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ABSTRACT 
In this paper I prove the stability of Cauchy functional equations in 2-normed linear spaces and also deal with Jensen 
type function equations and their stability in 2-normed linear spaces.  
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INTRODUCTION 
 
The concept of linear 2-normed spaces has been investigated by S.Gahler [6] in 1964 and has been developed 
extensively in different subjects by many authors. 
 
Definition1.1: Let X be a linear space of dimension greater than 1. Suppose || • ,• || is a real-valued function on X × X 
satisfying the following conditions:  
 

1. ||x, y|| = 0 if any only if x, y are linearly dependent vectors, 
2. ||x, y||= ||y, x|| for all x, y ∈X, 
3. ||λ x, y||=|λ | ||x,y|| for all λ ∈R and for all x, y ∈X, 
4. ||x+y, z||≤ ||x, z||+ ||z, y|| for all x, y, z ∈X. 

 
Then ||• ,• || is called a 2-norm on X and the pair (X, ||• , • ||) is called 2-normed linear space. Some of the basic 
properties of 2-norm are that they are non-negative and ||x, y+λ x||= ||x, y|| for all λ ∈R and for all x, y ∈X. 
 
1.2 Examples of 2-normed linear spaces 
 
•Vector space R2 is a 2-normed space with respect to the following 2-norm  
 
||x, z|| = {((x1)2+(x2)2)((z1)2+(z2)2)- (x1z1+x2z2)2}. 
 
•  Vector space R3 is a 2-normed space with respect to the following 2-norms  
 

(1) ||x, y||1= max{|x1y2 - x2y1| + |x1y3 - x3y1|, |x1y2-x2y1| +|x2y3 - x3y2|}, where x, y∈  R3 
(2) ||x, y||2= max{|x1y2 - x2y1|,  |x1y3 - x3y1|, |x2y3 - x3y2|}, where x, y∈  R3 

(3) ||x, y||3=
2
1

{max{|x1y2 - x2y1|, |x1y3 - x3y1|, |x2y3 - x3y2|}, where x, y∈  R3 

 
2. FUNCTIONAL EQUATIONS 
 
A functional equation meaning an equation between functionals: an equation F = G between functional can be read as 
an 'equation to solve', with solutions being themselves functions. In such equations there may be several sets of variable 
unknowns, like when it is said that an additive function f is one satisfying the functional equation 
 

f(x+y) = f(x)+f(y) 
 
In other words, a functional equation is an equation whose variables are ranging over functions. 
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2.1 Stability problem and stability of Cauchy functional equation 
 
A question in the theory of functional equations is the following “When is it true that a function which approximately 
satisfies a functional equation ∈  must be close to an exact solution∈?” If the problem accepts a solution, we say that 
the equation ∈  is stable. 
 
In 1940, S.M. Ulam [18] gave a wide ranging talk before the Mathematics Club of the University of Wisconsin in 
which he discussed a number of important unsolved problems. Among those was the following question concerning the 
stability of homomorphism. 
 
Theorem 2.1 [18]: Let (G1, *) be a group and (G2, , d) be a metric group with the metric d. Given ∈>0, does there 
exists a ∈δ >0 such that if a mapping h: G1 →G2 satisfies the inequality d (h(x*y),h(x)  h(y))< ∈δ  ∀ x, y∈G1, then 
there is a mapping H: G1 →G2 such that for each x, y ∈G1 H(x*y)=H(x) H(y) and d(h(x),H(x))< ∈? 
 
In the next year, D.H. Hyers [9], gave answer to the above question for additive groups under the assumption that 
groups are Banach spaces. In 1978, T.M. Rassias [16] proved a generalization of Hyers’ theorem for additive mapping 
as a special case in the form of following result. 
 
Theorem 2.2[16]: Suppose that E and F are real normed spaces with F a complete normed space, f: E→F is a 
mapping such that for each fixed x∈E the mapping t→ f (tx) is continuous on R, and let there exist 0∈≥  and  
 

p∈[0,1) s.t )()()()( pp yxyfxfyxf +≤−−+ ε  x, y∈E. 

Then there exists a unique linear mapping T: E→F s.t 1( ) ( ) ,
(1 2 )

p

p

x
f x T x ε −− ≤

−
 x∈E 

 
3. MAIN RESULTS 
 
I generalize the result of Rassias in 2-normed linear spaces as follows: 
 
Theorem 3.1: Suppose f: X→Y is a mapping where X is 2-normed spaces and Y a complete normed space and for 
some 0∈≥  and p∈[0,1) such that 
 

),,()()()( pp zyzxyfxfyxf +≤−−+ ε
  
∀ x, y, z∈X.                                            (1) 

   
Then there exists a unique linear mapping A: X→Y such that 
 

 
)21(

,
)()( 1−−
≤− p

pzx
xTxf ε                                                 (2) 

 for all x, z∈X. 
 
