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ABSTRACT 

The steady two-dimensional free convection flow of a viscous fluid in a vertical double passage wavy channel has been 
investigated analytically. The channel is divided into two passages by means of a thin, perfectly conductive plane baffle and 
the velocity and temperature will be individual in each streams. The governing equations of the fluid and the heat transfer 
have been solved subject to the relevant boundary conditions by assuming that the solution consists of two parts; a mean 
part and disturbance or perturbed part. To obtain the perturbed part of the solution, the long wave approximation has been 
used and to solve the mean part, well known approximation used by Ostrach [1] has been utilized. Results are presented 
graphically for the distribution of velocity and temperature fields for varying physical parameters such as baffle position, 
Grashof number, wall temperature ratio and product of non-dimensional wave number and space-coordinate at different 
positions of the baffle. The relevant flow and heat transfer characteristics namely, skin friction and the rate of heat transfer 
at both the walls has been discussed in detail. 
 
Keywords:  Wavy vertical channel, baffle, viscous fluid 
 
 
1. INTRODUCTION 
 
Natural convection in vertical channels and tubes has been studied extensively because of its interest in many practical 
systems, including cooling of electronic equipment [2, 3], chimneys and furnaces, heat exchangers and solar energy 
collectors, nuclear engineering and geo-physical flows. Early experiments were carried out by Elenbaas [4] and 
Ostroumove [5] and later by Sparrow and Bahrami [6], for isothermal tubes and plates heated at temperatures above the 
ambient temperature. Bodoia and Osterle [7] analyzed the flow in a vertical channel with uniform wall temperature; Engel 
and Muller [8] applied an integral method to channels of infinite height with uniform wall temperature or uniform surface 
heat flux.  
 
When the channel is divided into several passages by means of plane baffles, as usually occurs in heat exchangers or 
electronic equipment, it is quite possible to enhance the heat transfer performance between the walls and fluid by the 
adjustments of each baffle position and strengths of the separate flow streams. In such configurations, perfectly conductive 
and thin baffles may be used to ovoid significant increase of the transverse thermal resistance.  Stronger streams may be 
arranged to occur within the passages near the channel wall surfaces in order to cool or heat the walls more effectively.  
Even though the subject of channel flow has been investigated extensively, few studies have so far evaluated for these 
effects.  It is necessary to study the heat and mass transfer from an irregular surface because irregular surfaces are often 
present in many applications. It is often encountered in heat transfer devices to enhance the heat transfer. Mixed convection 
from irregular surfaces can be used for transferring heat in several heat transfer devices. For example, flat-plate, solar 
collectors and flat-plate condensers in refrigerators. The natural convection heat transfer from an isothermal vertical wavy 
surface was first studied by Yao [9, 10], and using an extended Prandtl’s transposition theorem and a finite difference 
scheme. He proposed a simple transformation to study the natural convection heat transfer from isothermal vertical wavy 
surfaces, such as sinusoidal surface. Moulic and Yao [11] solved for mixed convection with thermal diffusion. Along a 
vertical wavy surface, Chiu and Chou [12] studied the natural convection heat transfer in micropolar fluids. Chen and Wang 
[13] analyzed transient free convection along a wavy surface in microfluids.  Malashetty et al. [14] studied on magneto-
convective flow and heat transfer between vertical wavy wall and a parallel flat wall.  Umavathi et al. [15-17] also studied 
two fluid flow in a vertical wavy channel.  
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Das and Mahmud [18] analyzed the free convection inside both the bottom and the ceiling wavy and isothermal enclosure. 
They indicated that, only at the lower Grashof number, the heat transfer rate rises when the amplitude wavelength ratio 
changes from zero to other values. Recently, Dalal and Das [19] made a numerical solution to investigate the inclined right 
wall wavy enclosure with spatially variable temperature boundary conditions. Oztop [20] applied the electric grid 
generation and obtained sinusoidal duct geometry to enhance the forced convection heat transfer. Varol and Oztop [21] 
investigated the effects of inclination angle on the laminar natural convection heat transfer and fluid flow in a wavy solar 
collector in steady state regime. They observed that the inclination angle is the most important and effective parameter on 
heat transfer which can be used to control the heat transfer inside the collector. 
 
Most of the previous studies about vertical wavy surfaces are concerned with micro fluids or porous media. Recently, Jang 
et al. [22], has studied numerically on natural convection heat and mass transfer along a vertical wavy surface. Yet the 
preceding literature survey shows that mixed convection heat and mass transfer in Newtonian fluid along a vertical wavy 
surface has not been well investigated.  The flow and thermal field in an isothermal vertical wavy enclosure was studied by 
Mahmud et al. [23] for Grashof number and orientations. Khalil et al. [24] analyzed the natural convection heat transfer in a 
wavy porous enclosure using non-Darcian model. They found that the amplitude of the wavy surface and the number of 
undulation affected the heat transfer characteristics. Hasnaoui et al. [25], Ben-Nakhi and Camkha [26], Dagtekin and Oztop 
[27] investigated also the natural convection in enclosures with a partition.  The presence of a partition was the effective 
parameter on heat transfer. Tansmim and Collins [28] did a numerical study on heat transfer in a square cavity with a baffle 
located on the hot wall.  The study showed that the baffle has a significant effect on increasing the rate of heat transfer 
compared with a wall without baffle. Recently Prathap Kumar et al. [29, 30] analyzed free convection in a double passage 
wavy channel using Walters Fluid.  Cheng and Shiau [31] studied the effects of a horizontal baffle on the heat transfer 
characteristics of pulsating opposing mixed convection in a parallel vertical open channel.  The influences of the 
dimensionless pulsating frequency,  Strouhal number and magnitude, Prandtl number and baffle position on the velocity 
and temperature distribution and long time average Nusselt number variation for the system at various Reynolds number 
and square of mixed convection parameter were explored in detail. The result showed that the channel with both flow 
pulsation and a baffle gives the best heat transfer. 
 
Heat transfer enhancement in a heat exchanger tube by installing a baffle was reported by Nasiruddin and Siddiqui [32]. 
The effect of baffle size and orientation on the heat transfer enhancement was studied in detail. Three different baffle 
arrangements were considered.  The results showed that for the vertical baffle, an increase in the baffle height cause a 
substantial increase in the Nusselt number but the pressure loss is also very significant.  For the inclined baffles, the result 
show that the Nusselt number enhancement is almost independent of baffle inclination angle, with the maximum and 
average Nusselt number was 120% and 70% higher than that for the case of no baffle, respectively.  For a given baffle 
geometry, the Nusselt number enhancement was increased by more than a factor of two as the Reynolds number decreased 
from 20,000 to 5000.  Simulations were conducted by introducing another baffle to enhance heat transfer.  The result show 
that the average Nusselt number for the two baffles case is 20% higher than the one baffle case and 82% higher than the no 
baffle case.  The above results suggest that a significant heat transfer enhancement in a heat exchanger tube can be achieved 
by introducing a baffle inclined towards downstream side with the minimum pressure loss. Mixed convection heat transfer 
in an inclined parallel-plate channel with a transverse fin located at lower channel wall was investigated numerically by 
Yang et al. [33].   
 
Keeping the interest of heat transfer problems owing to their practical applications, an attempt is made to understand the 
flow and heat transfer in a vertical wavy channel by introducing a perfectly thin baffle. 
 
