟,𝑃𝑃0[𝑓𝑓]) ≥

�𝜌𝜌𝑔𝑔 − 𝜀𝜀�𝑙𝑙𝑓𝑓𝑔𝑔𝑟𝑟 + 𝑂𝑂(1)
�𝜌𝜌𝑓𝑓 + 𝜀𝜀�𝑙𝑙𝑓𝑓𝑔𝑔𝑟𝑟

 

 

limsup
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔[2]𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟,𝑃𝑃0[𝑓𝑓])

≥
𝜌𝜌𝑔𝑔
𝜌𝜌𝑓𝑓

.                                                              (12) 

 
Thus the theorem follows from (11) and (12). 
  
Remark 4: In addition to the conditions of Theorem 7 if 𝑓𝑓 is of regular growth i.e., 𝜌𝜌𝑓𝑓 = 𝜆𝜆𝑓𝑓 . Then  

limsup
𝑟𝑟→∞

 𝑙𝑙𝑓𝑓𝑔𝑔[2]𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟,𝑃𝑃0[𝑓𝑓]) =

𝜌𝜌𝑔𝑔
𝜌𝜌𝑓𝑓

. 
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Remark 5: The conclusion of Theorem 7 and Remark 4 can also be drawn under the hypothesis Θ(∞; 𝑓𝑓) =
∑ 𝛿𝛿𝑝𝑝(𝑎𝑎; 𝑓𝑓) = 1𝑎𝑎≠∞  or 𝛿𝛿(∞; 𝑓𝑓) = ∑ 𝛿𝛿(𝑎𝑎; 𝑓𝑓) = 1𝑎𝑎≠∞  instead of∑ Θ(𝑎𝑎; 𝑓𝑓)𝑎𝑎≠∞ = 2. 
 
Theorem 8: Let 𝑓𝑓 be a meromorphic function and 𝑔𝑔 be an entire function such that 
0 < 𝜆𝜆𝑓𝑓 ≤ 𝜌𝜌𝑓𝑓 < ∞, ∑ 𝛿𝛿1(𝑎𝑎; 𝑓𝑓)𝑎𝑎∈ℂ∪{∞} = 4 and 0 < 𝜌𝜌𝑔𝑔 < ∞.Then  

𝜌𝜌𝑔𝑔
𝜌𝜌𝑓𝑓

≤ limsup
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔[2]𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟,𝑀𝑀[𝑓𝑓])

≤
𝜌𝜌𝑔𝑔
𝜆𝜆𝑓𝑓

. 

 
The proof is omitted because it can be carried out in the line of Theorem 7 and with the help of Lemma 10. 
 
Remark 6: In addition to the conditions of theorem 8, let 𝑓𝑓 is of regular growth, i.e., 𝜌𝜌𝑓𝑓 = 𝜆𝜆𝑓𝑓 . Then  

limsup
𝑟𝑟→∞

 𝑙𝑙𝑓𝑓𝑔𝑔[2]𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟,𝑀𝑀[𝑓𝑓]) =

𝜌𝜌𝑔𝑔
𝜌𝜌𝑓𝑓

. 

 
In the line of Theorem 7 the following two corollaries may be deduced: 
 
Corollary 3: Let 𝑓𝑓 be a meromorphic function and 𝑔𝑔 be an entire function such that 0 < 𝜆𝜆𝑓𝑓 ≤ 𝜌𝜌𝑓𝑓 < ∞, 0 < 𝜆𝜆𝑔𝑔 ≤ 𝜌𝜌𝑔𝑔 <
∞, and Θ(∞;𝑔𝑔) = ∑ 𝛿𝛿𝑝𝑝(𝑎𝑎;𝑔𝑔) = 1𝑎𝑎≠∞  or 𝛿𝛿(∞;𝑔𝑔) = ∑ 𝛿𝛿(𝑎𝑎;𝑔𝑔) = 1𝑎𝑎≠∞  or ∑ Θ(𝑎𝑎;𝑔𝑔)𝑎𝑎≠∞ = 2. Then 

𝜌𝜌𝑔𝑔
𝜌𝜌𝑓𝑓

≤ limsup
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔[2]𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟,𝑃𝑃0[𝑔𝑔])

≤
𝜌𝜌𝑔𝑔
𝜆𝜆𝑓𝑓

. 

 
In addition if 𝑔𝑔 is of regular growth then  

limsup
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔[2]𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟,𝑃𝑃0[𝑔𝑔])

= 1. 

