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ABSTRACT 
Let R be a ring with identity. An element of R is said to be clean if it is the sum of a unit and an idempotent and it is 
uniquely clean if this representation is unique. It is well known that central idempotents in any ring are uniquely clean 
([2]). In this paper it has been shown that if R is an Integral Domain then the central idempotents are the only uniquely 
clean idempotents in )R(M 2 . 
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1. INTRODUCTION  
 
Let R be a ring with identity. Recall that an element a in R is called clean if it can be expressed as a = e + u, where e is 
an idempotent and u is a unit in R. It is said to be uniquely clean if this representation is unique. It is well known that 
idempotents in any ring are clean. If e is an idempotent in the ring, then e = (1 – e) + (2e – 1) is a clean representation 
of e since 1- e is an idempotent and 2e – 1 is a unit in that ring. Nicholson and Zhou [2, Example 1] have shown that 
central idempotents are uniquely clean in any ring. 
 
Throughout this paper we let R be an Integral Domain and )R(M 2 be the ring of 22× matrices over R. It is well 

known that (see for example [1] or [3]) idempotents in )R(M 2 are: 
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One can easily verify that out of these 
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and 
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are the only central idempotents. In this paper we shall 

show that 







− ac
ba

1
 (where 2aabc −= ) are not uniquely clean. This shows that non central idempotents are not 

uniquely clean. Hence uniquely clean idempotents are precisely the central idempotents in )R(M 2 . 
 
2.  MAIN RESULTS 

Theorem 2.1:  Let R be an integral domain. In )R(M 2 , idempotent matrix of the form 







− ac
ba

1
 

(where 2aabc −= ) is not uniquely clean. 
 
Proof: For any idempotent matrix E, we always have E = (I - E) + (2E - I) as one clean representation (since, (I - E) is 
an idempotent and 2)IE2( − = I). We shall call this the natural clean representation of E.  
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 Consider the idempotent matrix 
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If, 0=a , then 0=bc gives 
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where 
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is an idempotent and 
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is a unit with determinant -1 in )R(M 2 ,  
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are not uniquely clean.  

 

Similarly if  1=a , then for 
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E  we have the following clean representation, 
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we have the following clean representation, 
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From  now on 
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1
 (where 02 ≠−= aabc ).  In what follows we shall show that we can always 

express E as  
 

UEE += 1  

where 
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U is a unit with determinant -1 in 

)R(M 2 . This amounts to showing that there exist an idempotent matrix 
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such that  
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11 −=− )EEdet(  
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This problem reduces to solving the equation 
 

)........(*                     )wc)(yb()ax)(xa( 1−=−−−−−  
 
for x, y and w such that this solution 2xxyw −= . 
 
Now from (*) we have  
 

12 2 −=+−−−− )wyycbwbc()xa-ax( 2  
 
using 2aabc −=  and 2xxyw −= we get  
 

12 −=++−− ycbwax)1a(  
 
Multiplying both sides by y and rearranging the terms we get 
 

012 2 =+−+++− y)a(bwy)c(yxy)1a(  
 
again using 2xxyw −= , we get  
 

012 22 =+−+++−+− y)a(x)b(y)c(xy)1a(x)b(  
 
Multiplying both sides by (-4b), we get 
 

014442144 2222 =−+−−−+ y)a(bxbbcyxy)a(bxb  
or  

014421212 222 =−+−−−−−−+ y)a(bbcy)by)a(()by)a(bx(  
or 

02212 222 =−−−−−+ bbyy)by)a(bx(  
or 

0212 22 =+−−−+ )by()by)a(bx(  
 
Letting by)a(bxx −−+=′ 212 and byy +=′ , we get  
 

022 =′−′ )y()x(  
or 

022 =′+′− )y()x(  
or 

(**) ....                   )xy)(xy( 0=′+′′−′  
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One of the parenthesis must be zero, say 
 

 )xy( 0=′+′  
 
or 

0212 =−−+++ by)a(bxby  
 
or 

0222 =−+ y)a(bx  
 
or 

01 =−+ y)a(bx  
 
Clearly its general solution is 
 
x = (1 - a)t , y = -bt 
 
taking t = 1 - a, we get  
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Thus we get a solution 21 )a(x −=  , )a(by −−= 1  and 2)-c(a  w = of eq. (*) satisfying 2xxyw −=  and 
hence an idempotent matrix 
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which gives the following clean representation for E  
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where one can check that 1
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From (**), we can also have 

 )xy( 0=′−′  
 
or 

0212 =+−−−+ by)a(bxby  
 
or 

0222 =++− baybx  
 
or 
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by)a(bx =−+  
 
Its general solution is 
 
x = 1 + at,  y = bt 
 
taking t = - a, we get  
 

21 ax −=  , bay −=  
 
such that  

2 2

2 2
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Hence we get another solution 21 ax −=  , bay −=  and a)c(1-  w += for eq. (*) satisfying 2xxyw −=  and 
hence another idempotent matrix 
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which gives the following clean representation for E  
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where one can check that 1
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Thus we get two different clean representations for E. Note that these clean representations are entirely different from 
the natural clean representation for E which is  
 
E = (I - E) + (2E - I) 
 
Or  
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Theorem 2.2: Let R be an integral domain. In )R(M 2 , an idempotent is uniquely clean if and only if it is central. In 

other words, central idempotents are the only uniquely clean idempotents in )R(M 2 . 
 
Proof:  The proof is clear from the above theorem and from the fact that central idempotents are uniquely clean [2].  
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