Proof: If we put y=x in (1), we get the following inequality 
 

pzxxfxf ,2)(2)2( ε≤−  
 
For all x, z∈X. we replace x by 2k-1x (for k∈N), we obtain 
 

ppkpkk zxxfxf ,2)2(2)2( 11 ε+−− ≤−  

 

Multiplying both sides of the above inequality by k2
1

and then adding the resulting n inequalities, we get 

∑∑
=

+−

=

− ≤−
n

k
k

pk
p

n

k

kk
k zxxfxf

1

12

1

1

2
2,)2(2)2(

2
1 ε . 
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Using the triangle inequality 
 

| |||||||||||| baba +≤+  
 
And simplifying the left side of the inequality, we get 
 

∑
=

−−≤−
n

k

ppkpn
n zxxfxf

1

1)1( 2.2,)()2(
2
1 ε .                                 (3) 

Since 

∑∑
∞

=

−

=

− ≤
1

)1(

1

)1( 22
k

pk
n

k

pk . 

 
The inequality (2) yields 
 

∑
∞

=

−−≤−
1

)1(1 22,)()2(
2
1

k

pkppn
n zxxfxf ε . 

 
which is  

p
p

n
n zxxfxf ,

22
2)()2(

2
1

−
≤−

ε
.                                   (4) 

 
For all x, z∈X. By induction it can be shown that (4) is valid for all natural numbers. If m > n > 0, then m-n is a natural 
number and replacing n by m-n in (4), we get 
 

p
p

nm
nm zxxfxf ,

22
2)()2(

2
1

−
≤−−

−

ε
 

 
which is 

p
pnn

nm
m zxxfxf ,

22
2

2
1)(

2
1)2(

2
1

−
⋅≤−− ε

                                 (5) 

 
For all x, z∈X. Replacing x by 2nx in (5), we obtain 
 

p
pn

np
n

n
m

m zxxfxf ,
22

2
2
2)2(

2
1)2(

2
1

−
⋅≤−

ε
                                (6) 

 
Since 10 <≤ p , 

02lim )1( =−

∞→

pn

n
 

 
And hence from (6), we obtain 
 

  0)2(
2
1)2(

2
1lim =−

∞→
xfxf n

n
m

mn
. 

 

Therefore
∞

=







12
)2(

n
n

n xf
is a Cauchy sequence. This Cauchy sequence has a limit in Y. we define 

 A(x) = n

n

n

xf
2

)2(lim
∞→

 for all x∈X                                                (7)
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First we claim that A: X→Y is additive mapping. Now, we consider   
 

||A(x + y) − A(x) − A(y)||  = nn 2
1lim

∞→
|| f (2nx+2ny) − f (2nx) − f (2ny)|| 

                                           ≤
( )

n

nppp

n

zyzx
2

2,,
lim

+
∞→

ε
   (by (6)) 

                                           = 0, 
Since p∈[0, 1) 
 
Hence A(x + y) = A(x) + A(y), for all x, y∈X. Now again consider  

                                  ||A(x) − f (x)||   = )(
2

)2(lim xfxf
n

n

n
−

∞→
 

                                                              
= )(

2
)2(lim xfxf

n

n

n
−

∞→
 

                                                              

p
pn

zx,
22

2lim
−

≤
∞→

ε
. 

 
Hence we get  

                                 ||A(x) − f (x)|| 
p

p zx,
22

2
−

≤
ε

    for all x, z ∈X. 

 
Now, we show that A is unique. 
 
Suppose A is not unique. Then there exists another additive mapping B: X →  Y such that  
 

                                  |B(x) − f (x)| 
p

p zx,
22

2
−

≤
ε

  

Hence   
                                  ||B(x) − A(x)|| ≤ ||B(x) – f (x)|| + ||A(x) − f (x)|| 

                                                         
p

p zx,
22

2
−

≤
ε p

p zx,
22

2
−

+
ε

 

                                                          = 
p

p zx,
22

4
−
ε

. 

 
Further, since A and B are additive, we have  
 

                                  ||A(x) − B(x)|| = 
n
1

|A(nx) − B(nx)|  

                                                        
p

pp zx
n

,
22

41
1 −

≤ −

ε
                                               (8) 

 
Hence taking limit as n→∞ on both sides, we get from (8) 
 

                                 
∞→n

lim ||A(x) − B(x)|| ≤
∞→n

lim p
pp zx

n
,

22
41

1 −−

ε
 

 
Hence  
                                            ||A(x) − B(x)|| ≤ 0 
 
Therefore A(x) = B(x), for all x∈R. Hence A is unique.  
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3.2 Stability of Jensen functional equations. 
 