2. MATHEMATICAL   FORMULATION 
 
Consider a steady, two-dimensional laminar fully developed free convection flow in an open ended vertical channel filled 
with purely viscous fluid.  The geometry under consideration illustrated in Figure 1 consists of wavy wall situated at 

( )cosY kXε ∗=  and flat wall at Y d= .  The X -axis is taken vertically upward, and parallel to the direction of buoyancy, 
and the Y -axis is normal to it.  The wavy and flat walls are maintained at a constant temperature wT  and 1T , respectively.  
The fluid properties are assumed to be constant and the Boussinesq approximation will be used so that the density variation 
is retained only in the buoyancy term.  Further it is also assumed that the wavelength of the wavy wall is large compared 
with the breadth of the channel. The channel is divided into two passages by means of a perfectly conducting thin baffle, for 
which the transverse thermal resistance can be neglected (Cheng et al. [34] and Salah El Din [35, 36]).  
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Fig. 1: Physical configuration of the double-passage channel 
  
 
Introducing the following non-dimensional variables in the governing equations for velocity and temperature as, 

 

( )2, , , , ,i i s
i i

w s

U d V d T T pX Yx y u v p
d d T T d

θ
ν ν ρ ν

∗−
= = = = = =

−
                          (1)  

 
Doing this, one obtains the equation of continuity as 
 

0i iu v
x y

∂ ∂
+ =

∂ ∂
                                                                        (2) 

 
and the momentum equation becomes 
 

2 2

2 2
i i i i i

i i i
u u P u u

u v G
x y x x y

θ
∂ ∂ ∂ ∂ ∂ 

+ = − + + + ∂ ∂ ∂ ∂ ∂ 
                                                       (3)  

2 2

2 2
i i i i i

i i
v v P v v

u v
x y y x y

∂ ∂ ∂ ∂ ∂ 
+ = − + + ∂ ∂ ∂ ∂ ∂ 

                                                        (4) 

 
The energy equation becomes 
 

2 2

2 2
i i i i

i iP u v
x y x y
θ θ θ θ∂ ∂ ∂ ∂ 

+ = + ∂ ∂ ∂ ∂ 
                              (5) 
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Subject to the boundary conditions, 
 

1 1 1 0, 1u v θ= = =                    on ( )cosy xε λ=  

1 2 1 2 0, 0,u u v v= = = =   on  ∗=y y                                          (6) 

1 1 2 2
1 2 ,

y x y x
θ θ θ θ

θ θ
∂ ∂ ∂ ∂

= + = +
∂ ∂ ∂ ∂

 on  ∗=y y  

2 2 2 0,u v mθ= = =         on 1=y  
  
where ,pP c kµ= the Prandtl number,  ,dε ε ∗=   the dimensionless amplitude parameter, ,kdλ =   the dimensionless 

frequency parameter, ( ) ( )1 ,s w sm T T T T= − −  the wall temperature ratio and ( )3 2
x w sG d g T Tβ ν= − ,  the Grashof 

number. The subscript s denotes quantities in the static fluid condition.  
 
3. SOLUTIONS 
 
Equations (3) to (5) are coupled non-linear partial differential equations and hence finding exact solutions is out of scope. 
However, for small values of the amplitude parameter ε , approximate solutions can be extracted through   the perturbation 
method. The amplitude parameter ε  is usually small and hence regular perturbation method can be strongly justified. 
Adopting this technique, solutions for velocity and temperature are assumed in the form 
 

0 1( , ) ( ) ( , )i i iu x y u y u x yε= +  , 1( , ) ( , )i iv x y v x yε=  

0 1( ) ( , )i i ip p x p x yε= + ,   0 1( , ) ( ) ( , )i i ix y y x yθ θ ε θ= +                                                                    (7) 
 
where the perturbations 1 1 1 1, , andi i i iu v p θ  are small compared with the mean or zeroth order quantities. Equations           
(2) to (6) yield the following equations. 
Zeroth order equations 
 

2
0

02 0i
i

d u
G

dy
θ+ = ; 

2
0

2
0id

dy
θ

=                                            (8) 

 
First order equations 
 

1 1 0i iu v
x y

∂ ∂
+ =

∂ ∂
                                                                                                                 (9) 

2 2
1 0 1 1 1

0 1 12 2
i i i i i

i i i
u u P u u

u v G
x y x x y

θ
∂ ∂ ∂ ∂ ∂

+ = − + + +
∂ ∂ ∂ ∂ ∂

                                                     (10) 

2 2
1 1 1 1

0 2 2
i i i i

i
v P v v

u
x y x y

∂ ∂ ∂ ∂
= − + +

∂ ∂ ∂ ∂
                                                                                 (11) 

2 2
1 0 1 1

0 1 2 2
i i i i

i i
d

P u v
x dy x y
θ θ θ θ ∂ ∂ ∂

+ = + ∂ ∂ ∂ 
                                                                                (12) 

In deriving the equation (8), the constant pressure gradient term ( )0 sp p
x
∂

−
∂

 has been taken equal to zero following 

Ostrach [1]. In view of equation (7) the boundary condition in equation (6) can be split up into the following two parts. 
 
Zeroth order boundary conditions 
 
 10 100, 1 on 0u yθ= = =  

10 20
10 20 10 20=0, , on

d d
u u y y

dy dy
θ θ

θ θ ∗= = = =             (13) 

20 200, on 1u m yθ= = =                                                       



J. C. Umavathi*/ CONVECTIVE FLOW AND HEAT TRANSFER BETWEEN WAVY WALL AND A…. / IJMA- 3(7), July-2012, 2495-2515 

© 2012, IJMA. All Rights Reserved                                                                                                                                                         2499 

 
First order boundary conditions 

 

10 10
11 11 11, 0,    on 0i x i xdu d

u rp e v rp e y
dy dy

λ λ θ
θ

   
= − = = − =   

   
 

11 21 11 21 11 21=0, =0, , onu u v v y yθ θ ∗= = = =                           (14) 

21 21 210, 0, 0, on 1u v yθ= = = =  
 
where rp  represents the real part 
  
The solutions for zeroth order velocity 0iu and zeroth order temperature 0iθ  satisfying the equation (8) and the boundary 
conditions (13) are given by 
 
Stream 1: 
 

10 1 2c y cθ = +                                                                                    (15) 
3 2

10 1 2 1 2u l y l y d y d= + + +                                                                     (16) 
 
Stream 2:  
 

20 7 8c y cθ = +                                                                                    (17) 
3 2

20 6 7 11 12u l y l y d y d= + + +                                                                     (18) 
 
In order to solve equations (9) to (12) for the first order quantity it is convenient to introduce stream function ψ  in the 
following form 
 

1
1

i
iu

y
ψ∂

= −
∂

, 1
1

i
iv

x
ψ∂

=
∂

 for 1, 2i =                                         (19) 

 
The stream function approach reduces the number of dependent variables to be solved and also   eliminates pressure from 
the list of variables. Differentiate equation (10) with respect to y and differentiate equation (11) with respect to x  and then 
subtract equation (10) with equation (11) which will result in the elimination of pressure 1ip . We assume stream function 
and temperature in the following form 
 

1 1( , ) ( ),i x
i ix y e yλψ ψ=  1 1( , ) ( )i x

i ix y e t yλθ =  
 
From the above, equations (9) to (12) after elimination of 1ip , can be expressed in terms of the stream function ψ  and  t  in 
the form  
 

( ) ( )'' 2 4 '' 3 '
0 0 02iv

i i i i i i ii u i u iu Gtψ ψ λ λ ψ λ λ λ− + + + + =                                       (20) 

( )'' 2 '
10 0ii i i i it t P u tλ λ ψ θ− = +                                                       (21) 

 
where i is the coefficient of imaginary part and suffix i = 1,2 denotes stream-1 and stream-2 respectively. 
 
Boundary conditions as defined in equation (14) can be written in terms of ψ  and  t  as 
 

' ' '
1 10 1 1 10, 0, on 0u t yψ ψ θ= = = − =  
' '
1 1 2 20, 0, 0, 0, on y yψ ψ ψ ψ ∗= = = = =             (22) 

' '
1 2 1 2, , ont t t t y y∗= = =  

'
2 2 20, 0, 0,on 1t yψ ψ= = = =  
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We restrict our attention to the real parts of the solutions for the perturbed quantitiesψ , t , 1iu  and 1iv . 
 