 
Corollary 4: Let 𝑓𝑓 be a meromorphic function and 𝑔𝑔 be an entire function such that 0 < 𝜆𝜆𝑓𝑓 ≤ 𝜌𝜌𝑓𝑓 < ∞, 0 < 𝜆𝜆𝑔𝑔 ≤ 𝜌𝜌𝑔𝑔 <
∞, and∑ 𝛿𝛿1(𝑎𝑎;𝑔𝑔)𝑎𝑎∈ℂ∪{∞} = 4. Then  

𝜌𝜌𝑔𝑔
𝜌𝜌𝑓𝑓

≤ limsup
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔[2]𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟,𝑀𝑀[𝑔𝑔])

≤
𝜌𝜌𝑔𝑔
𝜆𝜆𝑓𝑓

. 

 
In addition if 𝑔𝑔 is of regular growth then  

limsup
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔[2]𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟,𝑀𝑀[𝑔𝑔])

= 1. 

 
Theorem 9: Let 𝑓𝑓 be a meromorphic function of order zero and 𝑔𝑔 be an entire function of non zero finite order. 
Also let Θ(∞;𝑔𝑔) = ∑ 𝛿𝛿𝑝𝑝(𝑎𝑎;𝑔𝑔) = 1𝑎𝑎≠∞ . Then  

limsup
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟𝐴𝐴 ,𝑃𝑃0[𝑔𝑔])

≥
1
𝐴𝐴

 

Where 𝐴𝐴 > 0. 
 
Proof:  In view of Lemma 2 and Lemma 3 we obtain for a sequence of values of 𝑟𝑟 tending to infinity that  

𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔) ≥ 𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇�𝑒𝑒𝑥𝑥𝑝𝑝𝑟𝑟�𝜌𝜌𝑔𝑔−𝜀𝜀�, 𝑓𝑓� 
 
                                                                   𝑖𝑖. 𝑒𝑒. , 𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔) ≥ (1 − 𝜀𝜀)𝑙𝑙𝑓𝑓𝑔𝑔[2]𝑒𝑒𝑥𝑥𝑝𝑝𝑟𝑟�𝜌𝜌𝑔𝑔−𝜀𝜀�  
 

 𝑖𝑖. 𝑒𝑒. , 𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔) ≥ (1 − 𝜀𝜀)�𝜌𝜌𝑔𝑔 − 𝜀𝜀�𝑙𝑙𝑓𝑓𝑔𝑔𝑟𝑟  .                                                  (13) 
 

Again by Lemma 7, we have for all sufficiently large values of 𝑟𝑟,   
𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟𝐴𝐴 ,𝑃𝑃0[𝑔𝑔]) ≤ �𝜌𝜌𝑃𝑃0[𝑔𝑔] + 𝜀𝜀�𝑙𝑙𝑓𝑓𝑔𝑔𝑟𝑟𝐴𝐴  

 
                                               𝑖𝑖. 𝑒𝑒. , 𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟𝐴𝐴 ,𝑃𝑃0[𝑔𝑔]) ≤ 𝐴𝐴�𝜌𝜌𝑔𝑔 + 𝜀𝜀�𝑙𝑙𝑓𝑓𝑔𝑔𝑟𝑟.                                                        (14)      

  
Therefore from (13) and (14) we obtain for a sequence of values of 𝑟𝑟 tending to infinity that  

                                                      𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇 (𝑟𝑟 ,𝑓𝑓𝑓𝑓𝑔𝑔 )
𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇 �𝑟𝑟𝐴𝐴 ,𝑃𝑃0[𝑔𝑔]�

≥
(1−𝜀𝜀)�𝜌𝜌𝑔𝑔−𝜀𝜀�𝑙𝑙𝑓𝑓𝑔𝑔𝑟𝑟
𝐴𝐴�𝜌𝜌𝑔𝑔+𝜀𝜀�𝑙𝑙𝑓𝑓𝑔𝑔𝑟𝑟

.                                                            (15) 

 
Since 𝜀𝜀(> 0) is arbitrary, the theorem follows from (15). 
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Remark 7: The conclusion of Theorem 9 can also deduce if we replace  Θ(∞;𝑔𝑔) = ∑ 𝛿𝛿𝑝𝑝(𝑎𝑎;𝑔𝑔) = 1𝑎𝑎≠∞  by  
∑ Θ(𝑎𝑎;𝑔𝑔)𝑎𝑎≠∞ = 2  or 𝛿𝛿(∞;𝑔𝑔) = ∑ 𝛿𝛿(𝑎𝑎;𝑔𝑔) = 1𝑎𝑎≠∞  respectively. 
 
