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ABSTRACT 
We discuss on a topological question in complex valued metric spaces, namely metrizability. We prove that every 
complex valued metric space is metrizable and hence complex valued metric spaces are not real generalizations of 
metric spaces. We also show that some of the fixed point theorems recently generalized to complex valued metric 
spaces are consequences of their counter parts in the setting of metric spaces and hence are redundant. 
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1. INTRODUCTION 
 
A.  Azam, B. Fisher and M. Khan [5] introduced the concept of a complex valued metric space and obtained a common 
fixed point result for a pair of mappings satisfying a certain contractive condition. Also, in [6] and [7] some fixed point 
results are obtained in such spaces.  
 
In [1], [2], [3], [4], [8], [9], [11], [15], [16] and [18] the authors suggested that some generalizations of fixed point 
results which appeared recently are not real generalizations. However, in [19] the authors have reported some flaws on 
the paper [4]. Inspired by these research works, we investigated the fixed point results given in [5] – [7] and obtained 
that some of these results are straight forward generalizations of the corresponding results for (real valued) metric 
spaces and hence are redundant.  Parts of our results are adopted from the results in [3]. 
 
In this paper we also investigate a topological property of complex valued metric spaces, namely metrizability. We 
prove that every complex valued metric space is metrizable and hence complex valued metric spaces are not a real 
generalization of metric spaces.  But the “equivalent” metric may not satisfy the same contractive condition as the 
complex valued metric. In fact, two equivalent metrics on X do not satisfy the same contractive conditions, in general. 
Even then, most fixed point results obtained using a complex valued metric can be considered as consequences of 
corresponding results obtained by an appropriately defined equivalent metric. 
 
We first review some notions and notations given in [5] and [14]. 
 
Definition 1.1: Let ℂ be the set of complex numbers and let z, w ∈ ℂ.  
 
Define a partial order ≤ on ℂ by z ≤w if and only if Re (z) ≤ Re (w) and Im (z) ≤ Im(w). 
 
Notation: We write z < w if z ≤ w and z ≠ w. Similarly we write 𝑧𝑧 ≪w if Re(z)<Re(w) and Im(z) < Im(w). 
 
Definition 1.2: Let X be a non-empty set. Suppose that the mapping D: X×X →ℂ satisfies: 
 
(a) 0 ≤ D(x, y) for all x, y∈ X and D(x, y)=0 if and only if x = y; 
(b) D(x, y) = D(y, x) for all x, y ∈ X; 
(c) D(x, y) ≤ D(x, z) +D (z, y) for all x, y, z ∈ X. 
 
Then D is called a complex valued metric on X and (X, D) is called a complex valued metric space (briefly CVM 
space). 
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A complex valued metric induces a Hausdorff topology on X as follows. Let 0≪ r∈ ℂ.  
 
Define B(x, r) :={y ∈X: D(x, y) << r}  
 
The family ℱ = {B(x, r): x ∈ X, 0 ≪ r∈ ℂ} is a sub-basis for a topology 𝜏𝜏 on X and this topology is Hausdorff. We can 
then define other topological notions (like open set, closed set, interior point, limit point, etc) on X in the usual manner. 
See [5] - [7]. 
 
Definition 1.3: Let {xn} be a sequence in a complex valued metric space (X, D) and x∈ X. We say that  
 
a) {xn} converges to x (or equivalently x is the limit of xn), written xn →x, if for every  r∈ ℂ with 0≪ 𝑟𝑟 there is a  
      positive integer N such that for all n>N, D(xn, x)  ≪r. 
 
b) {xn} is a Cauchy sequence if for every r∈ ℂ with 0≪ 𝑟𝑟 there is a positive integer N such that for all m, n>N,  
      D(xn, xm) ≪  r. 
 
c) (X, D) is a complete complex valued metric space if every cauchy sequence in (X, D) is convergent to an element in  
      (X, D). 
 
For the proofs of the following lemmas we refer to [5]. 
 
Lemma 1.1: Let (X, D) be a complex valued metric space and {xn} a sequence in X. Then {xn} converges to x if and 
only if and only if | D(x n , x)| →0 as n → ∞. 
 
