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ABSTRACT 

In this paper we prove a common fixed point theorem for four self maps f, g, S and T in complex valued metric spaces 
where both {f, S} and {g, T} are weakly compatible self maps of a nonempty set X. Our result generalizes the results of 
Sandeep Bhatt et al [2]. We also introduce the concept of a vector valued metric space as a generalization of complex 
valued metric space and prove some fixed point theorems in these spaces.  
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1. INTRODUCTION 
 
Fixed point theory is central to many existence theorems in mathematics. One of the main tools in fixed point theory is 
the Banach contraction theorem (also called Banach contraction principle) which states that every contraction mapping 
F on a complete metric space X has a unique fixed point. There are a lot of generalizations of this theorem in the 
literature. These generalizations were made in two typical ways. The first method is weakening/generalizing/ the 
contractive condition d (Fx, Fy) ≤ kd(x, y) while the second is allowing X to be a more general space than the metric 
space.   
 
There have been a number of generalizations of metric spaces such as rectangular metric spaces, pseudo metric spaces, 
probabilistic metric spaces, fuzzy metric spaces, quasimetric spaces, D-metric spaces and cone metric spaces.  
 
Recently, A. Azam, B. Fisher and M. Khan [1], introduced the concept of complex valued metric spaces and obtained a 
common fixed point result for a pair of mappings satisfying a certain contraction condition. This paper was soon 
followed by two papers by Sandeep Bhatt, Shruti Chaukiyal and R.C. Dimiri. See [2] and [3]. The results in [2] and [3] 
are respectively generalizations of the corresponding results in [5] and [4] for metric spaces. In [2] the authors proved a 
common fixed point theorem for four self maps f, g, S and T in complex valued metric spaces where both {f, S} and 
{g,T} are weakly compatible self maps of a nonempty set X and satisfy the contraction condition  
 
d(Sx, Ty) ≤ ad(fx ,gy) + b [d(fx, Sx) + d(gy ,Ty] +c[d(fx, Ty) +d(gy, Sx)] . 
 
In this paper we prove a common fixed point theorem for four self maps f, g, S and T in complex valued metric spaces 
where both {f, S} and {g, T} are weakly compatible self maps of a nonempty set X. Our result generalizes the results of 
Sandeep Bhatt et al [2]. We also introduce the concept of vector valued metric spaces as a generalization of complex 
valued metric spaces and prove some fixed point theorems in these spaces.  
 
We first consider some notions and notations which will be needed in the sequel. 
 
1.1 Definition [1]: Let ℂ be the set of complex numbers and let z, w ∈ ℂ. Define a partial order ≤ on ℂ by z ≤ w if  
Re(z) ≤ Re(w) and Im (z) ≤  Im (w). 
 
Notation: We write z < w if z ≤ w and z ≠ w and we write z≪ w if Re (z) < Re (w) and  Im (z) < Im (w). 
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1.2 Definition [1]: Let X be a non-empty set. Suppose that the mapping d: X×X →ℂ satisfies: 
 
(a) 0 ≤ d(x, y) for all x, y∈ X and d(x, y)=0 if and only if x=y; 
(b) d(x, y) = d(y, x) for all x, y ∈ X; 
(c) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X. 
 
Then d is called a complex valued metric on X and (X, d) is called a complex valued metric space (briefly CVM space). 
 
We extend this notion and define the notion of a vector valued metric space as follows. 
 
1.3 Definition: We define a partial order ≤ on ℝ n as follows.  
 
For x, y ∈ ℝ n with x = (x1,…,xn) and y=(y1,…,yn)  
 
Define x ≤ y iff xi  ≤ yi  for each i ∈ {1,2, …, n}. 
 
With this partial order ℝ n is a lattice and hence the join and meet of two elements in ℝ n are meaningful. For two 
elements x, y of ℝ n, we write x≪ y if xi < yi for each i ∈ {1, 2, …, n}. Similarly x < y means xi < yi for some i ∈ {1, 2, 
…, n}.  More over the join of two elements x=(x1,…,x2) and y=(y1,…,y2)  of ℝ n satisfies the following properties. 
 
