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ABSTRACT 

        The purpose of this paper is to introduce a class of open sets in bitopological spaces. This clan is based on closure and 

interior operators with respect to the two topologies. Properties and characterization of the new clan are obtained and some 

examples and counter examples are given. The suggested clan can be used in the context of generalized rough set approximation 

which is widely applied in the fields of artificial intelligence and knowledge discovery. 
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------------------------------------------------------------------------------------------------------------------------------------------------------------ 

1. INTRODUCTION: 

Recent view of topological structure [6, 8] on a set is to consider topology on a set as a knowledge base to extract rules and 

decisions in information systems. In the case of using two information systems to extract knowledge, the suitable model is 

bitopological space [1]. The aim of this mark is to initiate a class of subsets which help in obtaining new approximations in 

information systems. For example, the following are examples of two information systems in the sense of Pawlak [7], 

 

  

 

 

where � � ��� �� �� �� 	
�is a set of a patient, {���� �
 is the set of conditional attributes, {�} is the decision attributes, � � ���, 

� � ��� � � �������, � � ������������� � � �����     and � �  ��! By "#�$ � #���� �$ we mean that the values of  � 

corresponding to ���� � respectively. 

Using the tables and the relation % on � & % � �#'� �$ ( �"#'$ � "#�$
, then we get two topologies on  �  and we can use the 

bitopological concepts to get knowledge about patients and diseases.   

 

Definition: 1.1  A subset  " in a bitopological space #��� )*� )+$ will be termed by ,-open if there exists an )*-open  - such that  

- . " . ��+�- , the family of  all  ,-open set in bitopological space was not necessary topology on  �  and it is denoted by  

,! /! #�$!� The complement of  ,-open sets will be called  ,-closed set. It is clear that every )*- open is ,-open but the converse is 

not true as shown by the following example. 

 

Example: 1.2 Let � � �0� 1� 2
�  )* � ��� 3� �0
� �1� 2

 and )+ � ��� 3� �1
� �0� 2
}. Then #�� )*� )+$ is bitopological space and 

,! /! #�$ � 4�� 3� �0
� �1� 2
� �0� 2
5! Take " � �0� 2
� then " is ,-open set but it is not )*-open set.  

 

The following theorems give some properties of ,-open sets. 

 

Proposition: 1.3 Let  " be a subset in a bitopological space  #�� )*� )+$�� then  " is ,-open if and only if " . ��+#��	*#"$  . 
Proof: Let   " . ��+#��	*#"$$� and  6 � ��	*#"$�  we have��6 � �. �"� . ��+#6$! Conversely, let  " be ,-open set. Then 6 . " .
��+#6$ for some )*-open set 6! But 6 . ��	*#"$ and thus ��+#6$ . ��+7��	*#"$8! Hence " . ��+#6$ . ��+7��	*#"$8! 
 

Theorem: 1.4 Let #�� )*� )+$�be a bitopological space and let  "� 9  be two subsets of  �. Then: 

(1) Let �":
:;< be a collection of ,-open sets in bitopological space  �. Then = "::;<  is ,-open. 

(2)  Let " be a ,-open set in the bitopological space � and " . 9 . ��+#"$� then 9 is ,-open set. 

 

Proof: (1) For each  0 ; <� we have an )*-open set 6: such that 6: . ": . ��+#6:$! Then  = 6::;<� . = �"::;< . = ���+#6:$:;< .
��+#= 6::;<� $. Hence, if  6 � = 6::;< , then 6 . = �"::;< . ��:#6$. 
------------------------------------------------------------------------------------------------------------------------------------------------------------- 
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(2) Since " is ,-open set, then there exists an )*-open set 6 such that 6 . " . ��:#6$. Then 6 . 9!  But ��+#"$ . ��+#6$ and 

thus 9 . ��+#6$! Hence 6 . 9 . ��+#6$ and 9 is ,-open set. 

 

Theorem: 1.5 Let  J � �9:
� 0K<� be a collection of sets in a bitopological space  #�� )*� )+$ such that  

(1)   )* . )+!�  
       (2)  If  9 ; J and 9 . 6 . ��+#9$� then  6 . J! 
Then  ,! /! #�$ . J and ,! /! #�$ is the smallest class of sets in � satisfying (1) and (2). 

 

Proof:  Let  " ; ,! /! #�$ , then - . " . ��+#-$  for some )*- open -!  Then   - ; J  by (1) and thus  " ; J by (2). 

 

Theorem: 1.6 Let " . � . �  where  � is a subspace of a bitopological space (�� )*� )+) and " ; ,! /! #�$�  then  "� ; ,! /! #�$!  
 

Proof: Let �6� be a )*-open in ��  then  6 . " . ��+#6$� . Now  6 . � and thus  6 � 6 L � . " L � . � L ��+#6$�������6 . " .
��+M#6$�� since  6 � 6 L ��   6 is  )* �N  - open in � and the theorem is proved. 

 

We introduce the following definitions of the ,-neighbourhood, �,- derived, �,- closure, ,-interior of a set which is similar to that of 

standard notions of neighbourhood, derived, closure and interior [2, 3, 4].  