Lemma 1.2: Let (X, D) be a complex valued metric space and {xn} a sequence in X. Then {xn} is a Cauchy sequence if 
and only if |D(x n , x n + m )| →0 as n→ ∞. 
 
The following notions are introduced by Jungck and Rhoades [14]. 
 
Definition 1.4: Let f and g be self-maps on a set X. 
 
i)  If w = fx =gx for some x in X, then x is called a coincidence point of f and g; and w is called a point of      

coincidence of f and g. 
 

ii)  The function f and g are said to be weakly compatible if they commute at all of their coincidence points. 
 
The following fixed point result is proved in [5]. In [13] the same theorem is proved in the setting of (real valued) 
metric spaces. 
 
Theorem 1.1: Let (X, D) be a complex valued metric space and let the mappings S, T: X→X satisfy: 
 
D (Sx, Ty) ≤  𝜆𝜆𝜆𝜆(𝑥𝑥, 𝑦𝑦) +   𝜇𝜇𝜇𝜇 (𝑥𝑥,𝑆𝑆𝑆𝑆)𝐷𝐷(𝑦𝑦,𝑇𝑇𝑇𝑇)

1+𝐷𝐷(𝑥𝑥,𝑦𝑦)
 

 
for all x, y 𝜖𝜖X where 𝜆𝜆, 𝜇𝜇 are nonnegative reals with 𝜆𝜆 + 𝜇𝜇<1. Then S and T have a unique common fixed point. 
 
In [6], the following result is proved. In [12] similar result is proved in the setting of metric spaces. 
 
Theorem 1.2: Let (X, D) be a complex valued metric space and let f, g, S and T are four self-maps of X such that T(X) 
⊆ f (X) and S(X) ⊆g(X). Suppose there exist nonnegative real numbers a, b, and c with a + 2b +2c < 1 such that  
 
D(Sx, Ty) ≤ aD(fx, gy) + b [D(fx, Sx) + D(gy, Ty] +c[D(fx ,Ty) +D(gy ,Sx]  
  
Suppose that the pairs {f, S} and {g, T} are weakly compatible. Then f, g, S and T have a unique common fixed point. 
 
In [7], the following result is proved. In [10] and [17], its real valued counterpart is proved. 
 
Theorem 1.3: Let (X, D) be a complex valued metric space and let mappings S, T: X→X satisfy 
 
D(Sx, Ty)≤   𝑎𝑎[𝐷𝐷(𝑥𝑥,𝑆𝑆𝑆𝑆)𝐷𝐷(𝑥𝑥,𝑇𝑇𝑇𝑇)+𝐷𝐷(𝑦𝑦,𝑇𝑇𝑇𝑇)𝐷𝐷(𝑦𝑦,𝑆𝑆𝑆𝑆)]

𝐷𝐷(𝑥𝑥,𝑇𝑇𝑇𝑇)+𝐷𝐷(𝑦𝑦,𝑆𝑆𝑆𝑆)
 

for all x, y 𝜖𝜖X where 0 ≤a<1. Then S and T have a unique common fixed point. 
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2. MAIN RESULTS 
 
We begin by showing that every complex valued metric space (X, D) is metrizable. 
 
Theorem 2.1: For every complex valued metric D: X×X→ ℂ, there is a real valued metric d: X×X→ ℝ such that D and 
d induce the same topology on X. 
 
Proof:  Define d(x, y): = Max {Re (D(x, y), Im(D(x, y))}. First we show that d is a metric. Clearly d(x, y) ≥ 0 for all x, y 
∈X and d(x, y) = 0 if and only if x=y. Also, d(x, y) = d(y, x) for all x, y ∈X.  
 
Now, let x, y, z ∈X.  Let D(x, y):= (a, b), D(y, z): =(c, d) and D(x, z):= (e, f). Since D is a complex valued metric, so 
we have (e, f) ≤ (a + c, b + d). This implies  
 
d (x, z) = max {e, f} ≤ max {a+ c, b + d} ≤ max {a, b} + max {c, d} = d(x, y) + d(y, z).  
 
