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ABSTRACT 
Conjugate Gradient (CG) methods, which we have investigated in this study, were widely used in optimization, 
especially for large scale optimization problems, because it does not need the storage of any matrix. In this paper, we 
have constructed a new combined CG-memoryless BFGS  algorithm. Our new proposed algorithm which is suitable for 
solving large scale optimization problem has been constructed by interleaving the modified CG-method due to Liu and 
Li (2012) with the standard memoryless BFGS update. Numerical results, showed that the new algorithm has been 
proved to be an effective algorithm in solving large scale optimization problems and gave us a very good numerical 
results and this algorithm always produce descent search directions and were shown to be globally convergent under 
some assumptions. 
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1. GENERAL INTRODUCTION 
 
Consider the unconstrained optimization problem defined by 
 
 Min )(xf  , ∈x nR                                                                                                                                           (1) 
 
where )(xf  is non-linear, continuous and differentiable whose gradient denoted by )(xg . The unconstrained 
optimization methods are iterative in character, this means that we can construct a finite or infinite sequence of a points 

kx , for k=0,1,…. which convergence to a solution ∗x  of the problem (1). The points of the sequence are related by 
linear recurrence equation  kkkk dxx α+=+1   where kd  is the search direction and kα  referred to as step-size, 
therefore the description of any line search method for solving unconstrained optimization problems consists in 
establishing a method of choosing the search direction kd  and step size kα .  It should be noted that the choice of the 
vector kd  determines the rate of convergence of the process and the choice of step-size kα  has an important influence 
on the amount of calculations at each iteration (Gill et al., 1981). In this paper our attention is focused on establishing a 
method for determining the search direction kd . For the computing kα  we consider an efficient strategy studied by 
Wolfe, see for example, (Gilbert and Nocedal, 1992) and (Wolfe, 1969, 1971), consisting of accepting a positive step 
length kα ,  if the objective function: 

   )(xf ∈  2C                                                    (2)
  
and the Hessian matrix   

)(2 xfG ∇=                                      (3)
  

is available and symmetric, positive definite, then ideal choice for kd  is the Newton direction (Fletcher, 1993) given 
by:  
          1

1
1 +

−
+ −= kkk gGd                                                                                                                                       (4) 
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Newton's method has superior convergence properties if the starting point is near the solution. However, the method is 
not guaranteed to converge to the solution if we start a way from it (Edwin and Stanislaw, 2001). Another type of line 
search descent methods for solving problem (1) are the Quasi-Newton (QN) methods, they avoid costly computations 
of Hessian matrices and perform well in the practice, several kinds of them have been proposed, but since the 1970 's 
the BFGS method become more and more popular and today it is accepted as the best QN-method which defines the 
search directions as:     
 
          11 ++ −= kk Hd 1+kg                                                                                                                                        (5) 
where 1+kH  symmetric and positive definite defined by:    
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−= ××+1                                                                                                 (6) 

 
where  kkk ggy −= +1   and   kkk xxs −= +1 , often oH   is taken as an identity matrix, for more details on BFGS see 
(Kinsella, 2008). In spite of these desirable properties of BFGS, (Walter, 2004) show that the BFGS method and other 
methods in the Broyden class with exact line searches (ELS) may fail for non-convex objective functions. The other 
drawback for QN-methods are dealing with nn×  matrix. CG-methods are very useful for solving (1) especially when 
n is large. In the CG methods the search directions are defined as:  
 
           00 gd −=                      0=k      
          kkkk dgd β+−= ++ 11        0≥k                                                                                                                      (7) 
 
were kβ  is a scalar. The best known formulas for kβ , see for example, (Yabe, 2004) and (Zhang, 2009) are called 
Fletcher-Reeves (FR), Polack-Ribiere (PR),  Hestenes-Stiefel (HS), Dai-Liao (DL): 
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were t ),0[ ∞∈ . If the objective function is quadratic and step-size exact i.e. 
 
