International Journal of Mathematical Archive-2(2), Feb. - 2011, Page: 294-299 MA Available online through www.ijma.info ISSN 2229 - 5046

\tilde{g} - PRECLOSED SETS IN TOPOLOGY

S. Ganesan¹, O. Ravi² and S. Chandrasekar³

¹Department of Mathematics, N. M. S. S. V. N College, Madurai -19, Tamil Nadu, India ²Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai Dt, Tamil Nadu, India

³Department of Mathematics, Muthayammal Engineering College, Rasipuram, Namakkal Dt, Tamil Nadu, India

E-mail: sgsgsgsgsg77@yahoo.com, siingam@yahoo.com, chandrumat@gmail.com

(Received on:04-02-11; Accepted on:13-02-11)

ABSTRACT

In this paper, we introduce a new class of sets namely, \tilde{g} -preclosed sets in topological spaces. This class lies between the classes of \tilde{g}_{α} -closed sets and the classes of gp-closed sets. We study some of its basic properties. Applying this we introduce a new class of spaces called $T\tilde{g}_{p}$ -spaces.

2000 Mathematics Subject Classification: 54C10, 54C08, 54C05

Key words and Phrases: Topological space, \tilde{g} -closed set, \tilde{g} -closed set, \tilde{g} α -closed set, gp-closed set, gsp-closed set.

1. INTRODUCTION:

Sundaram et al [23] introduced \tilde{g} -semi-closed sets in topological spaces. Recently Jafari et al [10] introduced \tilde{g}_{α} -closed sets in topological spaces. Sarsak and Rajesh [20] introduced π -Generalized semi-preclosed sets. After the advent of these notions, many topologists introduced various types of generalized closed sets and studied their fundamental properties.

In this paper, we introduce a new class of sets, namely \tilde{g} -preclosed sets in topological spaces and study their basic properties. We obtain many interesting results in topological spaces. To substantiate these results, suitable examples are given at the respective places.

2. PRELIMINARIES:

Throughout this paper (X, τ) and (Y, σ) (or X and Y) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , cl(A), int(A) and A^c denote the closure of A, the interior of A and the complement of A respectively.

We recall the following definitions which are useful in the sequel.

Definition: 2.1

A subset A of a space (X, τ) is called

- (i) semi-open set [12] if $A \subseteq cl(int(A))$;
- (ii) preopen set [15] if $A \subseteq int(cl(A))$;
- (iii) α -open set [16] if $A \subseteq int(cl(int(A)))$;
- (iv) β -open set [1] (= semi-preopen [2]) if $A \subseteq cl(int(cl(A)))$;
- *Corresponding author: O. Ravi² *
- *E-mail: siingam@yahoo.com

- (v) regular open set [21] if A = int(cl(A));
- (vi) π -open set [28] if A is the union of regular open sets.

The complements of the above mentioned sets are called their respective closed sets.

The preclosure [17] (resp. semi-closure [6], α -closure [16], semi-pre-closure [2]) of a subset A of X, pcl(A) (resp. scl(A), α cl(A), spcl(A)) is defined to be the intersection of all preclosed (resp. semi-closed, α -closed, semi-preclosed) sets of (X, τ) containing A. It is known that pcl(A) (resp. scl(A), α cl(A), spcl(A)) is a preclosed (resp. semi-closed, α -closed, semi-preclosed) set. For any subset A of an arbitrarily chosen topological spaces, the preinterior [17] of A, denoted by pint(A), is defined to be the union of all preopen sets of (X, τ) contained in A.

