Uniquely Clean Idempotent 2×2 Matrices Over Integral Domains

K. N. Rajeswari

School of Mathematics, Vigyan Bhawan, Khandwa Road, INDORE--452017, India &

Rafia Aziz*

Medi-Caps Institute of Technology and Management, A.B. Road, Pigdamber, INDORE-453331, India

(Received on: 07-07-12; Accepted on: 25-07-12)

ABSTRACT

Let R be a ring with identity. An element of R is said to be clean if it is the sum of a unit and an idempotent and it is uniquely clean if this representation is unique. It is well known that central idempotents in any ring are uniquely clean ([2]). In this paper it has been shown that if R is an Integral Domain then the central idempotents are the only uniquely clean idempotents in $M_2(R)$.

Keywords: Uniquely clean, central idempotents, integral domain.

2000 Mathematics Subject Classification: 16S50.

1. INTRODUCTION

Let R be a ring with identity. Recall that an element a in R is called *clean* if it can be expressed as a = e + u, where e is an idempotent and u is a unit in R. It is said to be *uniquely clean* if this representation is unique. It is well known that idempotents in any ring are clean. If e is an idempotent in the ring, then e = (1 - e) + (2e - 1) is a clean representation of e since 1- e is an idempotent and e 1 is a unit in that ring. Nicholson and Zhou [2, Example 1] have shown that central idempotents are uniquely clean in any ring.

Throughout this paper we let R be an Integral Domain and $M_2(R)$ be the ring of 2×2 matrices over R. It is well known that (see for example [1] or [3]) idempotents in $M_2(R)$ are:

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
, $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} a & b \\ c & 1-a \end{bmatrix}$ (where $bc = a - a^2$)

One can easily verify that out of these $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ are the only central idempotents. In this paper we shall

show that $\begin{bmatrix} a & b \\ c & 1-a \end{bmatrix}$ (where $bc = a-a^2$) are not uniquely clean. This shows that non central idempotents are not

uniquely clean. Hence uniquely clean idempotents are precisely the central idempotents in $M_2(R)$.

2. MAIN RESULTS

Theorem 2.1: Let R be an integral domain. In $\mathbf{M}_2(\mathbf{R})$, idempotent matrix of the form $\begin{bmatrix} a & b \\ c & 1-a \end{bmatrix}$ (where $bc = a - a^2$) is not uniquely clean.

Proof: For any idempotent matrix E, we always have E = (I - E) + (2E - I) as one clean representation (since, (I - E) is an idempotent and $(2E - I)^2 = I$). We shall call this the **natural clean representation** of E.

Corresponding author: Rafia Aziz*

Medi-Caps Institute of Technology and Management, A.B. Road, Pigdamber, INDORE-453331, India

Consider the idempotent matrix $\begin{bmatrix} a & b \\ c & 1-a \end{bmatrix}$ (where $bc = a-a^2$).

If, a = 0, then bc = 0 gives

$$E = \begin{bmatrix} 0 & w \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ w & 1 \end{bmatrix}$$

But

$$\begin{bmatrix} 0 & w \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & p \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} -1 & w - p \\ 0 & 1 \end{bmatrix}$$

where $\begin{bmatrix} 1 & p \\ 0 & 0 \end{bmatrix}$ is an idempotent and $\begin{bmatrix} -1 & w-p \\ 0 & 1 \end{bmatrix}$ is a unit with determinant -1 in $M_2(R)$,

and
$$\begin{bmatrix} 0 & 0 \\ w & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ p & 0 \end{bmatrix} + \begin{bmatrix} -1 & 0 \\ w - p & 1 \end{bmatrix}$$

where $\begin{bmatrix} 1 & 0 \\ p & 0 \end{bmatrix}$ is an idempotent and $\begin{bmatrix} -1 & 0 \\ w-p & 1 \end{bmatrix}$ is a unit with determinant -1 in $M_2(R)$. Hence both $\begin{bmatrix} 0 & w \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 0 & 0 \\ w & 1 \end{bmatrix}$ are not uniquely clean.