          01 =+ k

T
k dg                                                                                                                                                         (12) 

 
All these methods are equivalent, yet, they are different performance on non-quadratic functions. The methods 
mentioned earlier (Newton, QN and CG) are called conjugate direction methods since they are generate conjugate 
directions i.e.  
 
          Ad T

i  0=jd  ∀  ji ≠                                                                                (13)                                                                                                      
where A is nn×  symmetric and positive definite matrix. Furthermore, these methods generates descent directions i.e.  
           0<k

T
k dg ,    ∀  k                                                                                                                                               (14) 

 
the conjugacy condition given in (13) can be replaced  to the following equation: 
         0yd 1k

T
k =−                                                                                                                                                           (15) 

 
which is called pure conjugacy condition. (Dai and Liao, 2004) show that if kα  is not exact the condition in (15) is 
written as  
          k

T
kk

T
k sgtyd 11 +− −=                                                                                                                                (16)         

where t is positive scalar. Therefore the conjugacy condition (16) is more suitable for inexact line searches (ILS). Dai 
and Liao proved, for any symmetric and positive definite matrix kH  the secant equation can be written as:   
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we see from conjugacy condition (16) and secant equation (17) a close relationship  between them, we use this relation 
to define a new  scaled CG method. Besides of CG-methods the following gradient type methods:  
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have also been studied extensively by many authors. Here  kθ  and kβ  are two parameters. If 1=kθ   ∀ k  , then (18) 
becomes the Perry-CG method defined by:  
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and  for any scalar kθ   ( for example 
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and is called the spectral CG-method (Birgin and Martinez, 2001) or scaled CG-method  (Andrei, 2007). 
 
1.1 INTRODUCTION TO QN-METHODS 
 
BFGS QN-method has a reliable and efficient performance in solving optimization problems for the unconstrained 
minimization of a smooth nonlinear function RRf n →: . However, the need to store an n x n approximate Hessian 
has limited their application to problems with a small to medium number of variables. For large n it is necessary to use 
methods that do not require the storage of a full n by n matrix. Sparse QN-updates can be applied if the Hessian has a 
significant number of zero entries, see for example, (Powell and Toint, 1979) and (Fletcher, 1995). In nonlinearly 
constrained optimization, other methods must be used. Such methods include CG-methods, limited-memory (LM) and 
QN methods, and LM reduced-Hessian QN methods (Gill and Michael., 2000). 
 
1.2 VARIABLE METRIC (VM) METHODS 
 
We have seen that in order to obtain a super linearly convergent method. How can we do this without actually 
evaluating the Hessian matrix at every iteration? The answer was discovered by Dixon, and was subsequently 
developed and popularized by (Fletcher and Powell, 1963). It consists of starting with any approximation to the 
Hessian matrix, and at each iteration, update this matrix by incorporating the curvature of the problem measured along 
the step. If this update is done appropriately, one obtains some remarkably robust and efficient methods, called 
Variable Metric (VM) methods. They revolutionized nonlinear optimization by providing an alternative to Newton's 
method, which is too costly for many applications. There are many VM-methods, but since 1970, the BFGS method has 
been generally considered to be the most effective. The BFGS method is a line search method. At the thk −  iteration, 
a symmetric and positive definite matrix kB  is given, and a search direction is computed by:  

             kkk gBd 1−−=                                                                                                                                                   (21) 
 
The next iterate is Given by: 
         kkkk dxx λ+=+1                                                                                                                                                (22) 

where the step-size kλ  satisfies Wolfe's line search conditions:  

 k
T
kkkkkk dgxfdxf λσλ 1)()( +≤+                                                                                                        (23) 

 

 ( ) k
T
kk

T
kkk dgddxg 2σλ ≥+                                                                                                                      (24) 

where 10 21 <<< σσ  
 
It has been found that it is best to implement BFGS with a very loose line search: typical values for parameters in (23), 
(24) are 4