Property:  
 
i) max {x, y} = (max {x1,y1}, … , max {x n , y n }) 
ii) Let {x(m)}, {y (m)} be two sequences in ℝ n  such that x(m)  →x and y(m) →y .  

 
Then max {x (m), y (m)} → max{x, y} (the convergence being the norm convergence in ℝ n) 

 
1.4 Definition: Let X be a non-empty set. Suppose that the mapping d: X×X →  ℝ n satisfies: 
 
(a) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) =0 if and only if x=y; 
(b) d(x, y) = d(y, x) for all x, y ∈ X; 
(c) d(x, y) ≤ d(x, z)+d(z, y) for all x, y, z ∈ X. 
 
Then d is called an n dimensional vector valued metric on X and (X, d) is called an n dimensional vector valued metric 
space (briefly n-dimensional VVM space). 
 
A vector valued metric induces a Hausdorff topology  𝜏𝜏 on X as follows. Let 0≪r, r∈ ℝ n. Define B(x, r) :={ y ∈X: d(x, 
y) ≪r}. The family F = {B(x, r): x ∈ X, 0 ≪ r∈ ℝ n} is a subbase for a topology 𝜏𝜏 on X and this topology is Hausdorff. 
We can then define other topological notions (like open set, closed set, interior point, limit point, etc) on X in the usual 
manner. See [1]. 
 
1.5 Definition: Let {x 

m} be a sequence in a VVM space (X, d), x∈ X and 0 ≪ r, r ∈ ℝ n. We say that  
 
a) xm converges to x (or equivalently x is the limit of xm), written xm→ x,  if for every  r∈ ℝn with 0 ≪ r there is a 

positive integer N such that for all m>N, d(xm, x) ≪r. 
b) xm is a Cauchy sequence if for every  r∈ ℝ n with 0≪r there is a positive integer N such that for all m, k >N,  

d(xm, xk) ≪ r. 
c) (X, d) is a complete VVM space if every Cauchy sequence in (X, d) is convergent to an element in (X, d). 
 
The proofs of the following lemmas for the case n=2 can be found in [2]. The case n≥ 3 can be proved in the same way, 
the norm ||.|| being the Euclidean norm in ℝn. 
 
1.6 Lemma: Let (X, d) be a vector valued metric space and {xm} a sequence in X. Then {xm} converges to x if and 
only if || d (xm, x)|| →0 as m→∞. 
 
1.7 Lemma: Let (X, d) be a vector valued metric space and {x m} a sequence in X. Then {xm} is a Cauchy sequence if 
and only if ||d (x m, x k + m) || →0 as m →∞. 
 
1.8 Definition: Let f and g be self-maps on a set X, if w =fx = gx for some x in X, then x is called a coincidence point 
of f and g, and w is called a point of coincidence of f and g. 
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1.9 Definition [6]: Let f and g be two self-maps defined on a set X. Then f and g are said to be weakly compatible if 
they commute at their coincidence points. 
 
2. MAIN RESULTS 
 
Sandeep Bhatt et al [2] proved the following theorem. The corresponding theorem in the setting of metric sapces is 
proved by Hardy and Rogers [4]. 
 
2.1 Theorem [2]: Let (X, d) be a complex valued metric space and let f, g, S and T be four self-maps of X such that 
T(X) ⊆ f (X) and S(X) ⊆g(X). Suppose there exist nonnegative real numbers a, b, and c with a + 2b +2c < 1 such that  
 
d(Sx, Ty) ≤ ad(fx ,gy)+b[d(fx, Sx) + d(gy ,Ty] +c[d(fx, Ty) + d(gy, Sx]                                                                    (2.1.1) 
 
Suppose that the pairs {f, S} and {g, T} are weakly compatible. Then f, g, S and T have a unique common fixed point.  
 
This theorem is proved in [2] tacitly assuming that X is complete.  
 