Consider only small values of λ  . On substituting  
 

( )
0

, r
r

r
yψ λ λ ψ

∞

=

= ∑ ,  ( )
0

, r
r

r
t y tλ λ

∞

=

= ∑                                         (23) 

 
into equations (20) to (22) we obtain to the order of λ , the following set of ordinary differential equations Zeroth order 
 

''
0 0it =                                                          (24) 

'
0 0
iv
i iGtψ =                                            (25) 

 
First order 
 

( )'' '
1 0 0 0 10ii i i it P u t ψ θ= +                             (26) 

( )'' '' '
1 0 0 0 0 0 0 0 1 0 1iiv iv iv
i i i i i i i i iiu iu K u u Gtψ ψ ψ ψ ψ= − + − +                                        (27) 

 
Zeroth order boundary conditions in terms of stream function and temperature are 

' ' '
10 10 10 10 10, 0, on 0u t yψ ψ θ= = = − =  
' '
10 10 20 200, 0, 0, 0, on y yψ ψ ψ ψ ∗= = = = =                                        (28) 

' '
10 20 10 20, , ont t t t y y∗= = =  

'
20 20 200, 0, 0, on 1t yψ ψ= = = =  

 
First order boundary conditions in terms of stream function and temperature are  

'
11 11 110, 0, 0 on 0t yψ ψ= = = =  
' '
11 11 21 210, 0, 0, 0, on y yψ ψ ψ ψ ∗= = = = =                                        (29) 

' '
11 21 11 21, , ont t t t y y∗= = =  

'
21 21 210, 0, 0, on 1t yψ ψ= = = =  

 
The set of equations (24) to (27) subject to boundary conditions as given in equations (28) and (29) have been solved 
exactly for ψ  and t . From these solutions, the first order quantities can be put in the form,   
 

( )i 0 1i ,rp p i iψ ψ ψ ψ λψ= + = +     ( )i 0 1irp p i ij
t t t t tλ= + = +                          (30) 

where suffix rp  denotes  the real part and i p  denotes the imaginary part. Considering only the real part, the expression for 
first order velocity and temperature become 
 

( ) ( )' '
1 0 1cos sini i iu x xλ ψ λψ λ= − +                                          (31) 

( ) ( )2
1 1 0cos sini i iv x xλ λ ψ λψ λ= − −                                         (32) 

( ) ( )1 0 1cos ( ) sini i ix t t xθ λ λ λ= −                                                        (33) 
 
The first order and total solutions are given in Appendix. 
 
3.1. Skin friction and Nusselt number 
 
The shearing stress xyσ at any point in the fluid in non-dimensional form is given by 

( ) ( ) ( )
2

' '
0 1 12

ixy i x i x
xy

d
u y e u y e v yλ λσ

σ ε ελ
ρν

= = + +                                        (34) 
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At the wavy wall, ( )cosy xε λ=  skin friction takes the form 
 

( ) ( ) ( ) ( ) ( ) ( )( )0 '' '' ''
0 10 11 100 cos 0 sin 0 cosw u x x xσ σ ε λ λψ λ ψ λ= + + −                                      (35) 

 
and at the flat wall, 1y =  skin friction takes the form   
 

( ) ( ) ( ) ( ) ( )( )0 '' ''
1 20 210 1 cos 1 sinf x xσ σ ε ψ λ λψ λ= + − +                                                     (36) 

 

where ( )0 10
0

0

0
y

du
dy

σ
=

 
=  
 

 and ( )0 20
1

1

1
y

du
dy

σ
=

 
=  
 

 are the zeroth order skin-friction at the walls. 

 
The non-dimensional heat transfer coefficient known as Nusselt number ( )Nu  is given by 
 

( ) ( )( )' '
0 1Re i xNu y e y

y
λθ θ ε θ∂

= = +
∂

                                (37) 

 
At the wavy wall ( )1 cosy xε λ= − +  Nusselt number wNu  takes the form 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )0 ' ' '
0 10 10 110 0 cos 0 cos 0 sin ,wNu Nu x t x t xε θ λ λ λ λ= + + −          (38) 

 
and at the flat wall 1y = , 
 

( ) ( ) ( ) ( ) ( )( )0 ' '
1 20 211 1 cos 1 sinfNu Nu t x t xε λ λ λ= + −                           (39) 

 

where ( )0 10
0

0

0
y

d
Nu

dy
θ

=

 
=  
 

 and ( )0 20
1

1

1
y

d
Nu

dy
θ

=

 
=  
 

 are zeroth order Nusselt number at the walls. 

 
Velocity and temperature solutions are numerically evaluated for several sets of values of the governing parameters.  Also, 
the wall skin friction ,w fσ σ  and the wall Nusselt number ,w fNu Nu  are calculated numerically and some of the 
qualitative interesting features are presented. 
 
 
3.2 Comparison of the Solutions with Salah El Din [36] in the presence of baffle 
 
To validate the results of the present model, the problem is solved  in the absence of the product of non-dimensional wave 
number and space co-ordinate and pressure gradient.. The dimensionless basic equations (2) to (5) become 
 

2
0

2
0id

dy
θ

=                                                       (40) 

 
2

0
02

0j
j

d u
G

dy
θ+ =                                      (41) 

 
To compare the results, the boundary conditions on temperature are taken as in Salah El Din [36], i.e., 
 

1 2
1 1on 0; on 1
2 2

y yθ θ= − = = =  

1 2
1 2 , on

d d
y y

dy dy
θ θ

θ θ ∗= = =                                                        (42) 



J. C. Umavathi*/ CONVECTIVE FLOW AND HEAT TRANSFER BETWEEN WAVY WALL AND A…. / IJMA- 3(7), July-2012, 2495-2515 

© 2012, IJMA. All Rights Reserved                                                                                                                                                         2502 

 
The boundary conditions on velocity are no-slip conditions on the boundary and vanishing of velocity at the baffle. That is 

 
1 20 on 0; 0 on 1u y u y= = = =  

1 2 0 onu u y y∗= = =                                                                      (43) 
 
The solutions of equations (40) and (41) using boundary conditions (42) and (43) become 
 

1
1
2

yθ = − ,  
3 2

1 1 22 3 2
y yGu d y d

 
= − − + +  

 
             (44) 

2
1
2

yθ = − , 
3 2

2 3 42 3 2
y yGu d y d

 
= − − + +  

 
             (45) 

 
The above solutions agree very well with the solutions of Salah El Din [36]. 
 
3.3 Comparison of the Solutions with Rita and Alok [37] in the absence of baffle 
 
The above case validates the results for flat wall.  To validate the results for wavy wall, the problem is solved in the absence 
of the baffle and visco-elastic parameter and compared the results with Rita and Alok [37]. The comparison of the present 
model is carried out in two ways, 
 
1. Shifting the baffle to the right wall and comparing the solutions of stream-1 with Rita and Alok [37]. 

 
The boundary conditions for this case become 

  

10 1θ = , 10 0u = , '
10 10t θ= − , ' '

10 10 10, 0,uψ ψ= =   on  0y =  

10 mθ = , 10 0,u =  10 0,t =  '
10 100, 0,ψ ψ= =          on   1y =                          (46) 

 

11 0,t =  '
11 110, 0,ψ ψ= =  on  0y =  

11 0,t = '
11 110, 0ψ ψ= =     on   1y =                                         (47) 

 
The solution of stream-1 with above boundary conditions become 

 

10 1 2c y cθ = + ;  3 2
10 1 2 1 2u l y l y d y d= + + +             (48) 

10 3 4t c y c= + ; 4 3 23 4
10 3 5 66 2

d d
l y y y d y dψ = + + + +            (49) 

( )6 5 4 3 2
1 1 1 2 3 4 5 5 6t P i m y m y m y m y m y c y c= + + + + + + , 

9 8 7 6 5 4 4 3 23 5 6 7 7 81 2 4
11 9 103024 1680 840 360 120 24 24 6 2

n n n n d dn n n
i y y y y y y y y y d y dψ


= + + + + + + + + + +

 
      (50) 

 
With the above solutions the velocity and temperature field become 
  

( ) ( )( )' '
1 10 10 11cos sinu u x xε λ ψ λψ λ= + − +             (51) 

( ) ( )( )2
1 11 10cos sinv x xε λ λ ψ λψ λ= − −              (52) 

( ) ( )( )1 10 10 11cos ( ) sinx t t xθ θ ε λ λ λ= + −              (53) 
 
Equations (51) to (53) are computed and are tabulated in Table 5. The above solutions agree very well with                     
Rita and Alok [37] 
 
2. Shifting the baffle to the left wall and comparing the solutions of stream-2 with Rita and Alok [37].  
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The boundary conditions for this case become 
 

20 0,θ =  20 0,u =  '
20 10,t θ= −  ' '

20 20 20, 0,uψ ψ= =    on 0y =  

20 ,mθ =  20 0,u =  20 0,t =   '
20 200, 0,ψ ψ= =     on 1y =           (54) 

 
 

21 0,t =  '
21 210, 0,ψ ψ= =  on 0y =  

21 0,t =  '
21 210, 0,ψ ψ= =          on 1y =                   (55) 

 
The solutions of stream-2 with above boundary conditions become 

 