1 10−=σ  and 9.02 =α . The Hessian approximation is updated by: 
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A global convergence result for the BFGS method can be obtained by careful consideration of these eigen value shifts. 
This done by (Powell, 1976) who uses the trace and the determinant to measure the effect of the two rank-one 
corrections on kB . He is able to show that if f is convex, then for any positive definite starting matrix 1B  and any 

starting point 1x , the BFGS method gives lim inf 0=kg . If in addition the sequence { }kx  converges to a solution 
point at which the Hessian matrix is positive definite, then the rate of convergence is super-linear. This analysis has 
been extended by (Byrd, et al., 1987) to the restricted Broyden class of QN-methods in which (25) is replaced by:  
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where:  
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The choice 0=φ  gives rise to the BFGS update, whereas 1=φ defines the DFP method, the first VM-method 
proposed by Davidon, Fletcher and Powell. (Byrd et al., 1987) prove the global and super-linear convergence on 
convex problems, for all methods in the restricted Broyden class, except for DFP. Their approach breaks down when 

1=φ , and leaves that case unresolved. Indeed the following question has remained unanswered since 1976, when 
Powell published his study on the BFGS method (Nocedal, 1991). 
 
1.2 LIMITED MEMORY BFGS METHOD FOR CONVEX FUNCTIONS 
 
QN-methods are a class of numerical methods that are similar to Newton's method except that the inverse of Hessian 

1))(( −
kxG  is replaced by a n by n symmetric matrix kH , which satisfies the QN-condition, see (June and Abu 

Hassan, 2005): 
            11 −− = kkk syH ,                                                                                                                                                 (28) 
where 
            11-k1111 y                  , −−−−− −==−= kkkkkkk ggdxxs λ                                                                        (29) 
 
The step-size 01 >−kλ . Assuming kH  nonsingular, we define 1−= kk HB . It is easy to see that the QN step: 
 
 kkk gHd −=                                                                                                                                                  (30) 
 
Is a stationary point of the following problem:   

                  dBdgdxfd k
T

k
T

kkRd n
2
1)()(min ++=

∈
φ                                                                                                       (31) 

which is an approximation to problem )(min xfnRx∈  near the current iterate kx  , since )()( dxfd kk +≈φ  for 

small d . In fact, the definition of )(dkφ in (31) implies that 
 
 )()0(),()0( kkkk xgxf =∇= φφ                                                                                                               (32) 
 
and the QN-condition (28) is equivalent to: 
 
 ).()( 11 −− =−∇ kkkk xgxxφ                                                                                                                          (33) 
 
Thus, )( kk xx −φ  is a quadratic interpolation of )(xf  at kx  and 1−kx , satisfying conditions (31)-(32). The matrix 

kB  (or kH ) can be updated so that the QN-condition is satisfied. One well known update formula is the BFGS 

formula which updates 1−kB  from kB , ks  and ky  in the following way: 
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The approximate function )(dkφ  in (31) is required to satisfy the interpolation condition: 

 )()( 11 −− =− kkkk xfxxφ                                                                                                                               (35) 
 
instead of (33). This change was inspired from the fact that for one-dimensional problem, using (35) gives a slightly 
faster local convergence if we assume 1=kλ  for all k . Equation (35) can be rewritten as:  

 [ ]k
T
kkkkk

T
k gsxfxfsBs 1111 )()(2 −−−− +−= .                                                                                             (36) 

 
In order to satisfy (36), the BFGS formula is modified as follows: 
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If 1+kH  is the inverse of 1+kB , then 
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with  
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=α                                                                                                                                                           (40) 

