Uniquely Clean Idempotent 2×2 Matrices Over Integral Domains

K. N. Rajeswari
School of Mathematics, Vigyan Bhawan, Khandwa Road, INDORE--452017, India
\&
Rafia Aziz*
Medi-Caps Institute of Technology and Management, A.B. Road, Pigdamber, INDORE-453331, India

(Received on: 07-07-12; Accepted on: 25-07-12)

Abstract

Let R be a ring with identity. An element of R is said to be clean if it is the sum of a unit and an idempotent and it is uniquely clean if this representation is unique. It is well known that central idempotents in any ring are uniquely clean ([2]). In this paper it has been shown that if R is an Integral Domain then the central idempotents are the only uniquely clean idempotents in $\mathrm{M}_{2}(\mathrm{R})$.

Keywords: Uniquely clean, central idempotents, integral domain.

2000 Mathematics Subject Classification: $16 S 50$.

1. INTRODUCTION

Let R be a ring with identity. Recall that an element a in R is called clean if it can be expressed as $a=e+u$, where e is an idempotent and u is a unit in R. It is said to be uniquely clean if this representation is unique. It is well known that idempotents in any ring are clean. If e is an idempotent in the ring, then $e=(1-e)+(2 e-1)$ is a clean representation of e since $1-e$ is an idempotent and $2 e-1$ is a unit in that ring. Nicholson and Zhou [2, Example 1] have shown that central idempotents are uniquely clean in any ring.

Throughout this paper we let R be an Integral Domain and $M_{2}(R)$ be the ring of 2×2 matrices over R. It is well known that (see for example [1] or [3]) idempotents in $\mathrm{M}_{2}(\mathrm{R})$ are:
$\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{cc}a & b \\ c & 1-a\end{array}\right]$ (where $b c=a-a^{2}$)
One can easily verify that out of these $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ and $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ are the only central idempotents. In this paper we shall show that $\left[\begin{array}{cc}a & b \\ c & 1-a\end{array}\right]$ (where $b c=a-a^{2}$) are not uniquely clean. This shows that non central idempotents are not uniquely clean. Hence uniquely clean idempotents are precisely the central idempotents in $\mathrm{M}_{2}(\mathrm{R})$.

2. MAIN RESULTS

Theorem 2.1: Let R be an integral domain. $\operatorname{In} \mathrm{M}_{2}(\mathrm{R})$, idempotent matrix of the form $\left[\begin{array}{cc}a & b \\ c & 1-a\end{array}\right]$ (where $b c=a-a^{2}$) is not uniquely clean.

Proof: For any idempotent matrix E, we always have $E=(I-E)+(2 E-I)$ as one clean representation (since, $(I-E)$ is an idempotent and $\left.(2 \mathrm{E}-\mathrm{I})^{2}=\mathrm{I}\right)$. We shall call this the natural clean representation of E.

Corresponding author: Rafia Aziz*

Medi-Caps Institute of Technology and Management, A.B. Road, Pigdamber, INDORE-453331, India

Consider the idempotent matrix $\left[\begin{array}{cc}a & b \\ c & 1-a\end{array}\right]$ (where $b c=a-a^{2}$).
If, $a=0$, then $b c=0$ gives
$E=\left[\begin{array}{ll}0 & w \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ w & 1\end{array}\right]$
But
$\left[\begin{array}{ll}0 & w \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & p \\ 0 & 0\end{array}\right]+\left[\begin{array}{cc}-1 & w-p \\ 0 & 1\end{array}\right]$
where $\left[\begin{array}{ll}1 & p \\ 0 & 0\end{array}\right]$ is an idempotent and $\left[\begin{array}{cc}-1 & w-p \\ 0 & 1\end{array}\right]$ is a unit with determinant -1 in $\mathrm{M}_{2}(\mathrm{R})$,
and $\left[\begin{array}{ll}0 & 0 \\ w & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ p & 0\end{array}\right]+\left[\begin{array}{cc}-1 & 0 \\ w-p & 1\end{array}\right]$
where $\left[\begin{array}{ll}1 & 0 \\ p & 0\end{array}\right]$ is an idempotent and $\left[\begin{array}{cc}-1 & 0 \\ w-p & 1\end{array}\right]$ is a unit with determinant -1 in $\mathrm{M}_{2}(\mathrm{R})$. Hence both $\left[\begin{array}{cc}0 & w \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{ll}0 & 0 \\ w & 1\end{array}\right]$ are not uniquely clean.