The functional equation 
 

2
)()(

2
yfxfyxf +

=





 +

 

 
is known as Jensen’s equation.. By replacing x and y by x+y and x-y respectively, Jensen equation can be written as  
 

f(x+y) + f(x-y) =2 f(x). 
 
The first result on the stability of Jensen’s equation.was obtained by Z. Kominek [12] in 1989. He proved the following 
result: 
 
Theorem 3.3 [12]: Let D be a subset of Rn with non-empty interior. Assume that there exists an x0 in the interior of D 
such that D0 =D-x0 satisfies the condition (1/2)D0 ⊂D0 . Let a mapping f: D →Y satisfy the inequality 
 

δ≤−−





 + )()(

2
2 yfxfyxf , 

 
for some 0≥δ  and for all x,y ∈D. then there exist a mapping F: Rn →Y and a constant K>0 such that  
 

  )()(
2

2 yFxFyxF +=





 +

 

for all x, y ∈  Rn, and ||f(x)-F(x)||≤K for all x∈D. 
 
In 1998, S.M. Jung [10] generalized the Hyers-Ulam- Rassias stability of Jensen’s equation and its applications. He 
proved the stability of Jensen’s functional equation by using the concepts of Th. M. Rassias [16] and D. H. Hyers [9], 
i.e. the stability of the functional inequality 
 

)()(
2

2 yfxfyxf −−





 +

≤ δ  + θ )( pp yx +    

for the case p ≥ 0 (p ≠ 1). 
 
Now, we generalized the above result in 2-normed linear spaces as follows. 
 
The Jensen’s functional inequality 
 

)()(
2

2 yfxfyxf −−





 +

≤ δ  + θ ),,( pp zyzx +                                             (9) 

For the case p ≥ 0 (p ≠ 1). 
 
Theorem 3.5: Let p > 0 be given with p ≠ 1. Suppose a mapping f : X → Y, where X is a 2-normed linear space and Y 
is a Banach space, satisfies the inequality (9) for all x, y, z∈X. Further assume f (0) = 0 and δ = 0 in (9) for the case of 
p > 1. Further suppose that z is not in linear span of x.  
 
Then there exists a unique additive mapping F: X → Y such that  
 

   )()( xFxf − ≤ δ + )0(f  + 
p

p zx,
121 −−

θ
 , (for  p<1)                              (10) 

or 

   )()( xFxf − ≤  
p

p

p

zx,
12

2
1

1

−−

− θ
,  (for p>1)  

for all x, z∈X. 
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Proof: If we put y = 0 in (9), then we get the following inequality, 

      )(
2

2 xfxf −







 
≤  δ + )0(f  +

pzx,θ ,                              (11) 

 
for all x,z∈X  . By taking induction on n, we show that 

  )()2(2 xfxf nn −−  ≤ (δ + )0(f )∑
=

−
n

k

k

1
2  + 

pzx,θ ∑
=

−−
n

k

kp

1

)1(2
                            

(12) 

 
for the case when 0 < p < 1. By substituting 2x for x in (11) and dividing by 2 both sides of (11) we see the validity of 
(12) for n = 1. Now, we consider that the inequality (6.4.4) holds for  n∈N. Now replace x in (11) by 2n+1 x and 
dividing both sides of (11) by 2, then it follows from (12) that 

)()2(2 1)1( xfxf nn −++− ≤ )2()2(22 11 xfxf nnn −+−−  + )()2(2 xfxf nn −−  

        ≤  ( δ + )0(f )∑
+

=

−
1

1
2

n

k

k  + 
pzx,θ ∑

+

=

−−
1

1

)1(2
n

k

kp  

 
This completes the proof of inequality (12).  
 
Now we define 
             F(x) = )2(2lim xf nn

n

−

∞→
.                                             (13) 

 
for all x∈X.  we now prove that the sequence { )2(2 xf nn− } is a Cauchy sequence for all x∈X.  For n > m we use 
(12) to get  

)2(2)2(2 xfxf mmnn −− −   =  )2()22(22 )( xfxf mmmnmnm −−−−−  

               ≤ 2-m (δ + )0(f  + 
p

p

mp

zx,
12

2
1 −−

θ
) 

               → 0 as m → ∞ 
 
Let x, z∈X be arbitrary. It follows from (13) and (9) that  

         
( ) )()( yFxFyxF −−+   =

∞→n
lim )2()2(

2
)(222 11

1
)1( yfxfyxf nn

n
n ++

+
+− −−







 +
 

      ≤ 
∞→n

lim )1(2 +− n [δ  + 2(n+1)pθ ),,( pp zyzx + ] 

      = 0 
 
Hence, F is an additive mapping and the inequality (12) and the definition (13) imply the validity of (10). 
 