20 7 8c y cθ = + ; 3 2
20 6 7 11 12u l y l y d y d= + + +             (56) 

20 9 10t c y c= + ; 4 3 213 14
20 8 15 166 2

d d
l y y y d y dψ = + + + +            (57) 

( )6 5 4 3 2
21 6 7 8 9 10 11 12t P i m y m y m y m y m y c y c= + + + + + + , 

9 8 7 6 5 4 4 3 213 15 16 17 17 1811 12 14
21 19 203024 1680 840 360 120 24 24 6 2

n n n n d dn n n
i y y y y y y y y y d y dψ


= + + + + + + + + + +

 
      (58) 

 
With the above solutions the velocity and temperature filed become 
 

( ) ( )( )' '
2 20 20 21cos sinu u x xε λ ψ λψ λ= + − +             (59) 

( ) ( )( )2
2 21 20cos sinv x xε λ λ ψ λψ λ= − −                 (60) 

( ) ( )( )2 20 20 21cos ( ) sinx t t xθ θ ε λ λ λ= + −              (61) 
 
Equations (59) to (61) are computed and are tabulated in Table 3b. These solutions agree very well with Rita and Alok [37].   
All he constants appeared in the above equations are defined in the Appendix section 

 
4. RESULTS AND DISCUSSION 
 
Free convective flow and heat transfer of viscous fluid in a vertical channel one of whose walls is wavy, containing a thin 
conducting baffle is studied analytically. The non-linear partial differential equations governing the motion have been 
solved by a linearization technique wherein the flow is assumed to be of two parts; a mean part and a perturbed part. Exact 
solutions are obtained for the mean part and the perturbed pert is solved using long wave approximation. The Prandtl 
number, wave number, and amplitude are fixed as 0.7, 0.01, and 0.1, respectively for the computation, whereas the Grashof 
number, wall temperature ratio and product of non-dimensional wave number and space-coordinate are fixed as 20, -1, and 
1.57079632, respectively for all the graphs except the varying one. 
 
The effect of the Grashof number G  on the main velocity is shown in figure 2a,b,c at three different baffle 
positions ( )0.2 , 0.5 and 0.8y∗ = . As the Grashof number increases, the main velocity u  increases near the left (hot) wall 
and decreases at the right (cold) wall. The larger the value of G , the stronger the upward velocity. Especially, for sufficient 
large values of G , a flow reversal phenomenon is predicted near the right (cold) wall as shown in figure 2a, which can also 
be observed for Newtonian single passage flow examined by Aung and Warku [38]. For each graph the maximum point of 
the main velocity moves to the left (hotter) wall for increasing values of G  and thus, the velocity decreases near the right 
(colder) wall. The effect of Grashof number G  on the cross velocity is exactly opposite to the effect of G  on the main 
velocity as seen in figure 3a,b,c. That is, as G  increases, the cross velocity v  decreases near the left (hot) wall and 
increases at the right (cold) wall. Also, as G  increases, the maximum point of the cross velocity moves to the right (colder) 
wall and thus, the cross velocity decreases at the left (hot) wall. The effect of the Grashof number G  on the temperature is 
shown in Table-1. It is noticed that the temperature remains almost invariant at all baffle positions for 5G =  and 20G = . 

 
Figure 4a,b,c show the effect of the wall temperature ratio m  on the main velocity ( 1m = −  means that the average of the 
temperatures of the two walls is equal to that of the static temperature, 0m =  corresponds to the case that the temperature 
of the flat wall is equal to the static temperature, 1m =  means that the wavy and flat wall are maintained at equal  
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temperature and 1m > implies that the wall temperatures are unequal). As m  increases, the main velocity u  increases in 
both streams at the baffle positions 0.2, 0.5 and 0.8 and the flow reversal is observed in stream 2 for 1m = − . It is also 
observed that the main velocity profile for 0m =  lies in between 1m = −  (below) and 1 (above). When the baffle position 
is near the left wall, the variations of m  are not very effective on the main velocity but its effect is dominant when the 
baffle position moves to the center and near to the right wall as seen in figure 4.  The effect of m  on the cross velocity is 
opposite to its effect on the main velocity. That is, as m  increases the cross velocity decreases at all baffle positions as seen 
in figure 5a,b,c. The velocity profile for 0m =  lies in between 1m = (below) and -1 (above). The effect of m  on the cross 
velocity is not effective for the baffle position at the right wall when compared to the baffle position at the left and at the 
center of the channel.   The effect of wall temperature ratio m  on the temperature field is shown in figure 6a,b,c. As m  
increases, temperature increases at all the baffle positions and magnitude of promotion also remains the same for 

0.2, 0.5y∗ =  and 0.8. 
 
The effect of the product of non-dimensional wave number and space coordinate, xλ  on the main velocity is shown in 
figure 7a,b,c.  As xλ  increases, the main velocity increases near the wavy wall and reverses its direction near the baffle 
position and remains constant at the flat wall at all baffle positions. The effect of xλ  on the cross velocity is shown in 
figure 8a,b,c. As xλ  increases, the cross velocity decreases in stream 1 and increases in stream 2 for the baffle positions at 
the left and at the center of the walls. However, there is no effect of xλ  at the right wall when 0.8y∗ = . The effect of xλ  
on the temperature is presented in figure 9a,b,c. It is seen that increasing xλ  causes the temperature to decrease at the wavy 
wall while it remains unchanged at the flat wall for the baffle positions near the left, center and right walls. The magnitude 
of suppression remains the same at any position of the baffle. 
 
The effect of the Grashof number is seen to increase the skin friction at both the wavy wall and at the flat wall at all baffle 
positions. The effect of wall temperature ratio m  is to increase the skin friction at the wavy wall and decrease at the flat 
wall. The effects wave number and the amplitude parameter do not show much variation in the values of skin friction at 
both the walls as observed in Table-2a. 
 
The effect of the Grashof number is found to increase the rate of heat transfer at the wavy wall and decrease at the flat wall 
in magnitude at all baffle positions. The effect of the wall temperature ratio is seen to decrease in magnitude, the heat 
transfer at both walls at all baffle positions. The effect of the wave number λ  and amplitude parameter ε  is found to 
increase in magnitude the rate of heat transfer at the wavy wall and decrease at the flat wall. However their effect on the 
rate of heat transfer is not very significant at both the walls as seen Table-2b. 
 
The results obtained in 3.2 and the results obtained by Salah El Din [36] are displayed in Table-3a. This table shows that 
both the models show same values at all baffle positions which will justify the present model.  The solutions obtained in 
section 3.3 and the solutions obtained by Rita and Alok [37] in the absence of viscoelastic parameter K are shown in Table-
3b. When the baffle is shifted to the right wall (stream-1), the problem reduced to single passage whose solutions agree 
with Rita and Alok [37] which justifies the solutions of stream-1. To justify the solutions obtained in stream-2, the baffle is 
shifted to the right wall, which again reduces to single passage. The solutions obtained in stream-2 agree very well with 
Rita and Alok [37].  
                             
5.  CONCLUSION 
 
The flow and heat transfer of viscous fluid in a vertical wavy double-passage channel inserting a perfectly conducting 
baffle is investigated.  According to the results, the following conclusions can be drawn: 

 
1. The maxima of the main velocity profiles are obtained for increasing values of the Grashof number and the wall 

temperature ratio especially when the baffle position is in the middle of the channel.  As xλ  increases, the main 
velocity decreases at the wavy wall and remains constant at the flat wall.  The effects of the Grashof number, wall 
temperature ratio and xλ  on the cross velocity are exactly opposite to their effect on the main velocity. 
 

2. The temperature profiles remain invariant with changes in the Grashof number. The effect of the wall temperature ratio 
promotes the temperature whereas xλ  reduces the temperature at the wavy wall while it remains constant at the flat 
wall. Again, these effects are more pronounced in the wider passage than in the narrower passage. 

 
3. The skin friction increases at both the wavy and flat wall for increasing values of the Grashof number. The increase in 

the wall temperature ratio increases the skin friction at the wavy wall and decreases at the flat wall. Wave number and 
the amplitude parameter do not affect the skin friction at the wavy wall and at the flat wall significantly. 
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4. The effect of the Grashof number is found to increase the rate of heat transfer at the wavy wall and decrease at the flat 

wall in magnitude at all baffle positions. The effect of the wall temperature ratio is seen to decrease in magnitude, the 
heat transfer at both walls at all baffle positions. The effect of the wave number λ  and amplitude parameter ε  do not 
significantly affect the rate of heat transfer at both the walls. 
 