Similarly if a=1, then for $E=\begin{bmatrix} 1 & w \\ 0 & 0 \end{bmatrix}$ we have the following clean representation,

$$\begin{bmatrix} 1 & w \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & p \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & w - p \\ 0 & -1 \end{bmatrix}$$
 and for $E = \begin{bmatrix} 1 & 0 \\ w & 0 \end{bmatrix}$

we have the following clean representation,

$$\begin{bmatrix} 1 & 0 \\ w & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ p & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ w - p & -1 \end{bmatrix}$$

Hence both $\begin{bmatrix} 1 & w \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ w & 0 \end{bmatrix}$ are also not uniquely clean.

From now on $E = \begin{bmatrix} a & b \\ c & 1-a \end{bmatrix}$ (where $bc = a-a^2 \neq 0$). In what follows we shall show that we can always express E as

$$E = E_1 + U$$

where $E_1 = \begin{bmatrix} x & y \\ w & 1-x \end{bmatrix}$ (with $yw = x - x^2$) is an idempotent and $U = \begin{bmatrix} u_1 & u_2 \\ u_3 & u_4 \end{bmatrix}$ is a unit with determinant -1 in

 $\mathbf{M}_2(\mathbf{R})$. This amounts to showing that there exist an idempotent matrix $E_1 = \begin{bmatrix} x & y \\ w & 1-x \end{bmatrix}$ (with $yw = x - x^2$)

such that

$$det(E - E_1) = -1$$

or

$$det \left[\begin{bmatrix} a & b \\ c & 1-a \end{bmatrix} - \begin{bmatrix} x & y \\ w & 1-x \end{bmatrix} \right] = -1$$

or

$$det \left(\begin{bmatrix} a-x & b-y \\ c-w & -a+x \end{bmatrix} \right) = -1$$

This problem reduces to solving the equation

$$(a-x)(x-a)-(b-y)(c-w)=-1$$
(*)

for x, y and w such that this solution $yw = x - x^2$.

Now from (*) we have

$$(2ax - a^2 - x^2) - (bc - bw - yc + wy) = -1$$

using
$$bc = a - a^2$$
 and $yw = x - x^2$ we get

$$(2a-1)x-a+bw+yc=-1$$

Multiplying both sides by y and rearranging the terms we get

$$(2a-1)xy + y^{2}(c) + bwy + (-a+1)y = 0$$

again using $yw = x - x^2$, we get

$$(-b)x^{2} + (2a-1)xy + (c)y^{2} + (b)x + (-a+1)y = 0$$

Multiplying both sides by (-4b), we get

$$4b^{2}x^{2} + 4b(1-2a)xy - 4bcy^{2} - 4b^{2}x + 4b(a-1)y = 0$$
or
$$(2bx + (1-2a)y - b)^{2} - ((1-2a)y - b)^{2} - 4bcy^{2} + 4b(a-1)y = 0$$
or
$$(2bx + (1-2a)y - b)^{2} - y^{2} - 2by - b^{2} = 0$$
or
$$(2bx + (1-2a)y - b)^{2} - (y+b)^{2} = 0$$

Letting
$$x' = 2bx + (1-2a)y - b$$
 and $y' = y + b$, we get

$$(x')^2 - (y')^2 = 0$$

or
 $-(x')^2 + (y')^2 = 0$
or
 $(y'-x')(y'+x') = 0$ (**

One of the parenthesis must be zero, say

$$(y' + x') = 0$$

or
$$y + b + 2bx + (1 - 2a)y - b = 0$$

or
$$2bx + (2-2a)y = 0$$

or
$$bx + (1 - a)y = 0$$

Clearly its general solution is

$$x = (1 - a)t$$
, $y = -bt$

taking t = 1 - a, we get

$$x = (1-a)^2$$
, $y = -b(1-a)$ such that
 $x(1-x) = (1-a)^2(1-(1-a)^2)$
 $= (1-a)^2(-a)(a-2)$
 $= -bc(1-a)(a-2)$ (as $bc = a - a^2$)
 $= -b(1-a)[c(a-2)]$
 $= y(c(a-2))$
 $= yw$ (letting $w = c(a-2)$)

