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ABSTRACT

The aim of this paper is to compare the relative Valiron defect with the relative Nevanlinna defect of special type of
differential polynomials generated by transcendental meromorphic functions.
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1. INTRODUCTION, DEFINITIONS AND NOTATIONS

Let f be a transcendental meromorphic function defined in the open complex plane C. A monomial in f is an
expression of the form M[f] = (f)"0 (FM)1 ... (F®)™ where ng,ny,N,,...,N are non negative integers. y,, = ny +
n; + -+ n and I'y=ng+2n,+...+(k+1)n, are respectively called the degree and weight of the monomial.

If M,[f],M,[f],..., M, [f] denote monomials in f, then Q[f] = a; M;[f] + a, M,[f] + --- + a, M,[f], where a; #
0(i=1,2,...,n) is called a differential polynomial generated by f of degree y, = Max {VM;' : 1 <j<n} and weight

Iy = Max{FMj :1<j<n}

Also we call numbers y, = 11”51'}19 Yu, and k (the order of the highest derivative off) the lower degree and the order of
Q[f] respectively. If y, = yq, Q[f] is called a homogeneous differential polynomial.

For a € C U {0}, the quantity

Nraf) _ . . cm(raf)
Ty - minf=ees

6(a; f) =1 —limsup
T —00
is called the Nevanlinna’s deficiency of the value ‘a’. Similarly the Valiron defect of ‘a’ is defined as

. 4 g NCa@f) m(r,a;f)
Ala; f) =1 llﬁgf o llrrrlj;lp Ton

® (g: £) = 1 — limsup "L
The term &y ' (a; f) =1 — mrnfo‘jp T(f)

respect to £®). In a like manner AY” (a; £) = 1 — liminf
T —0

for k =1,2,3,... is called the relative Nevanlinna’s defect of ‘a’ with

N(;'?T‘J;) ) fork = 1,2,3, ... is called the relative Valiron defect

of ‘a’ with respect tof ®). Xiong [3] has shown various relations between the usual defects and relative defects of
meromorphic functions. Following Datta and Mondal [1], in the paper we consider F = f"Q[f], Q[f] being a
differential polynomial in f and n = 1,2,3, ... and compare the relative Valiron defect with the relative Nevanlinna
defect of F.
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The term S(r, f)denotes any quantity satisfying S(r, f) = o{T(r, f)} as r — oo through all values of r if fis of finite
order and except possibly for a set of r of finite linear measure otherwise. We do not explain the standard definitions
and notations of the value distribution and the Nevanlinna theory as those are available in [2].

2. LEMMAS

In this section we present some lemmas which will be needed in the sequel.

Lemma 1: Let k be any positive integer and ¢ = ¥* ,a; f©, where a; are meromorphic functions such that
T(r,a;) = S(r,f) fori = 0,1,2, ..., k.

lim T0F) _
r—0 T(T,f) -

Lemma2: Let F = f"Q[f] where Q[f] is a differential polynomial in f. If n = 1 then

The proof is omitted.

Lemma 3: Let F = f™Q[f] where Q[f] is a differential polynomial in f. If n = 1 then for any

limi (r,a;F) li (r,a;F)
@, 8f(a; )= U EEES and Af(as ) = TP R

Proof: In view of Lemma 2 we get that

. N(r,a;F)
SF(a; ) =1 —lims
r(a;f) r_mlolp )
N(r,a;F)  ym T F)
TrF) "~ TTOT@.f)
N(r,a;F) 1
T(r,F)
=1 — limsup —NT(;aF?
=00 ’

= liminf—m(r'a;F)

r—w T(r,F)
= liminf2C%H - lim TGS

>0 T(r.f) T T(r,F)

= liminfm(r'a;F) .1
r—w T(.f)

s em(raF)
= liminf= 5

=1 —limsup

-0

=1 —limsup

-0

This proves the first part of the lemma.