Definition: 2.2

A subset A of a space (X, τ) is called:

- (i) a generalized closed (briefly g-closed) set [11] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) . The complement of g-closed set is called g-open set;
- (ii) a semi-generalized closed (briefly sg-closed) set [4] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) . The complement of sg-closed set is called sg-open set;
- (iii) a generalized semi-closed (briefly gs-closed) set [3] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) . The complement of gs-closed set is called gs-open set;
- (iv) an α -generalized closed (briefly α g-closed) set [13] if α cl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ). The complement of α g-closed set is called α g-open set;

- (v) a generalized preclosed (briefly gp-closed) set [17] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) . The complement of gp-closed set is called gp-open set;
- (vi) a g*-preclosed (briefly g*p-closed) set [27] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ) . The complement of g*p-closed set is called g*p-open set;
- (vii) a generalized semi-preclosed (briefly gsp-closed) set [7] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) . The complement of gsp-closed set is called gsp-open set;
- (viii) a \hat{g} -closed set [24] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) . The complement of \hat{g} -closed set is called \hat{g} -open set;
- (ix) a *g-closed set [25] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g} -open in (X, τ) . The complement of *g-closed set is called *g-open set;
- (x) a $^{\#}g$ -semi-closed (briefly $^{\#}gs$ -closed) set [26] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is $^{\#}g$ -open in (X, τ) . The complement of $^{\#}gs$ -closed set is called $^{\#}gs$ -open set;
- (xi) a \widetilde{g} -closed set [9] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is *gs-open in (X, τ) . The complement of \widetilde{g} -closed set is called \widetilde{g} -open set;
- (xii) a \widetilde{g} -semi-closed (briefly \widetilde{g} s-closed) set [23] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is ${}^{\#}gs$ -open in (X, τ) . The complement of \widetilde{g} s-closed set is called \widetilde{g} s-open set;
- (xiii) a \widetilde{g}_{α} -closed set [10] if α cl(A) \subseteq U whenever A \subseteq U and U is $^{\#}$ gs-open in (X, τ). The complement of \widetilde{g}_{α} -closed set is called \widetilde{g}_{α} -open set;
- (xiv) a generalized semi-preregular closed (briefly gspr-closed) set [8] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ) . The complement of gspr-closed set is called gspr-open set;
- (xv) a π -generalized semi-preclosed (briefly π gsp-closed) set [20] if $\operatorname{spcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is π -open in (X, τ) . The complement of π gsp-closed set is called π gsp-open set;
- (xvi) a π gp-closed set [18] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is π -open in (X, τ) . The complement of π gp-closed set is called π gp-open set.

Definition: 2.3

A topological space X is called a

- (i) T \tilde{g} -space [23] if every \tilde{g} -closed set in it is closed;
- (ii) $^{\#}$ T \tilde{g} α -space [10] if every \tilde{g} $_{\alpha}$ -closed set in it is closed;
- (iii) $*sT_p$ -space [27] if every gsp-closed set in it is g*p-closed;
- (iv)* T_p -space [27] if every gp-closed set in it is g*p-closed;
- (v) α T_p*-space [27] if every g*p-closed set in it is preclosed;
- (vi) α -space [16] if every α -closed set in it is closed.

Result: 2.4 [10]

- (1) Every closed set is \tilde{g}_{α} -closed but not conversely.
- (2) Every \tilde{g}_{α} -closed set is \tilde{g} s-closed but not conversely.
- (3) Every α -closed set is \tilde{g}_{α} -closed but not conversely.
- (4) Every \tilde{g} -closed set is \tilde{g}_{α} -closed but not conversely.

Result: 2.5 [23]

- (1) Every open set is *gs-open but not conversely.
- (2) Every closed set is \tilde{g} -closed but not conversely.
- (3) Every semi-open set is *gs-open but not conversely.
- (4) Every closed set is \tilde{g} s-closed but not conversely.
- (5) Every \tilde{g} -closed set is \tilde{g} s-closed but not conversely.
- (6) Every \tilde{g} s-closed set is gsp-closed but not conversely.

Result: 2.6 [20]

Every π gsp-closed set is gspr-closed but not conversely.

Result: 2.7 [18]

Every gp-closed set is π gp-closed but not conversely.

3. BASIC PROPERTIES OF \tilde{g} -PRECLOSED SETS:

We introduce the following notion.