5. The results of the present model  agreed very well with the results obtained by Salah El Din [36] for both the walls to be 
flat. The results of the present model were also in good agreement with the results of Rita and Alok [37] for single 
passage with wavy wall. 
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Fig. 2: Main velocity profiles for different values of Grashof number G . 
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Fig. 3: Cross velocity profiles for different values of Grashof number G . 
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Fig. 4: Main velocity profiles for different values of wall temperature ratio m . 
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Fig. 6: Temperature profiles for different values of wall temperature ratio m . 
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Table-1: Temperature values for different Grashof number and baffle positions with  1,m =  0.7P =  and 0.01λ =  

 

y  * 0.2y =  y  * 0.5y =  y  * 0.8y =  
5G =  20G =  5G =  20G =  5G =  20G =  

0 1.000000 1.000000 0 1.000000 1.000000 0 1.000000 1.000000 
0.1 0.800000 0.799999 0.1 0.800000 0.800000 0.1 0.799999 0.799995 
0.2 0.599999 0.599997 0.2 0.600000 0.600000 0.2 0.599998 0.599990 
0.2 0.599999 0.599997 0.3 0.400000 0.400000 0.3 0.399997 0.399987 
0.3 0.399999 0.399996 0.4 0.200000 0.199999 0.4 0.199996 0.199985 
0.4 0.199999 0.199994 0.5 0 0 0.5 0 0 
0.5 0 0 0.5 0 0 0.6 -0.200003 -0.200013 
0.6 -0.200002 -0.200008 0.6 -0.200001 -0.200003 0.7 -0.400003 -0.400010 
0.7 -0.400002 -0.400007 0.7 -0.400001 -0.400004 0.8 -0.600002 -0.600007 
0.8 -0.600001 -0.600005 0.8 -0.600001 -0.600003 0.8 -0.600002 -0.600007 
0.9 -0.800001 -0.800003 0.9 -0.800000 -0.800002 0.9 -0.800001 -0.800004 
1.0 -1.000000 -1.000000 1 -1.000000 -1.000000 1 -1.000000 -1.000000 

 
 

Table-2a: skin friction values at the wavy and flat wall. 
   

 wσ   fσ  

G  *y = 0.2 *y = 0.5 *y = 0.8 G  *y = 0.2 *y = 0.5 *y = 0.8 
20 1.73333 3.3333 3.73336 20 3.73332 3.33333 1.73333 
100 8.66667 16.6665 18.6674 100 18.6664 16.6666 8.66661 
200 17.334 33.3327 37.3361 200 37.3324 33.3327 17.3331 
m     m     
-1 1.73333 3.3333 3.73336 -1 3.73332 3.33333 1.73333 
0 1.86666 4.16664 5.8666 0 -2.1333 -0.83332 -0.13333 
1 2.0000 4.99997 7.9998 1 -8 -5 -2 
λ     λ     
0 1.73333 3.3333 3.73333 0 3.73333 3.3333 1.73333 
0.1 1.73334 3.33327 3.73361 0.1 3.73324 3.3333 1.73331 
0.5 1.73335 3.33303 3.73472 0.5 3.73288 3.33315 1.73322 
ε     ε     
0 1.73333 3.33333 3.73333 0 3.73333 3.3333 1.73333 
0.1 1.73333 3.3333 3.73336 0.1 3.73332 3.33333 1.73333 
0.5 1.73333 3.3333 3.73347 0.5 3.73329 3.33331 1.73332 

            
 

Table-2b: Nusselt number values at the wavy and flat wall. 
 

 wNu   fNu  

G  *y = 0.2 *y = 0.5 *y = 0.8 G  *y = 0.2 *y = 0.5 *y = 0.8 
20 -2.00001 -2 -2.00005 20 -1.99997 -1.99998 -1.99996 
100 -2.00005 -1.99999 -2.00025 100 -1.99986 -1.99991 -1.99982 
200 -2.00011 -1.99998 -2.0005 200 -1.99971 -1.99983 -1.99964 
m     m     
-1 -2.00001 -2 -2.00005 -1 -1.99997 -1.99998 -1.99996 
0 -0.99994 -0.99998 -0.99999 0 -1.00006 -1.00001 -1.00001 
1 0 0 0 1 0 0 0 
λ     λ     
0 -2 -2 -2 0 -2 -2 -2 
0.1 -2.00011 -1.99998 -2.0005 0.1 -1.99971 -1.99983 -1.99964 
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0.5 -2.00053 -1.99988 -2.00251 0.5 -1.99857 -1.99915 -1.99822 
ε     ε     
0 -2 -2 -2 0 -2 -2 -2 
0.1 -2.00001 -2 -2.00005 0.1 -1.99997 -1.99998 -1.99996 
0.5 -2.00005 -1.99999 -2.00025 0.5 -1.99986 -1.99991 -1.99982 

 
 
Table-3a: Comparison of velocity at different baffle positions with Salah El Din [36] for 20,G = 1,m =  0.7,P =  and 

0.01λ =  
 

y  
Present 
Model 

Salah El Din 
[36] y  

Present 
Model 

Salah El Din 
[36] y  

Present 
Model 

Salah El Din 
[36] 

* 0.2y =  * 0.2y =  * 0.5y =  * 0.5y =  * 0.8y =  * 0.8y =  
0 0 0 0 0 0 0 0 0 
0.1 -0.04 -0.04 0.1 -0.12 -0.12 0.1 -0.14 -0.14 
0.2 0 0 0.2 -0.16 -0.16 0.2 -0.2 -0.2 
0.2 0 0 0.3 -0.14 -0.14 0.3 -0.2 -0.2 
0.3 0 0 0.4 -0.08 -0.08 0.4 -0.16 -0.16 
0.4 0.04 0.04 0.5 0 0 0.5 -0.1 -0.1 
0.5 0.1 0.1 0.5 0 0 0.6 -0.04 -0.04 
0.6 0.16 0.16 0.6 0.08 0.08 0.7 0 0 
0.7 0.2 0.2 0.7 0.14 0.14 0.8 0 0 
0.8 0.2 0.2 0.8 0.16 0.16 0.8 0.04 0.04 
0.9 0.14 0.14 0.9 0.12 0.12 0.9 0 0 
1 0 0 1 0 0 1 0 0 

 
 

Table-3b: Validity of the present model with stream-1 (shifting the baffle to the right wall) and stream-2 (shifting the 
baffle to the left wall) with Rita and Alok [37] for 20, 1, 0.7G m P= = = and 0.01λ = . 

 
   
   y  Present  Model 

Rita and Alok [37] for 
viscoelastic parameter 

0K =  
         Stream-1        Stream-2  

    1u         1v  1θ     2u         2v  2θ     u         v  θ  

0.0 0 0 1.0 0 0 1.0 0 0 1.0 
0.1 0.90 -8.1E-4 1.0 0.90 -8.1E-4 1.0 0.90 -8.1E-4 1.0 
0.2 1.60 -0.00128 1.0 1.60 -0.00128 1.0 1.60 -0.00128 1.0 
0.3 2.10 -0.00147 1.0 2.10 -0.00147 1.0 2.10 -0.00147 1.0 
0.4 2.40 -0.00144 1.0 2.40 -0.00144 1.0 2.40 -0.00144 1.0 
0.5 2.50 -0.00125 1.0 2.50 -0.00125 1.0 2.50 -0.00125 1.0 
0.6 2.40 -9.6E-4 1.0 2.40 -9.6E-4 1.0 2.40 -9.6E-4 1.0 
0.7 2.10 -6.3E-4 1.0 2.10 -6.3E-4 1.0 2.10 -6.3E-4 1.0 
0.8 1.60 -3.2E-4 1.0 1.60 -3.2E-4 1.0 1.60 -3.2E-4 1.0 
0.9 0.90 -9E-5 1.0 0.90 -9E-5 1.0 0.90 -9E-5 1.0 
1.0 0 0 1.0 0 0 1.0 0 0 1.0 

 
 
 
NOMENCLATURE 
 d        channel width  

*d       width of passage 1 

pc  dimensionless specific heat at constant pressure  

xg  acceleration due to gravity 

G  Grashof number ( )( )3 2
x w sd g T Tβ ν−  

k  wavelength 
Nu  Nusselt number 
p  pressure 
p  dimensionless pressure  

P  Prandtl number ( )0pc kη  

sp  static pressure 
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rp  real part 
i p     imaginary part 
T  temperature 

sT  static temperature 
,U V  velocities along X  and Y  directions 
,u v  dimensionless velocities  
,X Y  space co-ordinates 

,x y  dimensionless space co-ordinates 
 
GREEK SYMBOLS 
β  dimensionless co-efficient of thermal expansion  

ε  non-dimensional amplitude parameter ( )dε ∗  

ε ∗  amplitude 

λ  non-dimensional wave number ( )/k d  
µ  viscosity 
ν  kinematic viscosity  
θ  dimensionless temperature 
ρ  density 

0ρ  static density 

xyσ  skin friction 
ψ  stream function 
 
SUBSCRIPTS 
i refer quantities for the fluids in stream 1 and stream 2, 
respectively. 