Similarly the second part of Lemma 3 follows.

3. THEOREMS.

In this section we present the main results of the paper.

Theorem 1: Let f be a transcendental meromorphic function of finite order p; and satisfying the condition
m(r,f) =S(r,f). Ifa, b and c are three non zero finite complex numbers then

36(a; f) + 28(b; f) + 8(c; ) + 50k (0; F) < 5A(o0; f) + 545 (o0; F)
where F is a differential polynomial in f of the form F = f"Q[f] withn > 1.

Proof: Let us consider the following identity

b-—a [ F (f-a f-by f-cF F (f—a f-Df

f—a _[f—a{ F F }_ F 'f'f—a{ F F }]E

Since m(r,j%a) < m(r,jj%z) +0(1) and m(r,f) <m(r,f)+0(1), we get from the above identity in view of
Lemma 1 that

m(r,jj%z) Sm(r,f%a)+m(r,%)+m(r,f%a) +m(r,%)+m(r,fF;C)+m(r,£)+S(r,f)
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i.e ,m(r,}%a) <2m (r,f%a) +2m (r,%) + m(r,fF;C) +m(r, )+ S, f)+00)
ie.,m (r}%a) <21 (rn8) —2n (nE8) + 21 (n 22) 2N (n B22) + 7 (. 25) - N (. 2F)
+m(r,f) + S, )+ 0(1). Q)

Now by the relation T (r, %) =T(r,f)+ 0(1) and in view of Lemma 1 it follows from (1) that

m(r) =27 () —2n () + 27 () -2 (n32) + 7 () - ()

+m(r, ) + S(r, f) +0(1)

i.e.,m(r,}%a) < 2{N<r,fia)—N(r,f%a>} +2{N(r,}%b)—N(r’f;b>}

+N (r,fL_C) —-N (r,fF;C) +m(r,f)+ S0, f)+0Q1). 2

In view of {p.34, [2]} it follows from (2) that

m(r,}%a)<2{N(rF)+N( =)-N@f-a)-N(r, )}+2{N(rF)+N( L) =NG.f-b) =N (1)}
+{N@ )+ N (r,f:) —NG.f =)= N(r2)} +mGr. f) + S(r,f) +0(1). )

Now applying the condition m(r, f) = S(r, f) it follows from (3) that

m(r, =) S SNGF) =SNG £) = SN (r,7) + 2N (1, =) 42N (r,—5) + N (r.==) + 502 )

f
1 1 1
S T m(r =) - NeR) _Nep) Mg . N(r7=) V()
f=a) F) _N@p) _ C\F \"fF-b)
i.e.,liminf,_, s _511m1nfr_,oo{T(r'f) Ton e +2111’r1’15;1p o f) +211rrnj;1p o
N(T‘L)
. f—c
+llrrl’1_ilolp T
1 ) 1
NG NS V() N(r=)
< —
i.e. llmglf Tr 5lim _mf o 511;1_1)lwf o minf - +21H:1—i}jp s
M) W)
+211rr1’1_ilclp 0 +11rrnj;1p . f)
i.e.,8(a; f) < 5{1 — Aj(o0; f)} — 5{1 — A(o0; )} — 5{1 — Az (0; )} + 2{1 — §(a; )} + 2{1 — 8(b; )}

+H1-6(c; )}
i.e.,38(a; f) +25(b; )+ 8(c; f) + 505 (0; f) < 5A(c; f) + 505(0; ).
This proves the theorem.

Theorem 2: Let f be a meromorphic function of finite order satisfying the condition m(r, f) = S(r, f) and also let If
F = f*Q[f] is a differential polynomial in f withn > 1. If a, b, ¢ and d are any four distinct complex numbers then

6(d; ) + 8k (b f) + Sk (c; f) < 2.