Next we show that d and D induce the same topology on X.  To this end it suffices to show that every open ball in (X, 
d) is an open set in (X, D) and every open ball in (X, D) is an open set in (X, d).  Let B(x, c) be an open ball in (X, D) 
where 0 ≪c= (c1, c2) ∈ ℂ. Let z ∈B(x, c). Then D(x, z):= (a1, a2) ≪ (c1, c2) . If we choose r ∈ ℝ such that r ≤ min {c1- 
a1, c2 – a2), then y ∈ B (z, r) implies D(x, y) ≪c. Therefore, we get B (z, r)⊆ B(x, c). Thus B(x, c) is an open set in (X, 
d). By same argument it can be shown that any open ball B(x, r) in (X, d) is open in (X, D). 
 
Thus D and d induce the same topology on X.              
 
Remark 2.1: In fact the real valued metric defined by d(x, y): = | D(x, y)| also induces the same topology on X as D. 
 
In line with the definition of metric equivalence, we define equivalence between a complex valued metric and a metric 
as follows. 
 
Definition 2.1: A complex valued metric D and a metric d on X are said to be equivalent if they give rise to the same 
topology on X. 
 
Theorem 2.1 states that for every complex valued metric D on X there exists a metric d on X which is equivalent to D.  
 
In metric fixed point theory, it is a well known fact that the classes of maps contractive with respect to two metrics d 
and 𝑑𝑑′  are not the same, in general, even for equivalent metrics d and 𝑑𝑑′ . Thus a mapping T that satisfies a certain 
contractive type condition with respect to D may not satisfy the same contractive type condition with respect to d and 
vice versa. However, for d and D, this happens rarely as the following theorem depicts. 
 
Theorem 2.2:  Let (X, D) be a complex valued metric space and d be the metric defined by: 
  
d(x, y) = max {Re (D(x, y), Im(D(x,y)))}. 
 
Let S, T, f, g: X →X be mappings and α, β, µ, 𝜆𝜆, 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑒𝑒 are nonnegative reals with µ+𝜆𝜆 < 1 ,  α, β ∈ [0, 1), e ∈ [0, ½) 
and a + 2b + 2c < 1. 
 
Then 
i) If D (Tx, Ty) ≤  𝛼𝛼𝛼𝛼(𝑥𝑥, 𝑦𝑦), then d (Tx, Ty)≤  𝛼𝛼𝛼𝛼(𝑥𝑥, 𝑦𝑦) 
ii) If D (Tx, Ty) ≤  𝑒𝑒[𝐷𝐷(𝑇𝑇𝑇𝑇, 𝑥𝑥) + 𝐷𝐷(𝑇𝑇𝑇𝑇, 𝑦𝑦)], then d (Tx, Ty) ≤  𝑒𝑒[𝑑𝑑(𝑇𝑇𝑇𝑇, 𝑥𝑥) + 𝑑𝑑(𝑇𝑇𝑇𝑇, 𝑦𝑦)], 
iii) If D (Tx, Ty) ≤  𝑒𝑒[𝐷𝐷(𝑇𝑇𝑇𝑇, 𝑦𝑦) + 𝐷𝐷(𝑇𝑇𝑇𝑇, 𝑥𝑥)], then d (Tx, Ty) ≤  𝑒𝑒[𝑑𝑑(𝑇𝑇𝑇𝑇, 𝑦𝑦) + 𝑑𝑑(𝑇𝑇𝑇𝑇, 𝑥𝑥)], 
iv) If D (Tx, Ty) ≤  𝛼𝛼𝛼𝛼(𝑇𝑇𝑇𝑇, 𝑦𝑦) + 𝛽𝛽𝛽𝛽(𝑇𝑇𝑇𝑇, 𝑥𝑥)], then d (Tx, Ty) ≤  𝛼𝛼𝛼𝛼(𝑇𝑇𝑇𝑇, 𝑦𝑦) + 𝛽𝛽𝛽𝛽(𝑇𝑇𝑇𝑇, 𝑥𝑥), 
v) If D(Sx,Ty) ≤ aD(fx,gy) + b [D(fx,Sx) + D(gy,Ty] +c[D(fx,Ty) +D(gy,Sx] , then 
       d(Sx,Ty) ≤ ad(fx,gy) + b [d(fx,Sx) + d(gy,Ty] +c[d(fx,Ty) +d(gy,Sx]  
 
Proof: We prove only (v). The same argument may be used to prove the remaining conclusions of the theorem.   
 
