International Journal of Mathematical Archive-3(7), 2012, 2735-2738 MA Available online through <u>www.ijma.info</u> ISSN 2229 - 5046

ON THE ADDITIVE AND MULTIPLICATIVE STRUCTURE OF SEMIRINGS

Y. Monikarchana^{1*} & B. V. Swarnalathamma²

¹Assistant Professor, Sree Vidyanikethan Engineering College, A. Rangampet, Tirupati, India ²Associate Professor & HOD, J. B. Institute of Engg. & Technology, Moinabad, Hyderabad, India

(Received on: 06-07-12; Accepted on: 25-07-12)

ABSTRACT

Let $(S, +, \bullet)$ be a semiring and $(S, +, \bullet, \leq)$ be a totally ordered semiring (t.o.s.r.). In this paper, we study the structure of semirings which are positive rational domains. It is established that in a PRD semiring $(S, +, \bullet)$, the set of additive idempotents is a completely prime multiplicative Ideal and (S, +) is a commutative semigroup if (S, +) is cancellative. We also study the structure of totally ordered semirings.

Keywords: Non-negatively ordered; Non-positively ordered; Positively totally ordered; Negatively totally ordered; IMP.

2000 Mathematics Subject Classification: 20M10, 16Y60.

INTRODUCTION

A triple $(S, +, \bullet)$ is called a semiring if (S, +) is a semigroup; (S, \bullet) is a semigroup; a(b + c) = ab + ac and (b + c)a = ba + ca for every a, b, c in S. A semiring $(S, +, \bullet)$ is said to be totally ordered if there exists a full ordering on S under which (S, +) and (S, \bullet) are totally ordered semigroups. A totally ordered (t.o.) semigroup (S, \bullet) is non – negatively (non -positively) ordered if $x^2 \ge x$ ($x^2 \le x$) for every x in S; (S, \bullet) is positively ordered in strict sense (negatively ordered in strict sense) if $xy \ge x$ and $xy \ge y(xy \le x$ and $xy \le y$) for every x, y in S. E[+] denotes the set of all additive idempotents. A semiring $(S, +, \bullet)$ is said to be a positive rational domain (PRD) if and only if (S, \bullet) is an abelian group. Zeroid of a semiring $(S, +, \bullet)$ is the set of all x in S such that x + y = y or y + x = y for some y in S. We may also term this as the zeroid of (S, +). In this paper we investigate some important properties of semirings and totally ordered semirings with IMP.

Theorem 1: Let $(S, +, \bullet)$ be a t.o. PRD and $x \notin x+S$ and $x \notin S+x$ for every $x \in S$. Then (S, +) is positively ordered in strict sense or negatively ordered in the strict sense.

Proof: Since PRD contains multiplicative identity and using proposition 1[2], (S, +) is either non-negatively ordered or non-positively ordered.

Suppose (S, +) is non-negatively ordered

If x + y < x for some y in S, then $x + 2y \le x + y$

Also $y \ge 2y \Longrightarrow x + y \ge x + 2y$

 $\therefore x + y = x + 2y$ $\therefore x + y = x + 2y \in x + y + S$, which is contradiction.

Similarly we can prove that (S, +) is negatively ordered in the strict sense if (S, +) is non-positively ordered.

Theorem 2: Let $(S, +, \bullet)$ be a PRD and (S, +) be cancellative. Then |E[+]| = 0 if |S| > 1. Proof: Since (S, +) is cancellative, it has at most one idempotent

i.e., additive identity

Corresponding author: Y. Monikarchana^{1*} ¹Assistant Professor, Sree Vidyanikethan Engineering College, A. Rangampet, Tirupati, India

Y. Monikarchana^{1*} & B. V. Swarnalathamma² / ON THE ADDITIVE AND MULTIPLICATIVE STRUCTURE OF SEMIRINGS / IJMA- 3(7), July-2012, Page: 2735-2738

Suppose S has the additive identity 0.

Now 0 + 0 = 0 $\Rightarrow (0 + 0).x = 0.x$ for all $x \in S$. $\Rightarrow 0.x + 0.x = 0.x$ $\Rightarrow 0.(x + x) = 0.x$ $\Rightarrow x + x = x$ (since (S, •) is cancellative) $\Rightarrow x = 0$ $\Rightarrow |S| = 1$, which is a contradiction. $\therefore |E[+]| = 0$.

Theorem 3: If |S| > 1 and $(S, +, \bullet)$ is a t.o. PRD in which (S, +) is cancellative, then one of the following is true.

- (i) (S, +) is positively ordered in the strict sense.
- (ii) (S, +) is negatively ordered in the strict sense.

Proof: Using Theorem 2, E $[+] = \phi$.

Also x + x < x or x + x > x for every x in S using proposition 1[2].

Then by proposition 6[1], (i) and (ii) are the two possibilities.

Theorem 4: Let $a \in A^+$ in a t.o. PRD. Then the following are true.

- (i) If $a \in E[+]$, then a is a maximal element as well as multiplicative zero.
- (ii) If S contains a maximal element 0, then na = 0 if (S,+) is non-negatively ordered.

Proof:

(i) If possible let a < y. since $a \in A^+$, there exists a natural number n such that $na \ge y$.

Since $a \in E$ [+], $a = na \ge y$, which is a contradiction. Thus a is a maximal element. Since A⁺ and E [+] are multiplicative ideals, ax and xa are maximal elements.

Thus a = ax = xa for every x in S.

(ii) If a < 0, then $na \ge 0$ for some natural number n, since (S, +) is non-negatively ordered. But $0 \ge na$ as 0 is the maximal element.

This implies na = 0.

Proposition 5: If $E[+] \neq \phi$ in a PRD (S, +, •), then E[+] is completely prime multiplicative ideal.