 
Assume that kB  is positive definite and that 0>k

T
k ys , 1+kB  definite by (37) is positive definite if and only if 

0>kt . The inequality 0>kt  is trivial if f  is strictly convex, and it is also true if the step-length kλ  is chosen by 

an exact line search, which requires 01 =+k
T
k gs . For a uniformly convex function, it can be easily shown that there 

exists a constant 0>δ  such that [ ]2,δ∈kt  for all k , and consequently global convergence proof of the BFGS 

method for convex functions with inexact line searches. However, for a general nonlinear function f , inexact line 

searches do not imply the positively of kt , hence (Yuan, 1991) truncated kt  to the interval [0.01,100], and showed that 

the global convergence of the modified BFGS algorithm is preserved for convex functions. If the objective function f  

is cubic along the line segment between 1−kx  and kx  then we have the following relation 
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By considering the Hermit interpolation on the line between 1−kx  and kx . Hence it is reasonable to require that the 
new approximate Hessian satisfies condition: 
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Instead of (18). (Biggs, 1993) gives the update of (39) with the value kt  chosen so that (42) holds. The respected value 

of kt  is given by 
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For one-dimensional problems, it is well known that the convergence rate of secant method is ( ) 2/51+  which is 
approximately 1.618 and less than 2. The limited memory BFGS method is described by (Nocedal, 1980), where it is 
called the SQN method. The user specifies the number m of BFGS corrections that are to be kept, and provides a sparse 
symmetric and positive definite matrix 0H , which approximates the inverse Hessian of f . During the first m 

iterations the method is identical to the BFGS method. For mk > , kH is obtained by applying m BFGS updates to 

0H  using information from the m previous iterations. The method uses the inverse BFGS formula in the form (see 
Biggs, 1973). 
 
            ,1

T
kkkkk

T
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1.3  LIMITED MEMORY BFGS METHOD FOR NON-CONVEX FUNCTIONS 
 
All the results for the BFGS method discussed so far depend on the assumption that the objective function f  is 
convex. At present, few results are available for the case in which f  is a more general nonlinear function. Even 
though the numerical experience of many years suggests that the BFGS method always converges to a solution point, 
this has not been proved. Consider the BFGS method with a line search satisfying the Wolfe conditions (23) and (24). 
Assume that f  is twice continuously differentiable and bounded below. Do the iterates satisfy lim inf 0=kg , for 

any starting point 1x  and any positive definite starting matrix 1B ? It is remarkable that the answer to this question has 
not yet been found. Nobody has been able to construct an example in which the BFGS method fails, and the most 
general result available now. 
 
1.4 OUTLINE OF THE LIMITED MEMORY BFGS ALGORITHM 
 
Step 1: Choose, and initial matrix IH =0 . Set 0=k . 
 
Step 2: Compute:      
                  kkk gHd −=  

                 kkkk dxx λ+=+1 .                                                            
 
Step 3: Let { }1,min −= mkm .  

            Update 0H  for 1+m  times by using the pairs { }k
mkjii sy −=, , i.e. let 

    1 0 k-m 1 1

k-m 1 2 1 1 2 k

( ... ) ( ... ) ( ... ) ( ... )
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Step 4: If ε<+1kg  then stop, otherwise, set k = k+1 and go to Step (2). 
 
2.  LIU-LI MODIFIED PRCG-METHOD 
 
In (Liu and Li, 2012), a class of new CG-method with variable parameters is proposed to solve unconstrained 
optimization problems on the base of PRCG-method. Under the strong Wolfe line searches, they proved the global 
convergence of their new method without the given sufficient descent condition. Many numerical experiments show 
that their new method was efficient. Recently, Liu and Li in (2012) had modified PRCG-method with the following 
hybrid technique and as follows: 
 







≥+−

=−
=

− ,1      ,

,0                          ,

1

0

kifdg
kifg

d
k

MPR
kk

k β
                                                                                                                    (46)     



*Prof. Abbas Y. Al-Bayati & **Khalil  Kh. Abbo / A NEW COMBINED CONJUGATE GRADIENT-MEMORYLESS BFGS ALGORITHM… / 
IJMA- 3(7), July-2012, Page: 2765-2776 

© 2012, IJMA. All Rights Reserved                                                                                                                                                   2771 

where MPR
kβ  is defined by: 
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2.1 A NEW COMBINED CG-MEMORYLESS BFGS METHOD 
 
In this section, we have constructed a new combined CG-memoryless BFGS algorithm. The purpose of this 
construction is to find a new CG-type methods suitable for solving large scale optimization problems under special 
conditions. 
 