Now we state our main theorem. The corresponding theorem in the setting of metric spaces is given in [7] or it can be 
obtained as a consequence of zamifrescu’s fixed point theorem [8]. 
 
2.2 Theorem: Let (X, d) be a complete complex valued metric space and let f, g, S and T are four self-maps of X such 
that T(X) ⊆ f (X) and S(X) ⊆g(X) and satisfying  
 
d(S x, Ty) ≤ λ max {d (fx, gy),  𝑑𝑑(𝑓𝑓𝑓𝑓 ,𝑆𝑆𝑓𝑓 )+𝑑𝑑(𝑔𝑔𝑔𝑔 ,𝑇𝑇𝑔𝑔 )

2
,𝑑𝑑(𝑓𝑓𝑓𝑓 ,𝑇𝑇𝑔𝑔 )+𝑑𝑑(𝑔𝑔𝑔𝑔 ,𝑆𝑆𝑓𝑓 )

2
}                                                                             (2.2.1) 

 
Suppose that the pairs {f, S} and {g, T} are weakly compatible and T(X) is closed. Then f, g, S and T have a unique 
common fixed point. We need a lemma to prove Theorem 2.2. 
 
2.3 Lemma: Assume that the conditions in Theorem 2.2 hold. 
 
 Define a sequence {yn} in X by  
 
y2n = Sx2n = gx2n+1 and y2n+1 = Tx2n+1 = fx2n+2 

 
Then d (y2n+1, y2n) ≤ λ d(y2n, y2n-1).  
 
Proof: Let (α, β) = d(y2n+1, y2n) and  (γ, δ):= d(y2n, y2n-1). We show that (α, β) ≤ λ (γ, δ) 
 
Now we have  
 
(α, β) = d(y2n+1, y2n) = d(Sx2n, Tx2n+1) 
                                 ≤ λ max {d(fx2n, gx2n+1), 

𝑑𝑑(𝑓𝑓𝑓𝑓 2𝑛𝑛 ,𝑆𝑆𝑓𝑓2𝑛𝑛 )+𝑑𝑑(𝑔𝑔𝑓𝑓2𝑛𝑛 +1,,𝑇𝑇𝑓𝑓 2𝑛𝑛 +1 )

2
, 

𝑑𝑑(𝑓𝑓𝑓𝑓 2𝑛𝑛 ,𝑇𝑇2𝑛𝑛 +1)+𝑑𝑑(𝑔𝑔𝑓𝑓2𝑛𝑛 +1,,𝑆𝑆𝑓𝑓 2𝑛𝑛 )

2
} 

                                 = λ max {d(y2n-1, y2n), 
𝑑𝑑�,𝑔𝑔2𝑛𝑛 −1,𝑔𝑔2𝑛𝑛 �+𝑑𝑑(𝑔𝑔2𝑛𝑛 ,𝑔𝑔2𝑛𝑛 +1)

2
, 𝑑𝑑(𝑔𝑔2𝑛𝑛 −1,𝑔𝑔2𝑛𝑛 +1)+𝑑𝑑(𝑔𝑔2𝑛𝑛 ,𝑔𝑔2𝑛𝑛 )

2
} 

                                 ≤ λ max {d(y2n-1, y2n),   
𝑑𝑑�,𝑔𝑔2𝑛𝑛 −1,𝑔𝑔2𝑛𝑛 �+𝑑𝑑(𝑔𝑔2𝑛𝑛 ,𝑔𝑔2𝑛𝑛 +1)

2
,  𝑑𝑑(𝑔𝑔2𝑛𝑛 −1,𝑔𝑔2𝑛𝑛 )+𝑑𝑑(𝑔𝑔2𝑛𝑛 ,𝑔𝑔2𝑛𝑛 +1)

2
} 

                                 = λ max {d (y2n-1, y2n), 
𝑑𝑑�,𝑔𝑔2𝑛𝑛 −1,𝑔𝑔2𝑛𝑛 �+𝑑𝑑(𝑔𝑔2𝑛𝑛 ,𝑔𝑔2𝑛𝑛 +1)