Similarly if $a=1$, then for $E=\left[\begin{array}{ll}1 & w \\ 0 & 0\end{array}\right]$ we have the following clean representation,
$\left[\begin{array}{ll}1 & w \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}0 & p \\ 0 & 1\end{array}\right]+\left[\begin{array}{cc}1 & w-p \\ 0 & -1\end{array}\right]$ and for $E=\left[\begin{array}{cc}1 & 0 \\ w & 0\end{array}\right]$
we have the following clean representation,
$\left[\begin{array}{ll}1 & 0 \\ w & 0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ p & 1\end{array}\right]+\left[\begin{array}{cc}1 & 0 \\ w-p & -1\end{array}\right]$
Hence both $\left[\begin{array}{ll}1 & w \\ 0 & 0\end{array}\right]$ and $\left[\begin{array}{ll}1 & 0 \\ w & 0\end{array}\right]$ are also not uniquely clean.
From now on $E=\left[\begin{array}{cc}a & b \\ c & 1-a\end{array}\right]$ (where $b c=a-a^{2} \neq 0$). In what follows we shall show that we can always express E as
$E=E_{1}+U$
where $E_{1}=\left[\begin{array}{cc}x & y \\ w & 1-x\end{array}\right]$ (with $y w=x-x^{2}$) is an idempotent and $U=\left[\begin{array}{ll}u_{1} & u_{2} \\ u_{3} & u_{4}\end{array}\right]$ is a unit with determinant -1 in
$\mathrm{M}_{2}(\mathrm{R})$. This amounts to showing that there exist an idempotent matrix $E_{1}=\left[\begin{array}{cc}x & y \\ w & 1-x\end{array}\right]$ (with $y w=x-x^{2}$) such that
© 2012, IJMA. All Rights Reserved
$\operatorname{det}\left(E-E_{1}\right)=-1$
or
$\operatorname{det}\left(\left[\begin{array}{cc}a & b \\ c & 1-a\end{array}\right]-\left[\begin{array}{cc}x & y \\ w & 1-x\end{array}\right]\right)=-1$
or
$\operatorname{det}\left(\left[\begin{array}{cc}a-x & b-y \\ c-w & -a+x\end{array}\right]\right)=-1$
This problem reduces to solving the equation
$(a-x)(x-a)-(b-y)(c-w)=-1$
for x, y and w such that this solution $y w=x-x^{2}$.

Now from (*) we have
$\left(2 a x-a^{2}-x^{2}\right)-(b c-b w-y c+w y)=-1$
using $b c=a-a^{2}$ and $y w=x-x^{2}$ we get
$(2 a-1) x-a+b w+y c=-1$
Multiplying both sides by y and rearranging the terms we get
$(2 a-1) x y+y^{2}(c)+b w y+(-a+1) y=0$
again using $y w=x-x^{2}$, we get
$(-b) x^{2}+(2 a-1) x y+(c) y^{2}+(b) x+(-a+1) y=0$
Multiplying both sides by ($-4 b$), we get
$4 b^{2} x^{2}+4 b(1-2 a) x y-4 b c y^{2}-4 b^{2} x+4 b(a-1) y=0$
or
$(2 b x+(1-2 a) y-b)^{2}-((1-2 a) y-b)^{2}-4 b c y^{2}+4 b(a-1) y=0$
or
$(2 b x+(1-2 a) y-b)^{2}-y^{2}-2 b y-b^{2}=0$
or
$(2 b x+(1-2 a) y-b)^{2}-(y+b)^{2}=0$
Letting $x^{\prime}=2 b x+(1-2 a) y-b$ and $y^{\prime}=y+b$, we get
$\left(x^{\prime}\right)^{2}-\left(y^{\prime}\right)^{2}=0$
or
$-\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}=0$
or
$\left(y^{\prime}-x^{\prime}\right)\left(y^{\prime}+x^{\prime}\right)=0$

One of the parenthesis must be zero, say
$\left(y^{\prime}+x^{\prime}\right)=0$
or
$y+b+2 b x+(1-2 a) y-b=0$
or
$2 b x+(2-2 a) y=0$
or
$b x+(1-a) y=0$
Clearly its general solution is
$x=(1-a) t, y=-b t$
taking $t=1-a$, we get

$$
\begin{aligned}
& x=(1-a)^{2}, y=-b(1-a) \text { such that } \\
& \left.\begin{array}{rl}
x(1-x)=(1-a)^{2}\left(1-(1-a)^{2}\right) \\
& =(1-a)^{2}(-a)(a-2) \\
= & -b c(1-a)(a-2) \\
= & \left(\text { as } b c=a-a^{2}\right) \\
= & y(1-a)[c(a-2)] \\
& =y w
\end{array} \quad \text { (letting } \mathrm{w}=c(a-2)\right)
\end{aligned}
$$