2.2 OUTLINE OF THE NEW PROPOSEDCOMBINED ALGORITHM 
 
Step 1:  Choose 0x  as initial point; 00 =H ; let 00 >ε . 
 
Step 2:  Put k=0, repeat. 
 

Step 3:  Compute   
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and  set  kkkk dxx λ+=+1 ; where kλ  satisfies Wolfe conditions (23),(24). 
 

Step 4:   If Powell restarting criterion is satisfied, i.e.  k
T
kk ggg 1

2 2.0 −≥ , then compute the next iteration step by 

a memoryless BFGS direction.  
 
Step 5:  Compute 1+kH  of the BFGS update  in a vector from by considering: 
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And the matrix 1+kH  must be computed by a memoryless BFGS update: 
 

             1 3 0 3 k -3 2 3 3 2

k-2 1 2 2 1 k

( ... ) ( ... ) ( ... ) ( ... )

         ( ... ) ( ... )
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Step 6:  If ε<kg  then stop, otherwise, put k = k+1 and Go to Step (3). 
 
2.3 CONVERGENCE ANALYSIS 
 
It is clear that the new proposed algorithm is a hybrid or combined algorithm from two well-known conjugate direction 
methods. The convergence property of the BFGS update had been proved by many authors, see for example (Biggs, 
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1973), while the convergence properties of the modified PRCG method had been proved by (Liu and Li, 2012). So 
since exactly these search directions are used in our new proposed algorithm, this implies that the new algorithm 
satisfies the global convergence property.  

 
3.  NUMERICAL RESULTS 
 
The main work of this section is to report the performance of the new proposed combined CG-memoryless BFGS 
method on a set of (35) test problems. The codes are written in Fortran and in double precision arithmetic. All the tests 
are performed on a PC. Our experiments are performed on the selected set of nonlinear unconstrained problems that 
have second derivatives available. These test problems are contributed in CUTE (Bongartiz et al.,1995) and their 
details are given in the Appendix. For each test function we have considered 10 numerical experiments with number of 
variables n = 100, …, 1000.  In order to assess the reliability of our new proposed methods, we have tested it against the 
new modified PRCG method introduced recently by (Liu and Li, 2012) using the same test problems. All these 
methods terminate when the following stopping criterion is met: 
 
If   ( )10,10(max 0

106
∞

−−

∞
< ggk                                                                                                                   (48) 

 
We also force these routines stopped if the iterations exceed 1000 or the number of function evaluations reach 2000 
without achieving convergence. We use δ=10−4, σ=0.1 in the Wolfe line search routine. Table (3.1) and Table (3.2) 
compare some numerical results for the new method against Liu-Li PRCG-method; these tables indicates for (n) as a 
dimension of the problem; (NOI)  number of iterations; (NOFG) number of function and gradient evaluations; (IRS)  
number of restarts, i.e., number of used BFGS-updates; (LS) number of line searches used to complete the process and 
(TIME) the total time required to complete the evaluation process for each test problem.  
 
From Table 3.1 it is clear that the new proposed combined CG-memoryless BFGS algorithm is very effective and 
robust compared with the new modified PRCG algorithm introduced by (Liu and Li, 2012) using u= ρ =0.25. Namely, 
out of (35) cases it is clear from our table that the new method beats  Liu-Li method in (32) cases while the other three 
cases are approximately comparable. This means that there was an improvement of (91.5)% in both NOI and NOFG 
Tools. 
 
 Table (3.2) presents our numerical results for the two algorithms according to different Tools. Here Liu-Li algorithm 
implemented with ρ =1.0 and u=0.2. From Table (3.2) we have found that the new proposed algorithm beats Liu-Li 
algorithm in about  ( 51 )%  NOI; ( 82 )% IRS ; ( 82 )% NOFG; ( 33 )%LS and ( 72  )%TIME.  
 