Theorem 10: Let 𝑓𝑓 be a meromorphic function of order zero and 𝑔𝑔 be an entire function of non zero finite order. Also 
let ∑ 𝛿𝛿1(𝑎𝑎;𝑔𝑔)𝑎𝑎∈ℂ∪{∞} = 4. Then for any positive real number A. 

limsup
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟𝐴𝐴 ,𝑀𝑀[𝑔𝑔])

≥
1
𝐴𝐴

. 

 
The proof is omitted because it can be carried out in the line of Theorem 9 and with the help of Lemma 10. 
 
Theorem 11: Let 𝑓𝑓 and 𝑔𝑔 be two entire functions such that 0 < 𝜆𝜆𝑓𝑓∗∗ < ∞,  0 < 𝜆𝜆𝑔𝑔 ≤ 𝜌𝜌𝑔𝑔 < ∞ and  Θ(∞;𝑔𝑔) =
∑ 𝛿𝛿𝑝𝑝(𝑎𝑎;𝑔𝑔) = 1𝑎𝑎≠∞ . Then  

lim
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟𝐴𝐴 ,𝑃𝑃0[𝑔𝑔])

= ∞, 

 
where A is any positive real number. 
 
Proof:  We know that for each 𝑟𝑟 > 0 [11] 

 𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔) ≥
1
3
𝑙𝑙𝑓𝑓𝑔𝑔𝑀𝑀 �

1
8
𝑀𝑀�

𝑟𝑟
4

,𝑔𝑔� + 𝑓𝑓(1), 𝑓𝑓�                                                 (16) 
 

Let us choose 𝜀𝜀 in such a way that 0 < 𝜀𝜀 < min�𝜆𝜆𝑓𝑓∗∗, 𝜆𝜆𝑔𝑔�. 
 
Now we get from (16) for all sufficiently large values of 𝑟𝑟 that  
                                                                     𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔) ≥ 1

3
�𝜆𝜆𝑓𝑓∗∗ − 𝜀𝜀�𝑙𝑙𝑓𝑓𝑔𝑔𝑀𝑀 �𝑟𝑟

4
,𝑔𝑔� + 𝑂𝑂(1) 

                                            𝑖𝑖. 𝑒𝑒. ,𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔) ≥ 1
3
�𝜆𝜆𝑓𝑓∗∗ − 𝜀𝜀� �𝑟𝑟

4
�
𝜆𝜆𝑔𝑔−𝑎𝑎

+ 𝑂𝑂(1).                                              (17) 
 

Therefore we obtain from (14) and (17) for all sufficiently large values of 𝑟𝑟 that 

                                                   𝑇𝑇(𝑟𝑟 ,𝑓𝑓𝑓𝑓𝑔𝑔 )
𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇 �𝑟𝑟𝐴𝐴 ,𝑃𝑃0[𝑔𝑔]�

≥
1
3�𝜆𝜆𝑓𝑓

∗∗−𝜀𝜀��𝑟𝑟4�
𝜆𝜆𝑔𝑔−𝑎𝑎

+𝑂𝑂(1)

𝐴𝐴�𝜌𝜌𝑔𝑔+𝜀𝜀�𝑙𝑙𝑓𝑓𝑔𝑔𝑟𝑟
.                                                            (18) 

 
As 𝜆𝜆𝑔𝑔 > 0, the theorem follows from (18). 
 
Remark 8: If we take 0 < 𝜌𝜌𝑓𝑓∗∗ < ∞ instead of 0 < 𝜆𝜆𝑓𝑓∗∗ < ∞ in Theorem 11and the other conditions remain the same, 
then in the line of Theorem 11 one can easily verify that 

limsup
𝑟𝑟→∞

𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟𝐴𝐴 ,𝑃𝑃0[𝑔𝑔])

= ∞. 

 
Remark 9: Also if we consider 0 < 𝜆𝜆𝑔𝑔 < ∞ or 0 < 𝜌𝜌𝑔𝑔 < ∞ instead of 0 < 𝜆𝜆𝑔𝑔 ≤ 𝜌𝜌𝑔𝑔 < ∞ in Theorem 11 and the other 
conditions remain the same, then in the line of Theorem 11 one can easily verify that 

limsup
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟𝐴𝐴 ,𝑃𝑃0[𝑔𝑔])

= ∞. 

 
Remark 10: The conclusion of Theorem 11, Remark 8 and Remark 9 can also deduced if we replace Θ(∞;𝑔𝑔) =
∑ 𝛿𝛿𝑝𝑝(𝑎𝑎;𝑔𝑔) = 1𝑎𝑎≠∞  by ∑ Θ(𝑎𝑎;𝑔𝑔)𝑎𝑎≠∞ = 2  or 𝛿𝛿(∞;𝑔𝑔) = ∑ 𝛿𝛿(𝑎𝑎;𝑔𝑔) = 1𝑎𝑎≠∞  respectively. 
 