Definition: 3.1

A subset A of X is called a \widetilde{g} -preclosed (briefly \widetilde{g} p-closed) set if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is ${}^{\#}gs$ -open in (X, τ) .

Proposition: 3.2

Every closed set is \tilde{g} p-closed but not conversely.

Proof: Let A be a closed set and U be any *gs-open set containing A. Since A is closed we have $pcl(A) \subseteq cl(A) = A \subseteq U$. Hence A is \tilde{g} p-closed.

Example: 3.3

Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{c\}, X\}$. Then $\{a\}$ is \widetilde{g} p-closed set but not closed.

Proposition: 3.4

Every \tilde{g}_{α} -closed set is \tilde{g}_{α} p-closed but not conversely.

Proof: Let A be a \widetilde{g}_{α} -closed set and U be any ${}^{\#}gs$ -open set containing A. Since A is \widetilde{g}_{α} -closed we have $pcl(A) \subseteq \alpha cl(A) \subseteq U$. Hence A is \widetilde{g}_{α} p-closed.

Example: 3.5

Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Then $\{a, b\}$ is \widetilde{g} p-closed set but not \widetilde{g} a-closed.

Proposition: 3.6

Every \tilde{g} p-closed set is gsp-closed but not conversely.

Proof: Let A be a \widetilde{g} p-closed set and U be any open set containing A. Since A is \widetilde{g} p-closed we have $spcl(A) \subseteq pcl(A) \subseteq U$. Hence A is gsp-closed.

Example: 3.7

Let $X = \{a, b, c, d\}$ with $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, X\}$. Then $\{a, b, d\}$ is gsp-closed set but not \tilde{g} p-closed.

Proposition: 3.8

Every \tilde{g} p-closed set is gp-closed but not conversely.

Proof: Let A be a \widetilde{g} p-closed set and U be any open set containing A. Since A is \widetilde{g} p-closed we have $pcl(A) \subseteq U$. Hence A is gp-closed.

Example: 3.9

Let $X = \{a, b, c, d\}$ with $\tau = \{\phi, \{a\}, \{a, c\}, \{a, b, c\}, X\}$. Then $\{a, d\}$ is gp-closed set but not \widetilde{g} p-closed.

Proposition: 3.10

Every gsp-closed set is π gsp-closed but not conversely.

Proof: It follows from the Definition 2.2 (vii) and (xv).

Example: 3.11

Let $X = \{a, b, c, d\}$ with $\tau = \{\phi, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}, X\}$. Then $\{a\}$ is π gsp-closed set but not gsp-closed.

Proposition: 3.12

Every gp-closed set is π gsp-closed but not conversely.

Proof: It follows from the Definition 2.2 (v) and (xv).

Example: 3.13

Let $X = \{a, b, c, d\}$ with $\tau = \{\phi, \{a\}, X\}$. Then $\{a\}$ is πgsp -closed set but not gp-closed.

Proposition: 3.14

Every π gp-closed set is gspr-closed but not conversely.

Proof: It follows from the Definition 2.2 (xiv) and (xvi).

Example: 3.15

Let $X = \{a, b, c, d\}$ with $\tau = \{\phi, \{a\}, \{b, c\}, \{a, b, c\}, X\}$. Then $\{a\}$ is gspr-closed set but not π gp-closed.

Remark: 3.16

 \widetilde{g} -preclosedness is independent from semi-closedness, gs-closedness, sg-closedness, g-closedness, α g-closedness, \widetilde{g} s-closedness and *g-closedness.

Example: 3.17

Let $X = \{a, b, c, d\}$ with $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then $\{a, c\}$ is semi-closed, gs-closed, sg-closed, g-closed, α g-closed, β s-closed, *g-closed set but not β p-closed.

Example: 3.18

Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a, b\}, X\}$. Then $\{a\}$ is \widetilde{g} p-closed set but not semi-closed, gs-closed, sg-closed, g-closed, α g-closed, \widetilde{g} s-closed, *g-closed.