Let D (Sx, Ty) = (p,q), D(fx, gy) =(r, s), D(fx, Sx)= (t, u), D(gy, Ty)=(v, w),  D(fx, Ty) = (i, j), and  D(gy, Sx) = (k, l).  
 
By assumption,   (p,q) ≤ a(r, s) + b[(t, u) +(v, w)] + c[(i, j) + (k, l)]. This implies   
 
max {p, q} ≤ a max{r, s} + b [max {t, u} + max{v, w}] + c[max{i, j} + max{k, l}]. 
 
Hence d(Sx,Ty) ≤ ad(fx,gy) + b [d(fx,Sx) + d(gy,Ty] +c[d(fx,Ty) +d(gy,Sx].               
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In view of Theorem 2.2(v) we can conclude that Theorem1.2 is a consequence of the corresponding result in [12].  We 
indicate in the form of open questions whether or not Theorems 1.1 and 1.3 can also be viewed as corollaries of the 
corresponding results in metric spaces in the same way. 
 
The following example is given in [5] to illustrate the motivation behind the introduction of complex valued metric 
spaces. We remark that this example cannot justify the need to introduce complex valued metric spaces because this 
problem can still be solved in the setting of metric spaces (i.e., by using a real valued metric d on X, different from du, 
under which T becomes a contraction). 
 
Example: Let X1:= {(x, 0): 0 ≤ x ≤ 1}, X2:= {(0, x): 0 ≤ x ≤ 1}, X: = X1 ∪ X2 
 
Define D: X×X→ ℂ by 
 

D(x, y):=

⎩
⎪
⎨

⎪
⎧𝐷𝐷((𝑥𝑥, 0), (𝑦𝑦, 0)) = (2

3
|𝑥𝑥 − 𝑦𝑦|, 1

2
|𝑥𝑥 − 𝑦𝑦|)

𝐷𝐷((0, 𝑥𝑥), (0, 𝑦𝑦)) = (1
2

|𝑥𝑥 − 𝑦𝑦|, 1
3

|𝑥𝑥 − 𝑦𝑦|)

𝐷𝐷((𝑥𝑥, 0), (0, 𝑦𝑦)) = (2
3
𝑥𝑥 + 1

2
𝑦𝑦, 1

2
𝑥𝑥 + 1

3
𝑦𝑦)

� 

The space (X, D) is a complete complex valued metric space.  
 
Let T: X →X defined by 
 

T(x, y):=�
(0, 𝑥𝑥)𝑖𝑖𝑖𝑖 (𝑥𝑥, 𝑦𝑦) ∈ 𝑋𝑋1

�1
2
𝑦𝑦, 0� 𝑖𝑖𝑖𝑖 (𝑥𝑥, 𝑦𝑦) ∈ 𝑋𝑋2

�
 

 
If du is the usual metric on X, then T is not contractive as du(T(x,0), T(y,0)) = |x-y|= d(x, y). 
 
In [5] the authors claim that Banach Contraction Principle is not valid for this mapping as T is not a contraction with 
respect to the usual (Euclidean) metric du and they have shown that it is a contraction with respect to the complex 
valued metric D. They used this example as an illustration of the necessity to introduce complex valued metric spaces. 
The fact that T is not a contraction mapping with respect to the usual metric does not mean that it is not a contraction 
mapping with respect to all real valued metrics on X. One can find an appropriate real valued metric d on X such that T 
is a contraction mapping in (X, d).  One such d is d(x, y): = max (Re (D(x, y), Im D(x, y))). 
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