In the line of Theorem 11 and with the help of Lemma 10 we may state the following theorem without proof. 
 
Theorem 12: Let 𝑓𝑓 and 𝑔𝑔 be two entire functions such that 0 < 𝜆𝜆𝑓𝑓∗∗ < ∞,  0 < 𝜆𝜆𝑔𝑔 ≤ 𝜌𝜌𝑔𝑔 < ∞ and  ∑ 𝛿𝛿1(𝑎𝑎;𝑔𝑔)𝑎𝑎∈ℂ∪{∞} =
4. Then 

lim
𝑟𝑟→∞

𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟𝐴𝐴 ,𝑀𝑀[𝑔𝑔])

= ∞, 

where A is any real number. 
 
Remark 11: If we take 0 < 𝜌𝜌𝑓𝑓∗∗ < ∞ instead of 0 < 𝜆𝜆𝑓𝑓∗∗ < ∞ in Theorem 12 and the other conditions remain the same, 
then in the line of Theorem 12 one can easily verify that 

lim
𝑟𝑟→∞

𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟𝐴𝐴 ,𝑀𝑀[𝑔𝑔])

= ∞. 
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Remark 12: Also if we consider 0 < 𝜆𝜆𝑔𝑔 < ∞ or 0 < 𝜌𝜌𝑔𝑔 < ∞ instead of 0 < 𝜆𝜆𝑔𝑔 ≤ 𝜌𝜌𝑔𝑔 < ∞ in Theorem 12 and the 
other conditions remain the same, then in the line of Theorem12 it can be shown that 

limsup
𝑟𝑟→∞

𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟𝐴𝐴 ,𝑀𝑀[𝑔𝑔])

= ∞. 

 
Remark 13 : If we take 𝑓𝑓 be a meromorphic function with order zero in Theorem 11and Theorem 12 and the other 
conditions remain the same then Theorem 11and Theorem 12 remain valid with “limsup” instead of “lim”. 
 
Theorem 13: Let 𝑓𝑓 be meromorphic and 𝑔𝑔 be entire functions such that 0 < 𝜆𝜆𝑓𝑓 ≤ 𝜌𝜌𝑓𝑓 < ∞, ∑ Θ(𝑎𝑎;𝑓𝑓)𝑎𝑎≠∞ = 2  and    
𝜌𝜌𝑔𝑔∗∗ < ∞. Then  

lim
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑇𝑇(𝑟𝑟𝐴𝐴 ,𝑃𝑃0[𝑓𝑓])

= 0, 

where A is any positive real number. 
 
Proof: In view of Lemma 1 and the inequality 𝑇𝑇(𝑟𝑟,𝑔𝑔) ≤ 𝑙𝑙𝑓𝑓𝑔𝑔+𝑀𝑀(𝑟𝑟,𝑔𝑔) we get for all sufficiently large values of𝑟𝑟 that,  

𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔) ≤ {1 + 𝑓𝑓(1)}𝑇𝑇(𝑀𝑀(𝑟𝑟,𝑔𝑔), 𝑓𝑓) 
 
                                                                 𝑖𝑖. 𝑒𝑒. , 𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟,𝑓𝑓𝑓𝑓𝑔𝑔) ≤ �𝜌𝜌𝑓𝑓 + 𝜀𝜀�𝑙𝑙𝑓𝑓𝑔𝑔𝑀𝑀(𝑟𝑟,𝑔𝑔) + 𝑂𝑂(1) 

                                              𝑖𝑖. 𝑒𝑒. , 𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔) ≤ �𝜌𝜌𝑓𝑓 + 𝜀𝜀��𝜌𝜌𝑔𝑔∗∗ + 𝜀𝜀�𝑙𝑙𝑓𝑓𝑔𝑔𝑟𝑟 + 𝑂𝑂(1).                                    (19)      
  

Again from the definition of 𝜆𝜆𝑃𝑃0[𝑓𝑓] we have for arbitrary positive 𝜀𝜀 and for all sufficiently large values of 𝑟𝑟,  
                𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟𝐴𝐴 ,𝑃𝑃0[𝑓𝑓]) ≥ 𝐴𝐴(𝜆𝜆𝑃𝑃0[𝑓𝑓] − 𝜀𝜀)𝑙𝑙𝑓𝑓𝑔𝑔𝑟𝑟 