Remark: 3.19

The following diagrams show the relationships established between \tilde{g} p-closed sets and other sets where $A \to B$ (resp. $A \longleftrightarrow B$) represents A implies B but not conversely (resp. A and B are independent of each other).

4. CHARACTERIZATIONS OF \tilde{g} -PRECLOSED SETS:

Theorem: 4.1

If A and B are \tilde{g} p-closed sets such that cl(A) = pcl(A) and cl(B) = pcl(B), then $A \cup B$ is also \tilde{g} p-closed in (X, τ) .

Proof: Let $A \cup B \subset U$ where U is ${}^\#gs$ -open. Then $A \subset U$ and $B \subset U$. Since A and B are \widetilde{g} p-closed, $pcl(A) \subset U$ and $pcl(B) \subset U$. Now, $cl(A \cup B) = cl(A) \cup cl(B) = pcl(A) \cup pcl(B) \subset U$. But $pcl(A \cup B) \subset cl(A \cup B)$. So, $pcl(A \cup B) \subset U$ and hence $A \cup B$ is \widetilde{g} p-closed.

Remark: 4.2

The following example shows that the union of two \tilde{g} p-closed sets in (X, τ) is not, in general, \tilde{g} p-closed in (X, τ) .

Example:4.3

Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a, b\}, X\}$. Then $A = \{a\}$ and $B = \{b\}$ are \widetilde{g} p-closed sets in (X, τ) . But $A \cup B = \{a, b\}$ is not \widetilde{g} p-closed in (X, τ) .

Proposition: 4.4

- (1) If A is ${}^{\#}gs$ -open and \widetilde{g} p-closed set, then A is preclosed.
- (2) If A is open and \tilde{g} p-closed set, then A is clopen.

Proof: (1) Since A is *gs-open and \tilde{g} p-closed set, pcl(A) \subset A. Therefore A = pcl(A). Hence A is preclosed.

(2) Since A is ${}^{\#}$ gs-open and \widetilde{g} p-closed set, A is preclosed. Since A is preclosed and open, A is closed. Hence A is clopen.

Proposition: 4.5

Let A be a \widetilde{g} p-closed (X, τ). Then pcl(A) \ A does not contain any nonempty ${}^{\#}gs$ -closed set.

Proof: Let F be a nonempty ${}^{\#}$ gs-closed subset of pcl(A) \ A. Then A \subset X \ F, where A is \widetilde{g} p-closed and X \ F is ${}^{\#}$ gs-open.

Thus $pcl(A) \subset X \setminus F$, or equivalently, $F \subset X \setminus pcl(A)$. Since by assumption $F \subset pcl(A)$, we get a contradiction.

Corollary: 4.6

Let A be \tilde{g} p-closed in (X, τ) . Then A is preclosed if and only if $pcl(A) \setminus A$ is $^{\#}gs$ -closed.

Proof: Necessity. Let A be \tilde{g} p-closed. By hypothesis pcl(A) = A and so pcl(A) \ A = ϕ which is $^{\#}$ gs-closed.

Sufficiency. Suppose $pcl(A) \setminus A$ is ${}^{\#}gs$ -closed. Then by Proposition 4.5, $pcl(A) \setminus A = \emptyset$, that is, pcl(A) = A. Hence A is preclosed.

Proposition: 4.7

If A is a \widetilde{g} p-closed subset of (X, τ) such that $A \subset B \subset pcl(A)$, then B is \widetilde{g} p-closed subset of (X, τ) .

Proof: Let U be a *gs-open set in (X, τ) such that $B \subset U$. Then $A \subset U$. Since A is \widetilde{g} p-closed, then $pcl(A) \subset U$. Now, $pcl(B) \subset pcl(A) \subset U$. Therefore, B is a \widetilde{g} p-closed.

Proposition: 4.8

For every point x of a space X, X \ $\{x\}$ is \tilde{g} p-closed or ${}^{\#}gs$ -open.