Thus we get a solution $x = (1 - a)^2$, y = -b(1 - a) and w = c(a - 2) of eq. (*) satisfying $yw = x - x^2$ and hence an idempotent matrix

$$E_{1} = \begin{bmatrix} (1-a)^{2} & -b(1-a) \\ c(a-2) & 1-(1-a)^{2} \end{bmatrix} = \begin{bmatrix} (1-a)^{2} & -b(1-a) \\ c(a-2) & -a^{2}+2a \end{bmatrix}$$

which gives the following clean representation for E

$$\begin{bmatrix} a & b \\ c & 1-a \end{bmatrix} = \begin{bmatrix} (1-a)^2 & -b(1-a) \\ c(a-2) & -a^2 + 2a \end{bmatrix} + \begin{bmatrix} a - (1-a)^2 & 2b - 2a \\ c - c(a-2) & (a-1)^2 - a \end{bmatrix}$$

where one can check that $det \begin{bmatrix} a - (1-a)^2 & 2b - 2a \\ c - c(a-2) & (a-1)^2 - a \end{bmatrix} = -1$

From (**), we can also have

$$(y'-x')=0$$

or
$$y + b - 2bx - (1 - 2a)y + b = 0$$

$$-2bx + 2ay + 2b = 0$$

or

$$bx + (-a)y = b$$

Its general solution is

$$x = 1 + at$$
, $y = bt$

taking t = -a, we get

$$x = 1 - a^2$$
, $y = -ba$

such that

$$x(1-x) = (1-a^{2})(1-(1-a^{2}))$$

$$= (1-a^{2})(a^{2})$$

$$= (1-a)a[a(1+a)]$$

$$= bc[a(1+a)]$$

$$= (-ba)[-c(1+a)]$$

$$= y[-c(1+a)]$$

$$= yw (letting w = -c(1+a))$$

Hence we get another solution $x = 1 - a^2$, y = -ba and w = -c(1 + a) for eq. (*) satisfying $yw = x - x^2$ and hence another idempotent matrix

$$E_{1} = \begin{bmatrix} 1 - a^{2} & -ba \\ -c(1+a) & 1 - 1 + a^{2} \end{bmatrix} = \begin{bmatrix} 1 - a^{2} & -ba \\ -c(1+a) & a^{2} \end{bmatrix}$$

which gives the following clean representation for E

$$\begin{bmatrix} a & b \\ c & 1-a \end{bmatrix} = \begin{bmatrix} 1-a^2 & -ba \\ -c(1+a) & a^2 \end{bmatrix} + \begin{bmatrix} a-1+a^2 & b+ba \\ c+c(1+a) & 1-a-a^2 \end{bmatrix}$$

where one can check that
$$det \begin{bmatrix} a-1+a^2 & b+ba \\ c+c(1+a) & 1-a-a^2 \end{bmatrix} = -1$$

Thus we get two different clean representations for E. Note that these clean representations are entirely different from the natural clean representation for E which is

$$E = (I - E) + (2E - I)$$

Or

$$\begin{bmatrix} a & b \\ c & 1-a \end{bmatrix} = \begin{bmatrix} 1-a & -b \\ -c & a \end{bmatrix} + \begin{bmatrix} 2a-1 & 2b \\ 2c & 1-2a \end{bmatrix}$$

Theorem 2.2: Let R be an integral domain. In $M_2(R)$, an idempotent is uniquely clean if and only if it is central. In other words, central idempotents are the only uniquely clean idempotents in $M_2(R)$.

Proof: The proof is clear from the above theorem and from the fact that central idempotents are uniquely clean [2].

REFERENCES

- [1] J. Chen, X. Yang and Y. Zhou, On strongly clean matrix and triangular small matrix rings, Comm. Algebra 34(10)(2006) 3659-3674.
- [2] W. K. Nicholson and Y. Zhou, Rings in which elements are uniquely the sum of an idempotent and a unit over commutative local rings, Glasgow Math. J. 46(2004) 227-236.
- [3] K. N. Rajeswari and Rafia Aziz, A Note on Clean Matrices in $M_2(Z)$ International Journal of Algebra, Vol. 3(2009) No. 5, 241-248.

Source of support: Nil, Conflict of interest: None Declared