 
Appendix 

10 1 2c y cθ = + ; 3 2
10 1 2 1 2u l y l y d y d= + + + ; 20 7 8c y cθ = + ; 3 2

20 6 7 11 12u l y l y d y d= + + + ; 

( ) ( )4 2 8 7 6 5 4 3 33 3 5 6 71 2 4
11 3 4 5

27
8 9

cos 4 sin
2 336 210 120 60 24 6 6

2

d n n n nn n n
u x l y y d y d x y y y y y y y

d
y d y d

λ λ λ
  

= − + + + + + + + + + +  
  


+ + + 



 

( ) ( )3 2 8 7 6 5 4 3 313 13 15 16 1711 12 14
21 8 14 15

217
18 19

cos 4 sin
2 336 210 120 60 24 6 6

2

d n n n nn n n
u x l y y d y d x y y y y y y y

d
y d y d

λ λ λ
  

= − + + + + + + + + + +  
  


+ + + 



 

4 3 2 2 9 8 7 7 6 5 43 3 5 6 74 1 2 4
11 3 5 6

3 27 8
9 10

sin( ) cos( )
6 2 3024 1680 840 360 120 24 24

6 2

d n n n nd n n n
v x l y y y d y d x y y y y y y y

d d
y y d y d

λ λ λ λ
  

= − + + + + − + + + + + +  
  


+ + + + 



4 3 2 2 9 8 7 6 5 4 413 13 15 16 1714 11 12 14
21 8 15 16

3 217 18
19 20

sin( )( ) cos( )
6 2 3024 1680 840 360 120 24 24

6 2

d n n n nd n n n
v x l y y y d y d x y y y y y y y

d d
y y d y d

λ λ λ λ


= − + + + + − + + + + + +



+ + + + 


6 5 4 3 2

1 1 3 4 1 2 3 4 5 5 6cos( )( ) sin( )( ( ) )x c y c x P m y m y m y m y m y c y cθ λ λ λ= + − + + + + + +  

( ) ( )( )6 5 4 3 2
21 9 10 6 7 8 9 10 11 12cos( )( ) sinx c y c x P m y m y m y m y m y c y cθ λ λ λ= + − + + + + + +  

3 2 3 2 8 7 6 53 31 2 4
1 1 2 1 2 3 4 5

4 3 3 25 6 7 7
8 9

cos( ) 4 sin( )
2 336 210 120 60

24 6 6 2

d nn n n
u l y l y d y d x l y y d y d x y y y y

n n n d
y y y y d y d

ε λ λ λ
   

= + + + + − + + + + + + +   
  


+ + + + + + 



 

( ) ( )4 3 2 3 2 8 7 613 1311 12
2 7 8 9 11 12 8 14 15

5 4 3 3 215 16 17 1714
18 19

cos 4 sin
2 336 210 120

60 24 6 6 2

d nn n
u l y l y l y d y d x l y y d y d x y y y

n n n dn
y y y y y d y d

ε λ λ λ
   

= + + + + + − + + + + + +   
  


+ + + + + + + 



 

4 3 2 2 9 8 7 7 63 3 54 1 2 4
1 3 5 6

5 4 3 26 7 7 8
9 10

sin( ) cos( )
6 2 3024 1680 840 360 120

24 24 6 2

d n nd n n n
v x l y y y d y d x y y y y y

n n d d
y y y y d y d

ε λ λ λ λ
   

= − + + + + − + + + +   
  


+ + + + + + 


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4 3 2 2 9 8 7 6 513 13 1514 11 12 14

2 8 15 16

4 4 3 216 17 17 18
19 20

sin( )( ) cos( )
6 2 3024 1680 840 360 120

24 24 6 2

d n nd n n n
v x l y y y d y d x y y y y y

n n d d
y y y y d y d

ε λ λ λ λ
 

= − + + + + − + + + + 
 


+ + + + + + 



 

 
( )6 5 4 3 2

1 1 2 3 4 1 2 3 4 5 5 6cos( )( ) sin( )( ( ) )c y c x c y c x P m y m y m y m y m y c y cθ ε λ λ λ= + + + − + + + + + +  

( )( ( )( ))6 5 4 3 2
2 7 8 9 10 6 7 8 9 10 11 12cos( )( ) sinc y c x c y c x P m y m y m y m y m y c y cθ ε λ λ λ= + + + − + + + + + +  

1 1c m= − , 2 1c = , 3 1c m= − , ( )4 1c m= − − , 9 1c m= − , ( )10 1c m= − − , 7 1c m= − , 8 1c = , 2 0d = , 6 0d = , 9 0d = ,  

10 0d = , 1
1 6

Gcl −
= ,  2

2 2
Gcl −

= , 3
3 24

Gc
l = , 

2
* *

1 1 2( y y )d l l= − + , 
2

* *
5 1 2( y y )d l l= − + ,  2

* 5
3 3

*

6
12 y

y

d
d l= − + , 

2
3

*
* 3

4 5 3*
y1 4 y
2y

d
d d l

 
 = − − −
 
 

,  3
4 6

d
l = , 4

5 2
dl = , 7

6 6
Gc

l
−

= , 8
7 2

Gc
l

−
= , 

3 2* *
6 7

11 *
(1-y ) (1-y )

y 1
l l

d
+

=
−

, 

12 6 7 11d l l d= − − − ,  9
8 24

Gc
l = , 

4 3

3 2

* * * *
8

13 * * * *

((1 ) 4(1 ) 2(1 )(1 ))

(1 ) (1 )(1 ) (1 )
6 4 2

l y y y y
d

y y y y

− − − − + − −
=

− − − −
+ −

, 
( ) ( )

( )

3 213
8

14

4 1 1
2

1

dl y y
d

y

∗ ∗

∗

− − − −
=

−
,  

3 213
15 8 144

2
d

d l y y d y∗ ∗ ∗= − − − , 13 14
16 8 156 2

d dd l d= − − − − , 13
9 6

d
l = , 14

10 2
dl = , 3 1 1 3

1 30
c l c l

m
+

= , 3 2 4 1 1 4
2 20

c l c l c l
m

+ +
= ,  

 
3 1 4 2 1 5

3 12
c d c l c l

m
+ +

= , 3 2 4 1 1 5
4 6

c d c d c d
m

+ +
= , 4 2

5 2
c dm = , 9 6 7 8

6 30
c l c l

m
+

= , 9 7 1 06 7 9
7 20

c l c l c l
m

+ +
= , 

9 11 10 7 7 10
8 12

c d c l c l
m

+ +
= , 9 12 10 11 7 15

9 6
c d c d c d

m
+ +

= , 10 12 7 16
10 2

c d c d
m

+
= ,  

 

( )( ( ))6 5 4 3 2 6 5 4 3 2* * * * * * * * * *
12 6 7 8 9 10 1 2 3 4 55 y 4 y 3 y 2 y y 5 y 4 y 3 y 2 y yc iP m m m m m m m m m m= + + + + − + + + + , 

( )11 6 7 8 9 10 12c Pi m m m m m c= − + + + + − ,                          
5 4 3 2 5 4 3 2

* * * * * * * * * *
5 6 7 8 9 1 0 1 2 3 4 5 1 16 y 5 y 4 y 3 y 2 y 6 y 5 y 4 y 3 y 2 yc iP m m m m m iP m m m m m c   = + + + + − + + + + +   