However, from these two tables we have concluded that the new proposed algorithm will be recommended for the 
purpose of the numerical implementations. 
 

Table (3.1) 
Comparison between  the UNew CombinedU and  ULiu-Li (2012)U methods for the total of (35) test problems with ten 

dimensions n= 100, 200, … ,1000 
 

Prob. 
Liu -Li (2012) 

 
NOI/NOFG/TIME 

New Combined 
 

NOI/NOFG/TIME 

1 345     587     0.16 596    972     0.37 

2 486    985      0.05 336    800     0.05 

3 388    856      0.05 325    777     0.05 

4 173    353      0.03 117    242     0.02 

5 267   3578      0.20 100    322     0.00 

6 40     90      0.00 30     90      0.00 

7 116    229      0.01 84    195      0.00 

8 227   3174      0.86 58    126      0.05 

9 521    835      0.06 515    831     0.07 

10 40     80       0.02 30     80      0.02 

11 40     90       0.06 30     90      0.03 
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12 164    277      0.01 70    160      0.01 

13 71    152      0.03 70    160      0.02 

14 827   1568      0.08 714   1373     0.15 

15 627    989      0.07 366    620     0.08 

16 801   2012      0.09 607   1456     0.08 

17 2196  2449      0.31 182    327     0.05 

18 276    533      0.05 342    669     0.05 

19 1047  32206     1.29 126   1713     0.08 

20 544   5984      0.50 379   1054     0.33 

21 20     50      0.00 4     38       0.01 

22 2421   4721     0.43 414   2068     0.11 

23 2117   3227     0.18 44    124      0.02 

24 127    253      0.01 85    176      0.02 

25 64     138      0.00 50    130      0.00 

26 67     134      0.01 59    138      0.01 

27 109    189      0.01 118    217     0.03 

28 139    249      0.01 139    267    0.05 

29 366    619      0.06 370    619    0.05 

30 149    394      0.05 150    441    0.03 

31 326    573      0.03 157    337    0.02 

32 40     90      0.00 30     90     0.01 

33 102    355      0.04 104    379    0.05 

34 70     150      0.00 40    110     0.00 

35 214    377      0.03 153    304    0.03 

      
Table (3.2): 

Comparison between  the New Combined and  Liu-Li (2012)

Prob. 

 methods for the total of (35) test problems 
according to different Tools 

 

Liu-Li-(2012) 
 

NOI/IRS/NOFG/LS/TIME 

New Combined 
 

NOI/IRS/NOFG/LS/TIME 

1 347/194/596/213/0.13 596/190/972/336/0.23 
2 433/211/907/338/0.01 336/106/800/311/0.04 
3 384/201/813/324/0.03 325/81/777/286/0.04 
4 169/92/347/158/0.02 117/23/242/101/0.02 
5 432/374/9223/392/0.23 100/24/322/109/0.00 
6 40/40/90/40/0.00 30/0/90/40/0.02 
7 116/61/229/103/0.01 84/13/195/91/0.02 
8 210/153/2420/150/0.92 58/0/126/48/0.04 
9 522/206/818/277/0.05 515/164/831/287/0.06 
10 40/20/80/30/0.00 30/0/80/30/0.02 
11 40/40/90/40/0.01 30/0/90/40/0.03 
12 174/96/290/106/0.02 70/11/160/70/0.02 
13 133/115/2125/133/0.39 70/10/160/70/0.03 
14 829/273/1562/721/0.05 714/215/1373/636/0.06 
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15 595/579/950/329/0.08 366/268/620/216/0.08 
16 786/470/1748/726/0.05 607/236/1456/563/0.06 
17 4170/4143/4409/77/0.63 182/10/327/63/0.06 
18 280/109/545/244/0.02 342/85/669/306/0.02 
19 1946/1923/62521/1946/1.86 126/19/1713/131/0.03 
20 440/233/2239/419/0.23 379/141/1054/367/0.17 
21 20/20/50/20/0.00 4/0/38/14/0.00 
22 407/167/1308/228/0.05 414/116/2068/257/0.06 
23 113/79/763/95/0.03 44/12/124/41/0.01 
24 127/71/256/107/0.02 85/5/176/69/0.02 
25 64/10/138/64/0.00 50/0/130/60/0.00 
26 67/45/134/57/0.02 59/14/138/59/0.00 
27 109/103/189/70/0.01 118/11/217/79/0.02 
28 139/130/249/100/0.02 139/12/267/106/0.03 
29 379/136/641/232/0.02 370/122/619/209/0.04 
30 149/149/394/149/0.01 150/0/441/159/0.04 
31 323/168/568/215/0.00 157/27/337/139/0.01 
32 40/40/90/40/0.01 30/0/90/40/0.02 
33 113/54/371/07/0.04 104/18/379/100/0.04 
34 70/50/150/70/0.00 40/0/110/50/0.02 
35 210/182/371/151/0.03 153/12/304/131/0.02 