  𝑖𝑖. 𝑒𝑒. ,𝑇𝑇(𝑟𝑟𝐴𝐴 ,𝑃𝑃0[𝑓𝑓]) ≥ 𝑟𝑟𝐴𝐴�𝜆𝜆𝑓𝑓−𝜀𝜀�.                                                                      (20) 
 
Therefore it follows from (19) and (20) for all sufficiently large values of 𝑟𝑟 that  

                                                           𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇 (𝑟𝑟 ,𝑓𝑓𝑓𝑓𝑔𝑔 )
𝑇𝑇�𝑟𝑟𝐴𝐴 ,𝑃𝑃0[𝑓𝑓]�

≤ �𝜌𝜌𝑓𝑓+𝜀𝜀��𝜌𝜌𝑔𝑔∗∗+𝜀𝜀�𝑙𝑙𝑓𝑓𝑔𝑔𝑟𝑟 +𝑂𝑂(1)

𝑟𝑟𝐴𝐴�𝜆𝜆𝑓𝑓−𝜀𝜀�
.                                                  (21) 

As 𝜆𝜆𝑓𝑓 > 0, the theorem follows from (21). 
 
Remark 14: If we take 0 < 𝜌𝜌𝑓𝑓 < ∞ or 0 < 𝜆𝜆𝑓𝑓 < ∞  instead of 0 < 𝜆𝜆𝑓𝑓 ≤ 𝜌𝜌𝑓𝑓 < ∞ in Theorem 13 and the other 
conditions remain the same, then in the line of Theorem 13 one can easily verify that  

liminf
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑇𝑇(𝑟𝑟𝐴𝐴 ,𝑃𝑃0[𝑓𝑓])

= 0. 

 
Remark 15: Also if we take 𝜆𝜆𝑔𝑔∗∗ < ∞ instead of 𝜌𝜌𝑔𝑔∗∗ < ∞  in Theorem 13 and the other conditions remain the same, 
then in the line of Theorem 13 one can easily verify that 

liminf
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑇𝑇(𝑟𝑟𝐴𝐴 ,𝑃𝑃0[𝑓𝑓])

= 0. 

 
Remark 16: The conclusion of Theorem 13, Remark 14 and Remark 15 can also deduced if we replace 
∑ Θ(𝑎𝑎;𝑓𝑓)𝑎𝑎≠∞ = 2 by   Θ(∞;𝑓𝑓) = ∑ 𝛿𝛿𝑝𝑝(𝑎𝑎; 𝑓𝑓) = 1𝑎𝑎≠∞  or 𝛿𝛿(∞; 𝑓𝑓) = ∑ 𝛿𝛿(𝑎𝑎; 𝑓𝑓) = 1𝑎𝑎≠∞  respectively. 
 
In the line of Theorem 13 and with the help of Lemma 10 we may state the following theorem without proof. 
 
Theorem 14: Let 𝑓𝑓 be meromorphic and 𝑔𝑔 be entire functions such that 0 < 𝜆𝜆𝑓𝑓 ≤ 𝜌𝜌𝑓𝑓 < ∞, ∑ 𝛿𝛿1(𝑎𝑎; 𝑓𝑓)𝑎𝑎∈ℂ∪{∞} = 4  and    
𝜌𝜌𝑔𝑔∗∗ < ∞. Then for any positive real number A,  

lim
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑇𝑇(𝑟𝑟𝐴𝐴 ,𝑀𝑀[𝑓𝑓])

= 0. 

 
Remark 17: If we take 0 < 𝜌𝜌𝑓𝑓 < ∞ or 0 < 𝜆𝜆𝑓𝑓 < ∞  instead of 0 < 𝜆𝜆𝑓𝑓 ≤ 𝜌𝜌𝑓𝑓 < ∞ in Theorem 14 and the other 
conditions remain the same, then in the line of Theorem 14 one can easily verify that  

liminf
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑇𝑇(𝑟𝑟𝐴𝐴 ,𝑀𝑀[𝑓𝑓])

= 0. 

 
Remark 18: Also if we take 𝜆𝜆𝑔𝑔∗∗ < ∞ instead of 𝜌𝜌𝑔𝑔∗∗ < ∞  in Theorem 14 and the other conditions remain the same, 
then in the line of Theorem 14 one can easily verify that 

liminf
𝑟𝑟→∞

𝑙𝑙𝑓𝑓𝑔𝑔𝑇𝑇(𝑟𝑟, 𝑓𝑓𝑓𝑓𝑔𝑔)
𝑇𝑇(𝑟𝑟𝐴𝐴 ,𝑀𝑀[𝑓𝑓])

= 0, 

where A is any real number. 
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