Thus we get a solution $x=(1-a)^{2}, y=-b(1-a)$ and $w=c(a-2)$ of eq. (*) satisfying $y w=x-x^{2}$ and hence an idempotent matrix

$$
E_{1}=\left[\begin{array}{ll}
(1-a)^{2} & -b(1-a) \\
c(a-2) & 1-(1-a)^{2}
\end{array}\right]=\left[\begin{array}{ll}
(1-a)^{2} & -b(1-a) \\
c(a-2) & -a^{2}+2 a
\end{array}\right]
$$

which gives the following clean representation for E

$$
\left[\begin{array}{cc}
a & b \\
c & 1-a
\end{array}\right]=\left[\begin{array}{ll}
(1-a)^{2} & -b(1-a) \\
c(a-2) & -a^{2}+2 a
\end{array}\right]+\left[\begin{array}{cc}
a-(1-a)^{2} & 2 b-2 a \\
c-c(a-2) & (a-1)^{2}-a
\end{array}\right]
$$

where one can check that $\operatorname{det}\left(\left[\begin{array}{cc}a-(1-a)^{2} & 2 b-2 a \\ c-c(a-2) & (a-1)^{2}-a\end{array}\right]\right)=-1$

From (**), we can also have
$\left(y^{\prime}-x^{\prime}\right)=0$
or
$y+b-2 b x-(1-2 a) y+b=0$
or
$-2 b x+2 a y+2 b=0$
or
© 2012, IJMA. All Rights Reserved

K. N. Rajeswari ${ }^{1}$ \& Rafia Aziz*/Uniquely Clean Idempotent 2×2 Matrices Over Integral Domains/ IJMA- 3(7), July-2012,

$b x+(-a) y=b$
Its general solution is
$x=1+a t, y=b t$
taking $t=-a$, we get
$x=1-a^{2}, y=-b a$
such that

$$
\begin{aligned}
x(1-x) & =\left(1-\mathrm{a}^{2}\right)\left(1-\left(1-a^{2}\right)\right) \\
& =\left(1-\mathrm{a}^{2}\right)\left(a^{2}\right) \\
& =(1-a) a[a(1+a)] \\
& =\mathrm{bc}[\mathrm{a}(1+\mathrm{a})] \\
& =(-\mathrm{b} a)[-c(1+a)] \\
& =\mathrm{y}[-c(1+a)] \quad \\
& =\mathrm{yw} \quad
\end{aligned}
$$

Hence we get another solution $x=1-a^{2}, y=-b a$ and $w=-c(1+a)$ for eq. (*) satisfying $y w=x-x^{2}$ and hence another idempotent matrix

$$
E_{1}=\left[\begin{array}{cc}
1-a^{2} & -b a \\
-c(1+a) & 1-1+a^{2}
\end{array}\right]=\left[\begin{array}{cc}
1-a^{2} & -b a \\
-c(1+a) & a^{2}
\end{array}\right]
$$

which gives the following clean representation for E

$$
\left[\begin{array}{cc}
a & b \\
c & 1-a
\end{array}\right]=\left[\begin{array}{cc}
1-a^{2} & -b a \\
-c(1+a) & a^{2}
\end{array}\right]+\left[\begin{array}{cc}
a-1+a^{2} & b+b a \\
c+c(1+a) & 1-a-a^{2}
\end{array}\right]
$$

where one can check that $\operatorname{det}\left(\left[\begin{array}{cc}a-1+a^{2} & b+b a \\ c+c(1+a) & 1-a-a^{2}\end{array}\right]\right)=-1$
Thus we get two different clean representations for E. Note that these clean representations are entirely different from the natural clean representation for E which is
$E=(I-E)+(2 E-I)$
Or
$\left[\begin{array}{cc}a & b \\ c & 1-a\end{array}\right]=\left[\begin{array}{cc}1-a & -b \\ -c & a\end{array}\right]+\left[\begin{array}{cc}2 a-1 & 2 b \\ 2 c & 1-2 a\end{array}\right]$

Theorem 2.2: Let R be an integral domain. In $\mathrm{M}_{2}(\mathrm{R})$, an idempotent is uniquely clean if and only if it is central. In other words, central idempotents are the only uniquely clean idempotents in $M_{2}(R)$.

Proof: The proof is clear from the above theorem and from the fact that central idempotents are uniquely clean [2].

K. N. Rajeswari ${ }^{1}$ \& Rafia Aziz* / Uniquely Clean Idempotent 2×2 Matrices Over Integral Domains/IJMA- 3(7), July-2012,

 Page: 2651-2656
REFERENCES

[1] J. Chen, X. Yang and Y. Zhou, On strongly clean matrix and triangular small matrix rings, Comm. Algebra 34(10)(2006) 3659-3674.
[2] W. K. Nicholson and Y. Zhou, Rings in which elements are uniquely the sum of an idempotent and a unit over commutative local rings, Glasgow Math. J. 46(2004) 227-236.
[3] K. N. Rajeswari and Rafia Aziz, A Note on Clean Matrices in $M_{2}(Z)$ International Journal of Algebra, Vol. 3(2009) No. 5, 241-248.