Proof: Suppose $X \setminus \{x\}$ is not *gs-open. Then X is the only *gs-open set containing $X \setminus \{x\}$. Hence, $X \setminus \{x\}$ is \widetilde{g} p-closed.

5. PROPERTIES OF \tilde{g} **-PREOPEN SETS:**

The following corollary is an immediate consequence of the fact that $pcl(X \setminus A) = X \setminus pint(A)$.

Proposition: 5.1

A set A in a topological space (X, τ) is \tilde{g} p-open if and only if $F \subseteq pint(A)$ whenever F is fgs-closed in (X, τ) and $f \subseteq A$.

Proof: Necessity. Let A be \widetilde{g} p-open in (X, τ) and suppose F \subseteq A where F is ${}^{\#}gs$ -closed. By definition $X \mid A$ is \widetilde{g} p-closed. Also $X \mid A$ is contained in the ${}^{\#}gs$ -open set $X \mid F$. This implies $pcl(X \mid A) \subseteq X \mid F$. It means $X \mid pint(A) \subseteq X \mid F$. Hence F \subseteq pint(A). Sufficiency. If F is ${}^{\#}gs$ -closed set with F \subseteq pint(A) whenever F \subseteq A, it follows that $X \mid A \subseteq X \mid F$ and $X \mid pint(A) \subseteq X \mid F$, i.e., $pcl(X \mid A) \subseteq X \mid F$. Hence $X \mid A$ is \widetilde{g} p-closed and A becomes \widetilde{g} p-open in (X, τ) .

Proposition: 5.2

If pint (A) \subset B \subset A and A is \widetilde{g} p-open, then B is \widetilde{g} p-open.

Proof: Follows from Proposition 4.7.

Proposition: 5.3

If a set A is \widetilde{g} p-open in a topological space (X, τ) , then G = X whenever G is ${}^{\#}gs$ -open in (X, τ) and pint $(A) \cup A^{c} \subset G$.

Proof: Suppose that G is ${}^{\#}gs$ -open and $pint(A) \cup A^{c} \subset G$. Now $G^{c} \subset pcl(A^{c}) \cap A = pcl(A^{c}) \setminus A^{c}$. Since G^{c} is ${}^{\#}gs$ -closed © 2010, IJMA. All Rights Reserved

and A^c is \tilde{g} p-closed, by Proposition 4.5, G^c = ϕ and hence G = X.

Remark: 5.4

The following example shows that the intersection of two \tilde{g} p-open sets in X is not, in general, \tilde{g} p-open in (X, τ) .

Example: 5.5

Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a, c\}, X\}$. Then $A = \{a, b\}$ and $B = \{b, c\}$ are \widetilde{g} p-open sets in (X, τ) . But $A \cap B = \{b\}$ is not \widetilde{g} p-open in (X, τ) .

Proposition: 5.6

Let (X, τ) be a space such that the family $PO(X, \tau)$ of all preopen subsets of (X, τ) be closed under finite intersections. If A and B are \widetilde{g} p-open in (X, τ) , then $A \cap B$ is \widetilde{g} p-open.

Proof: Let $X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B) \subset U$, where U is $^{\#}$ gs-open. Then $X \setminus A \subset U$ and $X \setminus B \subset U$. Since A and B are \widetilde{g} p-open, $pcl(X \setminus A) \subset U$ and $pcl(X \setminus B) \subset U$. By hypothesis, $pcl((X \setminus A) \cup (X \setminus B)) = pcl(X \setminus A) \cup pcl(X \setminus B) \subset U$. Hence $A \cap B$ is \widetilde{g} p-open.

Proposition: 5.7

Let A be \widetilde{g} p-open in (X, τ) and B be open. Then $A \cap B$ is \widetilde{g} p-open in (X, τ) .