Proof: Let $x \in E$ [+]. Then x = x + x.

If $y \in S$, consider xy = (x + x) y = xy + xy

 \therefore xy \in E [+]

Similarly, $yx \in E[+]$

 \therefore E[+] is multiplicative ideal.

To show that E[+] is completely prime ideal.

Let $xy \in E[+]$. Now, xy = xy + xy = (x + x) $y \Rightarrow x = x + x$, since (S, •) is a group, cancellation laws holds good. $\Rightarrow x \in E[+]$

Also $xy = xy + xy = x (y + y) \Rightarrow y = y + y$ (using left cancellation law)

 \Rightarrow y = y + y \Rightarrow y \in E[+] either x \in E[+] or y \in E[+].

Y. Monikarchana^{1*} & B. V. Swarnalathamma² / ON THE ADDITIVE AND MULTIPLICATIVE STRUCTURE OF SEMIRINGS / IJMA- 3(7), July-2012, Page: 2735-2738

Theorem 6: Let $(S, +, \bullet)$ be a PRD. Then (S, +) is a band if E $[+] \neq \phi$. In particular if S contains an additive identity.

Proof: If $x \in E$ [+], then for any y in S xy = (x + x) y = xy + xy = x (y + y) \Rightarrow y = y + y (Since (S, •) is a group) yx = y (x + x) = yx + yx = (y + y) x \Rightarrow y = y + y

i.e., $y \in E[+]$ $\therefore S \subseteq E[+]$.But $E[+] \subseteq S$. $\therefore S = E[+]$

Since $0 \in S$ such that $0 + 0 = 0 \in E[+]$

Now $0 + 0 = 0 \Longrightarrow 0.1 + 0.1 = 0.1 \Longrightarrow 0(1 + 1) = 0.1 \Longrightarrow 1 + 1 = 1$

(Since (S, •) is cancellative)

If $x \in S$, then x. $(1 + 1) = x \cdot 1 \Longrightarrow x + x = x$.

Theorem 7: Let $(S, +, \bullet)$ be a PRD and $x \in Z$, where Z is the zeroid of $(S, +, \bullet)$. Then there exists an element s in S such that 1 + s = s or there exists an element $p \in S$ such that p + 1 = p for some $p \in S$.

Proof: Suppose $x \in Z$. Then $\exists y \in S$ such that

 $\mathbf{x} + \mathbf{y} = \mathbf{y} \text{ or } \mathbf{y} + \mathbf{x} = \mathbf{y}.$

Suppose x + y = y

 $\Rightarrow x^{-1}(x + y) = x^{-1}y$ $\Rightarrow x^{-1}x + x^{-1}y = x^{-1}y$ $\Rightarrow 1 + x^{-1}y = x^{-1}y$

i.e., 1 + s = s where $s = x^{-1}y \in S$

Suppose y + x = y

 $\begin{aligned} x^{-1}(y+x) &= x^{-1}y \\ \Rightarrow x^{-1}y + x^{-1}x &= x^{-1}y \\ \Rightarrow x^{-1}y + 1 &= x^{-1}y \end{aligned}$

i.e., p + 1 = p where $p = x^{-1}y$

Theorem 8: Let $(S, +, \bullet)$ be a PRD. If $(S, +, \bullet)$ is cancellative, then (S, +) is commutative.

Proof: Since $(S, +, \bullet)$ is a PRD, S contains multiplicative identity.

Now x + y + x + y = (x + y) (1+1)= x + x + y + y

Since (S, +) is cancellative

 $\mathbf{y} + \mathbf{x} = \mathbf{x} + \mathbf{y}.$

Theorem 9: Let $(S, +, \bullet)$ be a PRD satisfying ab = a + b + ab for all $a, b \in S$. If (S, +) is left cancellative, then (S, +) is commutative.

Proof: By hypothesis ab = a + b + abba = b + a + ba

Since (S, \bullet) is commutative, ab = ba.

Therefore, a + b + ab = b + a + ba

© 2012, IJMA. All Rights Reserved

Y. Monikarchana^{1*} & B. V. Swarnalathamma² / ON THE ADDITIVE AND MULTIPLICATIVE STRUCTURE OF SEMIRINGS / IJMA- 3(7), July-2012, Page: 2735-2738

Since (S, +) is left cancellative, a + b = b + a.

Theorem 10: If $(S, +, \bullet)$ is a PRD and (S, \bullet) is rectangular band, then S reduces to a singleton set.

Proof: Suppose (S, •) is a rectangular band

x = x(x)x

 $\mathbf{x} = \mathbf{x}^3$

i.e
$$x^2 = x^4$$

Also $x = x(x^2)x$

$$\Rightarrow x = x^4$$

Therefore $\mathbf{x} = \mathbf{x}^2$

i.e (S, \bullet) is a band.

Since $(S, +, \bullet)$ is a PRD (S, \bullet) is a group. Therefore the identity is the only multiplicative idempotents in S.

Hence S reduces to a singleton set.

REFERENCES

[1] M. Satyanarayana and C. Srihari Nagore: "Integrally Ordered Semigroups" Semigroup Forum, Vol.17 (1979), 101-111.

[2] M. Satyanarayana, "On the Additive Semigroup of Ordered Semirings", Semigroup Forum Vol.31 (1985), 193-199.

[3] M. Satyanarayana, "On the Additive Semigroup Structure of Semirings", Semigroup Forum, Vol.23 (1981), 7-14.

[4] [4] M. Satyanarayana, "Positively ordered semigroups", Lecture notes in Pure and Applied Mathematics, Marcel Dekker, Inc., Vol.42 (1979).

Source of support: Nil, Conflict of interest: None Declared