   
, 

 
1 1 3 16 6n l l GPm= + , 2 3 2 210 5n l l GPm= + , 3 1 3 4 2 1 5 312 4 4 4n d l l l l l GPm= + − + , 

4 3 2 4 1 1 5 412 6 6 3n l d l d l d GPm= + − + , 5 4 2 5 1 1 6 2 5 56 2 6 2 2n l d l d l d l d GPm= + − − + , 6 5 2 2 62 2n l d l d= − , 7 5n GC= ,       

            
4 26 5 3* * * ** * *

3 5 6 71 2 4
7

y 3 y y yy 3 y y
72 140 28 15 20 2 2

n n n nn n n
d = − − − − − − − ,   

5 3 2 27 6 4* * * * ** * *
3 5 6 7 71 2 4

8
y y y y yy y y

1512 840 420 180 60 12 12 3
n n n n dn n n

d = − − − − − − − − ,  11 6 8 66 6n l l GPm= + , 12 7 8 710 5n l l GPm= + ,  

 
13 11 8 9 7 6 10 812 4 4 4n d l l l l l GPm= + − + , 14 8 12 9 11 6 15 912 6 6 3n l d l d l d GPm= + − + , 

15 9 12 10 11 6 16 7 15 106 2 6 2 2n l d l d l d l d GPm= + − − + , 16 10 12 7 162 2n l d l d= − , 17 11n GC= , 

( ) ( ) ( ) ( ) ( ) ( ) ( )8 7 6 5 4 3 3

11 12 13 14 15 16 17

1

1 1 1 1 1 1 1

336 210 120 60 24 6 6

n y n y n y n y n y n y n y
Z

∗ ∗ ∗ ∗ ∗ ∗ ∗− − − − − − −
= + + + + + + , 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

9 8 7 6 5

4 4

11 12 13 14 1511 12 13 14 15
2

16 1716 17

1 1 1 1 11 1 1 1 1

3024 336 1680 210 840 120 360 60 120 24

1 11 1

24 6 24 6

n y n y n y n y n yn y n y n y n y n y
Z

n y n yn y n y

∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗

∗ ∗∗ ∗

− − − − −− − − − −
= − + − + − + − + −

− −− −
+ − + −

,      
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( ) ( ) ( ) ( )2
3

17 2 1

1 11 11
2 6 4 2

y yy yyd Z Z
∗ ∗∗ ∗∗

 − −− − −
= − − + − 

 
 

, ( )
( )

2
17

18 1

1

2 1

d y
d Z

y

∗

∗

−
= − −

−
,  

13 15 16 17 18 1711 12
19 18336 210 120 60 24 6 6 2

n n n n n dn n
d d= − − − − − − − − − , 

7 5 4 4 3 29 8 6

13 15 16 17 17 1811 12 14
20 195040 3024 1680 840 360 120 24 6 2

n y n y n y n y d y d yn y n y n y
d d y

∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗
∗= − − − − − − − − − − . 

 
Case 3.2 Comparison of the Solutions with Salah El Din [36] in the presence of baffle 

10
1
2

yθ = − , 20
1
2

yθ = −  

3 2

10 1 22 3 2
y yGu d y d

 
= − − + +  

 
, 

3 2

20 3 42 3 2
y yGu d y d

 
= − − + +  

 
 

2

1
* *

2 3 2
y yGd

 
= − −  

 
, 2 0d = , 3 8 12

Gd c= − − , 
( )

3 2

4
* * *

2 1 * 3 2 6
y y yGd

y
 

= − +  −  
 

 
Case 3.3 Comparison of the Solutions with Rita and Alok [37] in the absence of baffle 
 
1. Shifting the baffle to the left wall and comparing the solutions of stream-1 with Rita and Alok [37]. 

1 1c m= − , 2 1c = ,  1
1 6

Gcl −
= ,  2

2 2
Gcl −

= , 1 1 2d l l= − − , 2 0d = , 3 1c m= − , ( )4 1c m= − − , 3
3 24

Gc
l = , 3 3 512 6d l d= − + , 

3
4 5 34

2
d

d d l= − − − , 5 1 2d l l= − − , 6 0d = , 3 1 1 3
1 30

c l c l
m

+
= , 3 2 4 1 1 4

2 20
c l c l c l

m
+ +

= , 3 1 4 2 1 5
3 12

c d c l c l
m

+ +
= , 

3 2 4 1 1 5
4 6

c d c d c d
m

+ +
= , 4 2

5 2
c dm = , ( ) ( )5 6 7 8 9 1 0 1 2 3 4 5 1 16 5 4 3 2 6 5 4 3 2c iP m m m m m iP m m m m m c= + + + + − + + + + + , 

6 0c = , 1 1 3 16 6n l l GPm= + , 2 3 2 210 5n l l GPm= + , 3 1 3 4 2 1 5 312 4 4 4n d l l l l l GPm= + − + , 

4 3 2 4 1 1 5 412 6 6 3n l d l d l d GPm= + − + , 5 4 2 5 1 1 6 2 5 56 2 6 2 2n l d l d l d l d GPm= + − − + , 6 5 2 2 62 2n l d l d= − , 7 5n GC= ,                   

3 5 6 71 2 4
7

33
72 140 28 15 20 2 2

n n n nn n nd = − − − − − − − , 3 5 6 7 71 2 4
8 1512 840 420 180 60 12 12 3

n n n n dn n nd = − − − − − − − − , 9 0d = , 10 0d = . 

 
2. Shifting the baffle to the right wall and comparing the solutions of stream-1 with Rita and Alok [37]. 

9 1c m= − , ( )10 1c m= − − , 7 1c m= − , 8 1c = ,  3
4 6

d
l = , 4

5 2
dl = , 7

6 6
Gc

l
−

= , 8
7 2

Gc
l

−
= , 11 6 7d l l= − − , 

12 6 7 11d l l d= − − − ,  9
8 24

Gc
l = , 13 86d l= , 13

14 84
2

d
d l= − − ,  13

15 8 144
2

d
d l d= − − − , 13 14

16 8 156 2
d dd l d= − − − − , 13

9 6
d

l = , 

14
10 2

dl = ,  9 6 7 8
6 30

c l c l
m

+
= , 9 7 1 06 7 9

7 20
c l c l c l

m
+ +

= , 9 11 10 7 7 10
8 12

c d c l c l
m

+ +
= , 9 12 10 11 7 15

9 6
c d c d c d

m
+ +

= , 

10 12 7 16
10 2

c d c d
m

+
= , ( )( ( ))12 6 7 8 9 10 1 2 3 4 55 4 3 2 5 4 3 2c iP m m m m m m m m m m= + + + + − + + + + , 

( )11 6 7 8 9 10 12c Pi m m m m m c= − + + + + − ,                          

11 6 8 66 6n l l GPm= + , 12 7 8 710 5n l l GPm= + , 13 11 8 9 7 6 10 812 4 4 4n d l l l l l GPm= + − + , 14 8 12 9 11 6 15 912 6 6 3n l d l d l d GPm= + − + , 

15 9 12 10 11 6 16 7 15 106 2 6 2 2n l d l d l d l d GPm= + − − + , 16 10 12 7 162 2n l d l d= − , 17 11n GC= , 

13 15 16 1711 12 14
1 336 210 120 60 24 6 6

n n n nn n nZ = + + + + + + , 13 15 16 1711 12 14
2

6 4 3 28 7 5
3024 1680 840 360 120 24 24

n n n nn n nZ = − − − − − − − , 

1
17 2 24

Zd Z= − + , 17
18 1 2

d
d Z= − − ,  13 15 16 17 18 1711 12

19 18336 210 120 60 24 6 6 2
n n n n n dn n

d d= − − − − − − − − − , 

13 15 16 17 17 1811 12 14
20 195040 3024 1680 840 360 120 24 6 2

n n n n d dn n nd d= − − − − − − − − − − . 



J. C. Umavathi*/ CONVECTIVE FLOW AND HEAT TRANSFER BETWEEN WAVY WALL AND A…. / IJMA- 3(7), July-2012, 2495-2515 

© 2012, IJMA. All Rights Reserved                                                                                                                                                         2514 

 
6. REFERENCES 
 
[1] Ostrach, S., An analysis of laminar free-convection flow and heat transfer about a flat plat parallel to the direction of  
           the generating body force, NACA, TN-2635, Accession number-93R12788, 1952. 
 