Proof: Let F be any "gs-closed subset of X such that $F \subset A \cap B$. Hence $F \subset A$ and by Proposition 5.1, $F \subset pint(A) = \bigcup \{ U : U \text{ is preopen and } U \subset A \}$. Obviously, $F \subset \bigcup (U \cap B)$, where U is a preopen set in X contained in A. Since $(U \cap B)$ is a preopen set contained in $A \cap B$ for each preopen set U contained in $A, F \subset pint(A \cap B)$, and by Proposition 5.1, $A \cap B$ is \widetilde{g} p-open in X.

Proposition: 5.8

Let (X, τ) be a topological space and $A, B \subset X$. If B is \widetilde{g} popen and pint $(B) \subset A$, then $A \cap B$ is \widetilde{g} popen.

Proof: Since B is \widetilde{g} p-open and pint(B) \subset A, pint(B) \subset A \cap B \subset B. By Proposition 5.2, A \cap B is \widetilde{g} p-open.

Proposition: 5.9

If $A \subset X$ is \widetilde{g} p-closed, then $pcl(A) \setminus A$ is \widetilde{g} p-open.

Proof: Let A be \widetilde{g} p-closed and F be a *gs-closed set such that $F \subset pcl(A) \setminus A$. Then by Proposition 4.5, $F = \emptyset$. So, $F \subset pint(pcl(A) \setminus A)$. By Proposition 5.1, $pcl(A) \setminus A$ is \widetilde{g} p-open.

The following Lemma can be easily verified.

Lemma: 5.10

For every subset A of a space (X, τ) , $pint(pcl(A) \setminus A) = \emptyset$.

Proposition: 5.11

Let $A \subset B \subset X$ and $pcl(A) \setminus A$ be \tilde{g} p-open. Then $pcl(A) \setminus B$ is also \tilde{g} p-open.

Proof: Suppose $pcl(A) \setminus A$ is \widetilde{g} p-open and let F be a *gs-closed subset of (X, τ) with $F \subset pcl(A) \setminus B$. Then $F \subset pcl(A) \setminus A$. By Proposition 5.1 and Lemma 5.10, $F \subset pint(pcl(A) \setminus A) = \emptyset$. Thus $F = \emptyset$ and hence, $F \subset pint(pcl(A) \setminus B)$. Hence $pcl(A) \setminus B$ is \widetilde{g} p-open.

6. APPLICATIONS:

Definition: 6.1

A space X is called a T \tilde{g}_p -space if every \tilde{g}_p p-closed set in it is preclosed.

Theorem: 6.2

For a space X the following conditions are equivalent.

- (i) X is a T \tilde{g}_{p} -space.
- (ii) Every singleton of X is either *gs-closed or preopen.

Proof: (i) \rightarrow (ii). Let $x \in X$. Suppose that $\{x\}$ is not a $^{\#}$ gs-closed set of X. Then $X - \{x\}$ is not a $^{\#}$ gs-open set. So X is the only $^{\#}$ gs-open set containing $X - \{x\}$. Then $X - \{x\}$ is an \widetilde{g} p-closed set of X. Since X is a T \widetilde{g} p-space, $X - \{x\}$ is a preclosed set of X and hence $\{x\}$ is a preopen set of X. (ii) \rightarrow (i). Let A be a \widetilde{g} p-closed set of X. We have A \subseteq

pcl(A). Let $X \in \text{pcl}(A)$ by (ii) $\{x\}$ is either "gs-closed or preopen. Case (i) Suppose that $\{x\}$ is "gs-closed. If $x \notin A$, pcl(A) -A contains a nonempty "gs-closed set $\{x\}$. By Theorem 4.5, we arrive at a contradiction. Thus $x \in A$. Case (ii) Suppose that $\{x\}$ is preopen. Since $x \in \text{pcl}(A)$, $\{x\} \cap A \neq \emptyset$. This implies $x \in A$. Thus in any case $x \in A$. So pcl(A) $\subseteq A$. Therefore pcl(A) = A or equivalently A is preclosed. Hence X is a T \widetilde{g} p-space.