2
} 

                                 = λ max {(γ, δ), (∝+𝛾𝛾
2

, 𝛽𝛽 +𝛿𝛿
2

)} 
 
Therefore (α, β) ≤ λ max{ (γ, δ), (∝+𝛾𝛾

2
, 𝛽𝛽+𝛿𝛿

2
)}= λ (max{ γ, ∝+𝛾𝛾

2
}, max{ 𝛿𝛿,𝛽𝛽 +𝛿𝛿

2
}.                                                          (2.3.2) 

 
Write 𝜀𝜀 =  max � γ, ∝+𝛾𝛾

2
�  𝑎𝑎𝑛𝑛𝑑𝑑 𝜇𝜇 = max {𝛿𝛿, 𝛽𝛽 +𝛿𝛿

2
}. 

 
We consider four cases to complete the proof. 
 
Case 1:𝜀𝜀 = 𝛾𝛾, 𝜇𝜇 = 𝛿𝛿 
 
Case 2: 𝜀𝜀 = 𝛾𝛾, 𝜇𝜇 = 𝛽𝛽 +𝛿𝛿

2
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Case 3: 𝜀𝜀 =  ∝+𝛾𝛾

2
, 𝜇𝜇 = 𝛿𝛿 

 
Case 4: 𝜀𝜀 =  ∝+𝛾𝛾

2
, 𝜇𝜇 = 𝛽𝛽 +𝛿𝛿

2
 

 
Case 1: 𝜀𝜀 = 𝛾𝛾, 𝜇𝜇 = 𝛿𝛿 
 
In this case we readily get (α, β) ≤ λ ( 𝛾𝛾, 𝛿𝛿) as required. 
 
Case 2: 𝜀𝜀 = 𝛾𝛾, 𝜇𝜇 = 𝛽𝛽 +𝛿𝛿

2
 

 
From (2.3.1) we have (α, β) ≤ λ max {(γ,𝛽𝛽 +𝛿𝛿

2
) 

 
This implies α≤ λ γ and β ≤ λ𝛽𝛽+𝛿𝛿

2
.  

 
The second inequality implies β(2 – λ) ≤ λ 𝛿𝛿. Since 1

 2− λ  
< 1, 𝑠𝑠𝑠𝑠 β ≤ λ 𝛿𝛿. Thus (α, β) ≤ λ ( 𝛾𝛾, 𝛿𝛿) 

 
The remaining cases can be shown in the same manner. 
 
Next we prove the main theorem. 
 
Proof (Theorem 2.2): 
 
From lemma 2.3 we have d (y2n+1, y2n) ≤ λ d (y2n, y2n-1). By similar argument we can prove  
 
            d (y2n+1, y2n+2) ≤ λ d (y2n, y2n+1). 
 
Therefore d(yn+1, yn+2) ≤ λ d(yn, y2n+1)≤ λ2 d(yn-1, y2n)≤…≤ λn+1 d(y0, y1) 
 
Now, for all m>n, 
 
d (ym, yn) ≤  d(yn, yn+1) + d(yn+1, yn+2)+…+d(ym, ym-1) 
 
                ≤  λn d(y0, y1) +  λn+1 d(y0, y1) + λm-1 d(y0, y1) 
 
                ≤ λ𝑛𝑛

1−λ
 d (y0,y1)  

 
This implies that  lim𝑛𝑛 ,𝑚𝑚 →∞ |d(ym , yn)|   =0. Hence {yn} is a Cauchy sequence. Since X is complete, so there exists z in 
X such that yn →z in X (i.e., lim𝑛𝑛→∞  Sx2n = lim𝑛𝑛→∞  Tx2n+1 = ., lim𝑛𝑛→∞  gx2n+1 =  lim𝑛𝑛→∞  fx2n+2 = z). Since T(X) is 
closed, so z ∈T(X). 
 