Total 14416/10937/97674/8371/5.0 6994/1945/17495/5614/1.38 

 
 
4. CONCLUSIONS 
 
We have presented a combined CG-Memoryless BFGS method which it is assumed to be an accelerations scheme for 
(Liu and Li, 2012) PRCG-method. The acceleration scheme is simple and proved to be robust in numerical 
experiments. For general functions the convergence of the method is coming Section 2.3 and the restart procedure. 
Therefore, if the Powell restart criterion is used, for general functions f  bounded from below with bounded second 
partial derivatives and bounded level set, we have proved that the iterates converge to a point *x . Under certain 
conditions we have proved that the new method has globally convergent property. For uniformly convex functions the 
reduction in the function values is significantly improved for a set of (35) test unconstrained optimization problems. 
 
5. APPENDIX 
 
The details of the test functions, used in this paper, can be found in Cute. The numbers (1-35) in  our tables  indicate to: 
 
(1)-Extended Trigonometric Function. 
(2)-Extended Rosenbrock Function 
(3)-Extended White &amp; Holst function 
(4)-Extended Beale Function  U63 (Matrix Rom) Function. 
(5)-Extended Penalty Function.  
(6)-Raydan 2  Function. 
(7)-Generalized Tridiagonal-2 Function.  
(8)-Diagonal4 Function. 
(9)-Diagonal5 Function.                                       
(10)-Extended Himmelblau Function. 
(11)-Extended PSC1 Function.  
(12)-Extended Block Diagonal. BD1 Function. 
(13)-Extended Cliff Function. 
(14)-Quadratic Diagonal Perturbed Function. 
(15)-Quadratic Function QF1 Function. 
(16)-Extended Quadratic Penalty QP1 Function. 
(17)-Extended Quadratic Penalty QP2 Function.          
(18)-Extended Tri-diagonal  2 Function. 
(19)-DQDRTIC Function. 
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(20)-DIXMAANA (CUTE)-Function.  
(21)-DIXMAANC (CUTE)-Function.  
(22)-DIXMAANE  (CUTE) Function. 
(23)-Almost Perturbed Quadratic Function. 
(24)-Tri-diagonal Perturbed Quadratic Function. 
(25)-LIARWHD (CUTE) Function. 
(26)-DIXMAANF (CUTE) Function. 
(27)-DIXMAANG  (CUTE) Function. 
(28)-DIXMAANI  (CUTE) Function. 
(29)-ENGVAL1 (CUTE) Function. 
(30)-VARDIM (CUTE) 
(31)-LIARWHD (CUTE) 
(32)-DIAGONAL 6 
(33)-COSINE (CUTE) 
(34)-DENSCHNB (CUTE) 
(35)-DENSCHNF (CUTE) 
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