[2] Jaloria., Y., Natural convective cooling of electronic equipment in: S. Kakac, W. Aung, R. Viskant (Eds), Natural  
           Convection Fundamentals and Applications, Hemisphere, Washington DC, 1985. 
 
[3] Peterson, G.P. and Ortega, A., Thermal control of electronic equipment and devices, Adv. Heat Transfer, vol. 20, pp.     
           281-310, 1990. 
 
[4] Elenbaas, W., Heat Dissipation of parallel plates by free convection, Physica, vol. 9, pp. 1-28, 1942. 
 
[5] Ostroumov, G.A., Free convection under the condition of the internal problem, NACA TM-1407, 1958. 
 
[6] Sparrow, E.M. and Bahrami, P.A., Experiments on natural convection from vertical parallel plates with either open  
           or closed edges, ASME. J. Heat Transfer, vol. 102, pp. 221-227, 1980. 
 
[7] Bodoia, J.R. and Osterne, J.F., The development of free convection between heated vertical plates, ASME. J. Heat  
           Transfer, vol. 84, pp. 40-44, 1962. 
 
[8] Engel, R.K. and Muller, W.K, ASME paper 67-HT-16, 1967. 
 
[9] Yao, L.S., Natural Convection along a wavy surface, ASME. J Heat Transfer, vol. 105, pp. 465-468, 1983. 
 
[10] Yao, L.S., A note on Prandtl’s transposition theorem, ASME. J Heat Transfer, vol. 110, pp. 503-507, 1988. 
 
[11] Moulic, S.G. and Yao, L.S., Mixed convection along a wavy surface, ASME. J Heat Transfer, vol. 111, pp. 974-979,   
          1989. 
 
[12] Chiu, C.P. and Chou, H.M., Transient analysis of natural convection along a vertical wavy surface in micropolar   
           fluids, Int. J. Eng. Sci., vol. 32, pp. 19-33, 1994. 
 
[13] Chen, C.K. and Wang, C.C., Transient analysis of force convection along a wavy surface in miropolar fluids, J.   
          Thermophys.  Heat Transfer, vol. 14, pp. 340-347, 2000. 
 
[14] Malashetty, M.S., Umavathi, J.C. and Leela, V., Magnetoconvective flow and heat transfer between vertical wavy   
           wall and a parallel flat wall, Int. J. Applied Mechanics and Engng. vol. 6, No.2, pp.437-456, 2001. 
 
[15] Umavathi, J.C., Prathap-Kumar, J. and Shekar, M., Mixed convective flow of immiscible viscous fluids confined   
           between a long vertical wavy wall and a parallel flat wall, Int. J. Eng. Sci. Tech., vol. 2, No. 6, pp. 256-277, 2010. 
 
[16] Umavathi, J.C. and Shekar, M., Mixed convection flow and heat transfer in a vertical wavy channel containing  
           porous and fluid layer with traveling thermal waves, Int. J. Eng. Sci. Techno., Vol. 3, No. 6, pp. 196-219, 2011. 
 
[17] Umavathi, J.C. and Shekar, M., Mixed convective flow of two immiscible viscous fluids in a vertical wavy channel  
           with traveling thermal waves, Heat Transfer Asian Research, vol. 40(8), pp. 721-743, 2011. 
 
[18] Das, P.K. and Mahmud, S., Numerical investigation of natural convection inside a wavy enclosure, Int. J. Therm.  
           Sci. vol. 42, pp. 397-406, 2003. 
 
[19] Dalal, A. and Das, M.K., Laminar Natural convection in an inclined complicated cavity with spatially variable wall  
           temperature, Int. J. Heat Mass Transfer, vol. 48, pp. 3833-3854, 2005. 
 
[20] Oztop, H.F., Numerical study of flow and heat transfer in curvilinear ducts: applications of electric grid generation,  
          Appl. Math. Comput., vol.168, pp. 1449-1460, 2005. 
 
[21] Varon, Y. and Oztop, H.F., Effect of inclination angle on natural convection in wavy solar air collectors: A  
         computational modeling, the 2nd International Green Energy Conference, UOIT, Oshawa, Canada, 25-29, June, 2006. 



J. C. Umavathi*/ CONVECTIVE FLOW AND HEAT TRANSFER BETWEEN WAVY WALL AND A…. / IJMA- 3(7), July-2012, 2495-2515 

© 2012, IJMA. All Rights Reserved                                                                                                                                                         2515 

 
[22] Jang, J.H., Yan, W.M. and Liu, H.P., Natural convection heat and mass transfer along a vertical wavy surface, Int. J.   
           Heat and Mass Transfer, vol. 46, pp. 1075-1083, 2003. 
 
[23] Mahmud, S., Das, P.K., Hyder, N. and Islam, A.K.M., Free convection in an enclosure with vertical wavy wall, Int. J  
           Thermal and Science, vol. 41, pp. 440-446, 2002. 
 
[24] Khalil Khanafer, Baber Al-Azim, Alia Marafree, Ioan Pop, Non-Darcian effects on natural convection heat transfer  
           in a wavy porous enclosure, Int. J. Heat Mass Transfer, vol.52, pp. 1887-1896, 2009. 
 
[25] Hasnaoui, M., Bilgen, E. and Vasseur, P., Natural convection above an array of open cavities heated from below,   
           Numerical Heat Transfer, vol.18, pp. 436-442, 1990. 
 
[26] Ben-Nakhi, A. and Chamkha, A.J., Natural convection in an inclined partitioned enclosure, Int. J. Heat Mass   
           Transfer, vol. 42, pp. 311-321, 2006. 
 
[27] Dagtekin, I. and Oztop, H.F., Natural convection heat transfer by heated partitions within enclosures, Int. J. Heat and  
           Mass Transfer, vol. 28, pp. 823-834, 2001. 
 
[28] Tansmim, S.T. and Collins, M.R., Numerical analysis of heat transfer in a square cavity with a baffle on the hot wall,   
           Int. Com. Heat Mass Transfer, vol. 31, pp. 639-650, 2004. 
 
[29] Prathap Kumar, J., Umavathi, J.C., Ali J. Chamkha and Prema, H., Free convection in a vertical double passage   
           wavy channel filled with a Walters fluid (model B’), Int. J. Energy & Technology, vol. 3, No. 2, pp. 1–13, 2011. 
 
[30] Prathap Kumar, J., Umavathi, J.C. and Prema, H., Free convection of Walter’s fluid flow in a vertical double-  
           passage wavy channel with heat source, Int. J. Eng. Sci. Techno., vol. 3, No. 1, pp. 136-165, 2011.  
 
[31] Chang, T.S. and Shiau, Y.H., Flow pulsation and baffle’s effects on the opposing  mixed convection in a vertical   
           channel, Int. J. Heat and Mass Transfer, vol. 48, pp. 4190-4204, 2005. 
 
[32] Nasiruddin and Siddiqui, M.H.K., Heat Transfer augmentation in a heat exchanger tube using a baffle, Int. J. Heat   
           and Fluid Flow, vol. 28(2), pp. 318-328, 2007. 
 
[33] Yang, M.H., Yeh, R.H, and Hwang, J.J., Mixed convective cooling of a fin in a channel, Int. J Heat and Mass   
           Transfer, vol. 53(4), pp. 760-771, 2010. 
 
[34] Cheng, C.H., Kuo, H.S., and Huang, W.H., Laminar fully developed forced-convection flow within an asymmetric  
           heated horizontal double-passage channel, Appl. Energy, vol. 33, pp. 265-286, 1989.  
 
[35] Salah El-Din, M.M., Fully developed laminar convection in a vertical double-passage channel, Appl. Energy, vol.  
           47, pp. 69-75, 1994. 
 
[36] Salah El-Din, M.M., Effect of viscous dissipation on fully developed laminar mixed convection in a vertical double- 
           passage channel, Int. J. Therm. Sci., vol. 41, pp. 253-259, 2002. 
 
[37] Rita Choudhury and Alok Das, Free convection flow of a non-Newtonian fluid in a vertical channel, Defense     
          Science Journal, vol. 50, pp. 37-44, 2000. 
 
 

Source of support: Nil, Conflict of interest: None Declared 
 