Since T(X)⊆f(X), so there is u∈X such that z=fu. We now show Su=fu=z. 
 
d(Su, z) ≤  d(Su, Tx2n+1) + d(Tx2n+1, z) 
 
              ≤ λ max {d(fu, gx2n+1), 

𝑑𝑑(𝑓𝑓𝑓𝑓 ,𝑆𝑆𝑓𝑓 )+𝑑𝑑(𝑔𝑔𝑓𝑓2𝑛𝑛 +1,,𝑇𝑇𝑓𝑓 2𝑛𝑛 +1 )

2
,   𝑑𝑑(𝑓𝑓𝑓𝑓 ,𝑇𝑇2𝑛𝑛 +1)+𝑑𝑑(𝑔𝑔𝑓𝑓2𝑛𝑛 +1,𝑆𝑆𝑓𝑓 )

2
} 

 
Taking limit as n approaches to infinity, we get 
 
d(Su, z) ≤ λ max {d(z, z), 𝑑𝑑(𝑧𝑧 ,𝑆𝑆𝑓𝑓 )+𝑑𝑑(𝑧𝑧 ,𝑧𝑧)

2
 , 𝑑𝑑(𝑧𝑧 ,𝑧𝑧)+𝑑𝑑(𝑧𝑧 ,𝑆𝑆𝑓𝑓 )

2
} 

 
              = λ max { 𝑑𝑑(𝑧𝑧 ,𝑆𝑆𝑓𝑓 )

2
,   𝑑𝑑(𝑧𝑧 ,𝑆𝑆𝑓𝑓 )

2
} 

 
              = λ𝑑𝑑(𝑧𝑧 ,𝑆𝑆𝑓𝑓 )

2
    

 
This implies d(Su, z)=0.Therefore, Su=z. 
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Since z=Su∈S(X) ⊆g(X), so there exist v in X such that z=gv. We can show that Tv = gv = z using an argument similar 
to the above. Therefore we get Su = fu = Tv = gv = z. 
 
Claim: z is the unique common fixed point of f, g, S and T. 
 
Since f and s are weakly compatible, so S fu= f Su. This implies Sz=fz. 
 
Now, d(Sz, z) = d(Sz, Tv) 
 
         ≤ λ max {d(fz, gv), 𝑑𝑑(𝑓𝑓𝑧𝑧 ,𝑆𝑆𝑧𝑧)+𝑑𝑑(𝑔𝑔𝑔𝑔 ,𝑇𝑇𝑔𝑔)

2
,  𝑑𝑑(𝑓𝑓𝑧𝑧 ,𝑇𝑇𝑔𝑔)+𝑑𝑑(𝑔𝑔𝑔𝑔 ,𝑓𝑓𝑧𝑧 )

2
}  

 
                       = λ max {d(Sz, gv), 𝑑𝑑(𝑆𝑆𝑧𝑧 ,𝑆𝑆𝑧𝑧)+𝑑𝑑(𝑧𝑧 ,𝑧𝑧)

2
,   𝑑𝑑(𝑆𝑆𝑧𝑧 ,𝑧𝑧)+𝑑𝑑(𝑧𝑧 ,𝑆𝑆𝑧𝑧)

2
}= d(Sz, z) 

 
This implies that d(Sz, z) = 0. Therefore, Sz = z = fz. By similar argument Tz = gz = z. Thus we proved that z is a 
common fixed point of f, g, S and T. 
 
Let z, w be common fixed points of f, g, S and T. 
 
Then d(z, w) = d(Sz, Tw)  
 
                     ≤ λ max {d(fz, gw), 𝑑𝑑(𝑓𝑓𝑧𝑧 ,𝑆𝑆𝑧𝑧)+𝑑𝑑(𝑔𝑔𝑔𝑔 ,𝑇𝑇𝑔𝑔 )

2
,   𝑑𝑑(𝑓𝑓𝑧𝑧 ,𝑇𝑇𝑔𝑔 )+𝑑𝑑(𝑔𝑔𝑔𝑔 ,𝑆𝑆𝑧𝑧)

2
} 

 
                     = λ max {d (z, w),𝑑𝑑(𝑧𝑧 ,𝑧𝑧)+𝑑𝑑(𝑔𝑔 ,𝑔𝑔)

2
,   𝑑𝑑(𝑧𝑧 ,𝑔𝑔)+𝑑𝑑(𝑔𝑔 ,𝑧𝑧)

2
} 

 
                     = λ d(z, w) 
 
This implies that d(z, w)=0 or w=z. 
 