Definition: 6.3

A topological space X is called a *T \tilde{g}_p -space if every \tilde{g}_p p-closed set in it is closed.

Theorem: 6.4

Every *T \tilde{g}_p -space is a T \tilde{g}_p -space but not conversely.

Proof: Since every closed set is preclosed, the result follows.

Example: 6.5

Let $X = \{a, b, c, d\}$ with $\tau = \{\phi, \{b\}, \{a, b\}, X\}$. Then (X, τ) is a T \widetilde{g}_p -space but not a ${}^\#T$ \widetilde{g}_p -space.

Theorem: 6.6

Every "T \tilde{g}_{p} -space is a "T \tilde{g}_{α} -space but not conversely.

Proof: Let A be a \tilde{g}_{α} -closed subset of X. Then A is \tilde{g} p-closed. Since X is a *T \tilde{g}_{p} -space, A is closed in X. Hence X is a *T \tilde{g}_{α} α -space.

Example: 6.7

Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Then (X, τ) is a ${}^{\#}T \widetilde{g} \alpha$ -space but not a ${}^{\#}T \widetilde{g}_{p}$ -space.

Theorem: 6.8

If X is $*_s T_p$ -space and $\alpha T_p *$ -space then it is T \tilde{g}_p -space.

Proof: Let A be \widetilde{g} p-closed set. Then A is gsp-closed set. Since X is *sT_p -space, A is g^*p -closed set. Since X is αT_p^* -space, A is preclosed. Hence X is $T_{\widetilde{g}}$ p-space.

Example: 6.9

Let $X = \{a, b, c, d\}$ with $\tau = \{\phi, \{a\}, \{a, b\}, X\}$. Then (X, τ) is a T \tilde{g}_p -space but it is neither *sT_p-space nor α T_p*-space.

Theorem: 6.10

If X is *T_p -space and αT_p *-space then it is $T \tilde{g}_p$ -space.

Proof: Let A be \widetilde{g} p-closed set. Then A is gp-closed set. Since X is *T_p -space, A is g^*p -closed set. Since X is αT_p^* -space, A is preclosed. Hence X is $T_{\widetilde{g}}$ p-space.

Example: 6.11

Let $X = \{a, b, c, d\}$ with $\tau = \{\phi, \{b\}, \{a, b\}, X\}$. Then (X, τ) is a T \widetilde{g}_p -space but it is neither *T_p-space nor α T_p*-space.

Theorem: 6.12

Every ${}^{\#}T \widetilde{g}_{p}$ -space is α -space but not conversely.

Proof: Let A be a α -closed subset of X. Then A is \widetilde{g} p-closed. Since X is a $^{\#}T$ \widetilde{g} p-space, A is closed in X. Hence X is a α -space.

Example: 6.13

Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{b\}, \{a, c\}, X\}$. Then (X, τ) is a α -space but not a ${}^{\#}T$ \widetilde{g}_{p} -space.

Theorem: 6.14

Every ${}^{\#}T\ \widetilde{g}_{p}$ -space is a $T\ \widetilde{g}$ -space but not conversely.

Proof: Let A be a \widetilde{g} -closed subset of X. Then A is \widetilde{g} p-closed. Since X is a $^{\#}T$ \widetilde{g} p-space, A is closed in X. Hence X is a T \widetilde{g} -space.

Example: 6.15

Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{b\}, \{a, b\}, X\}$. Then (X, τ) is a $T \widetilde{g}$ - space but not a ${}^{\#}T \widetilde{g}_{p}$ -space.

REFERENCES:

- [1] Abd El-Monsef, M. E., El-Deeb, S. N. and Mahmoud, R. A.: β-open sets and β-continuous mapping, Bull. Fac. Sci. Assiut Univ, 12(1983), 77-90.
- [2] Andrijevic, D.: Semi-preopen sets, Mat. Vesnik, 38(1986), 24-32.