Proof: Let us consider the following identity

bR A oo

Since m(r, f —a) < m(r, f) + 0(1), we get from the above identity in view of Lemma 1 that

m(ﬂj%d) < m(r,%) +m(r,f)+Sur, f)+0()
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i.e.,m(r,f i d) < T(r,%) - N (r,%) +m(r, )+ S, f)+0Q)

Now by the relation T (r, %) =T(r, f) + 0(1) we get from the above

m(r, =) STC,F) =N (r.z) + mr, f) + S@. f) + 0(D). @)

Now by Nevanlinna’s second fundamental theorem it follows from (4) that

m( ,L) < N(r,%) + N(r,ﬁ) + IV(r,L) —N (r,%) +m(@, f)+ S, f)+0(Q1). (5)

T
f—d F—c

As N (r, %) -N (r%) < 0 and applying the condition m(r, f) = S(r, f) it follows from (5) that

1 _ 1 _
m(r, )SN T, )+N<r,
1

)+5@.)
)+56.)

1
F—c

nr
rF—c

i.e.,m

i.e.,m(r %) < T(r,Flfb —m(r,ﬁ) +T(r,i) -m (r,Flj) +S(. )
( )ST(r,F)—m(r,ﬁ)—m(r,Fic>+S(r,f)

m(r7=a) TP m(ri) m(ris)
i.e.,liminf < 2liminf === — liminf =222 —|iminf ——f=¢/
row  T@.f) r—w r.f) rown  T@f) row T@.f)

i.e.,8(d;f) <21 —38x(b;f)—8x(c;f)
i.e.,8(d; )+ 65(b; f) + 65 (c; f) < 2.
This proves the theorem.

Theorem 3: Let f be a transcendental meromorphic function of finite order p, and satisfying the condition m(r, f) =
S(r, f). If a and c are any two distinct complex numbers and let F = f*Q[f] is a differential polynomial in f with
n = 1 then

8(0; £) + 8(c; f) + AR (005 f) < A(oo; f) + 285 (0; f).

Proof: Consider the following identity

oL e o

Since m (r%) <m (r, ,%) +0()and m(r,f —a) <m(r,f) + 0(1), we get from the above identity in view of
Lemma 1 that

m(r,%) < m(r,%) + m(r,%) +m(r,f)+ S, f)+0Q)

F F

i.e.,m(r,%) < T(r,f;c) —N(r,f_c) +T(r,%) —N(r,%) +m(r, f) + S, f)+0(1). (6)

Now by Nevanlinna’s first fundamental theorem and in view of Lemma 1 it follows from (6) that
1 F f—c 1
m(r,f) < T(r,f—) — N(r ) +T(r,F)— N(r,F) +m(r,f)+ S, f)+0Q).

—-c " F

© 2012, IJMA. All Rights Reserved 2566



Sanjib Kumar Datta”" & Sudipta Kumar Pal’/ SOME RESULTS BASED ON RELATIVE DEFECTS OF SPECIAL TYPE.../ IMA- 3(7),
July-2012, Page: 2563-2567

i.e.,m(r,%) <N (r,fL_C) - N (r,fF;c) - N (r,%) + T, F)+ m(r,f)+ S(r, f)+0Q). @)

In view of {p.34, [2]} it follows from (7) that

m(r,%) < N(r,F) +N(r,L) —N(r,f —c¢) —N(r,%) —N(r,l> +T(rF)+m(, )+ S, f)+0Q)

f—-c F
1 1 1
m(rs) Nz N{rz— . ,
i.e.,liminf—L < liminf 2 — Jiminf X0 _2liminf ¢y + limsupu + llmsup@
r—wo T(f) rowo T(f) row T(r.f) row T(.f) row 1@ row TG

i.e.,8(0;f) <{1—Ak(0; )} = {1 = A0; )} = 2{1 = AR (0; )} +H{1 = 8(c; )} +1
i.e.,5(0; ) + 8(c; ) + AL (oo; £) < A(o0; f) + 24A5(0; £).

Thus the theorem is established.
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