2.4 Remark: Theorem 2.1 is a corollary of Theorem 2.2 (our main result). The following example shows that this is a 
proper generalization. It is adapted from an example (see [7]) used to illustrate the corresponding result for metric 
spaces. 
 
Example: Let X = {1, 2, 3, 4, 5} be a set. Define d: X×X → ℂ by: 
 
d(1, 2) = d(1, 3)=d(3, 5) = (13/8, 13/8), d(1, 4)=d(1, 5)= d(2,4)=(7/4, 7/4), d(2,3)=d(4, 5)=(1,1), d(2, 5)=(15/8, 15/8) 
and d(3,4)=(2, 2). 
 
Define F:X →X by F(1) = 1, F(2) = 4, F(3) = 4 , F(4) = 1 and f(5) = 2. 
 
Now, with S=T=F and f=g=I( the identity mapping on X) we obtain 
 
d (S x, Ty) ≤ 14

15
 max {d (fx, gy),  𝑑𝑑(𝑓𝑓𝑓𝑓 ,𝑆𝑆𝑓𝑓 )+𝑑𝑑(𝑔𝑔𝑔𝑔 ,𝑇𝑇𝑔𝑔 )

2
,𝑑𝑑(𝑓𝑓𝑓𝑓 ,𝑇𝑇𝑔𝑔 )+𝑑𝑑(𝑔𝑔𝑔𝑔 ,𝑆𝑆𝑓𝑓 )

2
} for all x, y in X. 

 
But there does not exist nonnegative real numbers a, b and c satisfying a + 2b + 2c < 1 and  
 
d(Sx, Ty) ≤ ad(fx ,gy)+b[d(fx, Sx) + d(gy ,Ty] +c[d(fx, Ty) + d(gy, Sx]  simultaneously because, if such numbers exist,  
 
(3

2
 , 3

2
) = d (1, 4) = d (F (1), F (2)) ≤ 𝑎𝑎(13

8
, 13

8
) + b(7

4
, 7

4
) + 𝑐𝑐(25

8
, 25

8
) 

 
(7

4
 , 7

4
) = d (2, 4) = d (F (5), F (3)) ≤ 𝑎𝑎(13

8
, 13

8
) +  𝑏𝑏(31

8
, 31

8
) + 𝑐𝑐(2, 2) 

 
This implies 26 ≤26a + 45b+ 41c   ≤ 26(a+2b+2c) < 26, a contradiction. 
 
Theorem 2.2 can be extended to vector valued metric spaces. 
 
2.5 Theorem: Let (X, d) be a complete vector valued metric space and let f, g, S and T be four self-maps of X such that 
T(X) ⊆ f (X) and S(X) ⊆g(X) and satisfying  
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d(S x, Ty) ≤ λ max {d (fx, gy),  𝑑𝑑(𝑓𝑓𝑓𝑓 ,𝑆𝑆𝑓𝑓 )+𝑑𝑑(𝑔𝑔𝑔𝑔 ,𝑇𝑇𝑔𝑔 )

2
,𝑑𝑑(𝑓𝑓𝑓𝑓 ,𝑇𝑇𝑔𝑔 )+𝑑𝑑(𝑔𝑔𝑔𝑔 ,𝑆𝑆𝑓𝑓 )

2
}                                                                             (2.5.1) 

 
Suppose that the pairs {f, S} and {g, T} are weakly compatible and T(X) is closed. Then f, g, S and T have a unique 
common fixed point. 
 
Proof: The same argument as Proof of Theorem2.2 and using a modification of lemma 2.3 provides the proof. 
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