- [3] Arya, S. P. and Nour, T.: Characterization of s-normal spaces, Indian J. Pure. Appl. Math, 21(8)(1990), 717-719
- [4] Bhattacharya, P. and Lahiri, B. K.: Semi-generalized closed sets in topology, Indian J. Math, 29(3)(1987), 375-382.
- [5] Biswas, N.: On characterization of semi-continuous functions, Atti. Accad. Naz. Lincei Rend. Cl. Fis. Mat. Natur, 48(8)(1970), 339-402.
- [6] Crossley, S. G. and Hildebrand, S. K.: Semi-closure, Texas J. Sci, 22(1971), 99-112.
- [7] Dontchev, J.: On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math, 16(1995), 35-48.
- [8] Duszynski, Z. and Rajesh, N.: Generalized semipreregular closed sets, (submitted).
- [9] Jafari, S., Noiri, T., Rajesh, N. and Thivagar, M. L.: Another generalization of closed sets, Kochi J. Math., Vol 3(2008), 25-38.
- [10] Jafari, S., Thivagar, M. L. and Nirmala Rebecca Paul.: Remarks on \tilde{g}_{α} -closed sets in Topological spaces, International Mathematical Forum, 5(2010), no. 24, 1167-1178.
- [11] Levine, N.: Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2)(1970), 89-96.
- [12] Levine, N.: Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41
- [13] Maki, H., Devi, R. and Balachandran, K.: Associated topologies of generalized α-closed sets and αgeneralized closed sets, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 15(1994), 51-63.
- [14] Maki, H., Umehara, J. and Noiri, T.: Generalized preclosed sets. Mem. Fac. Sci. Kochi Univ. Ser. A. Math, 17(1996), 33-42.
- [15] Mashhour, A. S., Abd El-Monsef, M. E. and El-Deeb, S. N.: On precontinuous and weak pre continuous mappings, Proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53.

- [16] Njastad, O.: On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [17] Noiri, T., Maki, H. and Umehara, J.: Generalized preclosed functions, Mem. Fac. Sci. Kochi Univ. Math, 19(1998), 13-20.
- [18] Park, J. H., Son, M. J. and Lee, B.Y.: On πgp-closed sets in topological spaces, Indian J. Pure Appl. Math.,
- [19] Pipitone, V. and eRusso, G.: Spazi semiconnessi espszi semiaperti, Rend. Circ. Matem. Palermo, (S. II) XXIV (1975), 273-285.
- [20] Sarsak, M. S. and Rajesh, N.: π-Generalized semipreclosed sets, International Math. Forum, 5(2010), no.12, 573-578.
- [21] Stone, M.: Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc, 41(1937), 374-481.
- [22] Sundaram, P. and Sheik John, M.: Weakly closed sets and weakly continuous maps in topological spaces, Proc. 82nd Indian. Sci. Cong. Calcutta, (1995), 49.
- [23] Sundaram, P., Rajesh, N., Thivagar, M. L. and Duszynski, Z.: \tilde{g} -semi-closed sets in topological spaces. Mathematica Pannonica, 18 / 1 (2007), 51-61.
- [24] Veera Kumar, M. K. R. S.: \hat{g} -closed sets in Topological spaces, Bull. Allahabad Math. Soc., 18(2003), 99-112.
- [25] Veera Kumar, M. K. R. S.: Between g*-closed sets and g-closed sets, Antarctica J. Math., Vol (3)(1)(2006), 43-65.
- [26] Veera Kumar, M. K. R. S. **g-semi-closed sets in topological spaces, Antarctica J. Math, 2(2) (2005), 201-222.
- [27] Veerakumar, M. K. R. S.: g*-preclosed sets, Acta Ciencia India, Vol. XXVIII M, No 1, (2002), 51-60.
- [28] Zaitsav, V.: On certain classes of topological spaces and their bicompactifications, Dokl. Akad. Nauk SSSR, 178(1968), 778-779.