Now, let G: X → Y be another additive mapping which satisfies the inequality (10). Then, it follows from (10) that 
 

  
)()( xGxF −  = 2-n )2()2( xGxF nn −

 
≤ 2-n ( )2()2( xfxF nn −  + )2()2( xGxf nn − )  

≤ 2-n (2δ +2 )0(f  +
p

p

np

zx,
12

2
1

1

−−

+ θ
),                               (14) 

 
for all x∈X and for any n∈N. Since the right hand side of (14) tends to 0 as n → ∞, we conclude that F(x) = G(x), for 
all x∈X, which proves the uniqueness of F. For the case p>1 and δ = 0 in the functional inequality (9) we can 
analogously prove the inequality 

   )()2(2 xfxf nn −−  ≤ ∑
−

=

−−
1

0

)1(2,
n

k

kppzxθ  

 
instead of (12). The rest of the proof for this case goes through in the similar way. 
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Remark 6.4.3: Let p∈[0, 1) be given. By substituting x + y for x and putting y = 0 in (9), we get 

   )(
2

2 yxfyxf +−





 +

 
≤ δ  + )0(f + θ ),,( pp zyzx +  

 
This inequality, together with (9), gives 

   )()()( yfxfyxf −−+
 
≤ 2δ  + )0(f + 2θ ),,( pp zyzx + , 

 
for all x, y, z∈X. then there exists a unique additive mapping F: X → Y such that  

)()( xFxf −
 
≤ 2δ + )0(f

 
 +  

p
p zx,

21
2

1−−
θ

, x, z∈X. 

 
Theorem 3.6: Let d > 0 and δ ≥ 0 be given. Assume that a mapping f : X → Y satisfies the functional inequality 

   )()(
2

2 yfxfyxf −−





 +

 
≤  δ ,                                 (15) 

 
for all x, y∈X with zyzx ,, +

 
≥ d. Then there exists a unique additive mapping F: X→Y such that 

)()( xFxf −
 
≤ 5δ + )0(f  , for all x∈X.                              (16) 

 
Proof:  Suppose zyzx ,, +

 
< d. If x = y = 0, we can choose a w∈X such that w =d. Otherwise, let w = (1 + d/

zx, ) x for zx, ≥ zy,  or w = (1 + d/ zy, ) y for zx, < zy, . It is then obvious that  
 

zwyzwx ,, ++−  ≥ d; 

    zwxzw ,,2 −+ ≥ d; 

zwzy ,2, + ≥ d;  

zzy ++ ≥ d; 

zx + ≥ d.                                  (17) 
 
Form (15) and (17) and the relation 

        2 f 





 +

2
yx

 − f (x) − f (y) = 2 f 





 +

2
yx

 − f (x − z) − f (y + z)  

      − [2 f 





 +

2
zx

 − f (2z) −  f (x − z)] 

      + [2 f 





 +

2
2zy

 − f (y) − f (2z)] 

      − [2 f 





 +

2
2zy

 − f (y + z) − f (z)] 

      + [2 f 





 +

2
zx

 − f (x)  − f (z)] 

)()(
2

2 yfxfyxf −−





 +

 
≤ 5δ                                               (18) 

 
Thus mapping f  satisfies the inequality (15) for all x, y,z ∈X. Therefore, there exists a unique additive mapping F: X 
→ Y which satisfies the inequality (16) for all x∈ X. 
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Corollary 3.7: Suppose a mapping f : X  → Y satisfies the condition f (0) = 0 (X having 2-norm structure). Also f
satisfies the following asymptotic condition  
 

   )()(
2

2 yfxfyxf −−





 +

 → 0  

as  zyzx ,, +  → ∞,                                                   (19) 
 
for a fixed z in X, with z not being in the linear span of x and y, then f is an additive mappings and converse of this 
proposition holds. 
 
Proof: On account of (18), there exists a sequence (δn), monotonically decreasing to 0, such that   

)()(
2

2 yfxfyxf −−





 +

≤ δn ,                                            (20) 

 
for all x, y∈X with zyzx ,, +  ≥ n. It then follows from (20) and by above Theorem 3.7 there exists a unique 

additive mapping Fn: X → Y such that 
)()( xFxf n−

 
≤ 5δn ,                                               (21) 

 
for all x∈ X. Let l, m∈N satisfying m ≥ l. obviously, it follows from (21) that 

)()( xFxf m−
 
≤ 5δm ≤ 5δl ,   

 
for all x∈X, since (δn) is a monotonically decreasing sequence. The uniqueness of Fn implies Fm = Fl. Hence, by letting 
n → ∞ in (21). We conclude that f  is additive. The reverse assertion is trivial. Hence proved. 
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