 

Definition: 1.7 A set  �O . � is said to be ,-neighbourhood of a point  ' ; � if there exists a set " ; ,! /! #�$ such that  

 ' ; " . �O .The next theorem is obvious: 

 

Proposition: 1.8   " ; ,! /! #�$ if and only if " is ,-neighbourhood of each ' ; ". 

 

Definition: 1.9 A point ' ; � is said to be ,-limit point of " if and only if for each - ; ,! /! #�$�   ' ; - and #- P �'
$ L " Q 3 . 

The set of all ,-limit points of " is said to be ,-derived set of " and is denoted by�,-��� #"$ . We can prove the following theorem 

directly from the definition. 

 

Theorem: 1.11  " is��,- closed if and only if it contains the set of all its ,- limit points. 

Theorem: 1.12 Let  "� and  9  be two subsets of a bitopological space   #�� )*� )+$, then: 

(1) If  " . 9, then  ,-��� #"$ . ,-��� #9$ , 
(2) ,-��� #"$ R ,-��� #9$ . ,-��� #" R 9$, 
(3) ,-��� #" L 9$ . ,-��� #"$ L ,-����#9$, 
(4) ,-��� #,-��� #"$$S�" . ,-����#"$, 
(5) ,-���#" R ,-����#"$$ . " R ,-����#"$. 

 

Proof: We prove parts (4), (5) and the others follow directly from the definitions.  

(4) Let ' ; ,-���#,-���#"$$S" and - ; ,/#�$! Then  - L ,-���#"$S�'
 Q 3!   Let � ; - L      ,-���#"$S�'
�  then - L
"S���
 Q 3!  Let  T ; - L "S��
�  then T Q '  for T ; " and ' U " . Therefore - L "S�'
 Q 3� implies that ' ; ,-���#"$!   
(5) Let ' ; ,-���#" R ,-���#"$$. If  ' ; "�  then the result is obvious. So, let ' ; ,-���#" R ��,-���#"$$S" and if �' ; - ;
,! /! #�$� �- L ,-���#" R ,-���#"$$S�'
 Q 3�   then   - L ,-���#"$S�'
 Q 3! Now it follows similarly from (4), that - L
"S�'
 Q 3! Therefore ' ; ,-���#"$! Thus in any case ,-���#" R ,-���#"$$ . " R ,-���#"$! 
 

The reverse inclusion in theorem 1.12, parts (2), (3) are not true as shown by the following example:   

              

Example: 1.13 Let � � ��� V� �
� )* � ��� 3� ��
� �V
� ��� V

 and )+ � 4�� 3� ��
� �V� �
5! Then (�� )*� )+$ is bitopological space 

and ,! /! #'$! � ��� 3� ��
� �V
� ��� V
� �V� �
! Take " � ��
� and 9 � ��
� then ,-���#"$ � 3� ,-���#9$ � 3. Also ,-���#" R 9$ �
,-������ V
 � ��
 W �,-���#"$ R ,-���#9$ � 3!  Now take " � ��� �
 and  9 � �V� �
� then ,-���#"$ � ��
 and  ,-���#9$ � ��
! 
Again ,-���#" L 9$ � ,-�����
 � 3! Therefore ,-���#"$ L ,-���#9$ � ��
 W ,-���#" L 9$ � 3! Take " � �V� �
 Q 9 � �V
� 
then ,-��#"$ � �V� �
 � ,-��#9$ � �V� �
! Now take " � �V
�  then ,-��#"$ � �V� �
 and ,-���#,-cl("$$ � ,-der�V� �
 � ��
! 
Hence ,-��#"$ �  �V� �
 W ,-���#,-��#"$$ � ��
! 
 

Definition: 1.14 Let   "   be a subset of a bitopological space #�� )*� )+$�   " R ,-��� #"$ is defined to be the ,-closure of " and is 

denoted by ,-�� #"$. 
 

The following theorem gives some properties of ,-closure sets 

 

Theorem: 1.15 Let  "� and  9  be two subsets of a bitopological space #�� )*� )+$�  , then: 
#X$�" . ,-��#"$ � " R ,-��#"$� 
(2) If " . 9� then ,-�� (")�. ,-�� #9$� 
#Y$�,-�� (") R ,-�� (9) .�,-�� (" R 9$� 
#Z$�,-�� #" L 9$ . ,-�� #"$ L ,-�� #9$� 
#[$�,-��#3$ � 3����,-��#�$ � �� 
#\$�,-�� #,-�� ("))�� ,-�� ("), 
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#]$�" is a ,- closed  if and only if  ,-�� (")� ",  ,-�� ("$ is  ,-closed, 
#^$�,-�� #"$ �L ��& ��is ,-closed and�" . �
,  ,-�� ("$  is the smallest  ,-closed set containing "! 

 

Proof: We prove parts (2), (6), (7) and the others follow directly from the definitions.  

(2)  Since " . 9 and by theorem 1.10, part (1) ,-���#"$ � ,-���#9$! Then " R ,-���#"$ .   9 R ,-���#9$� Therefore ,-
��#"$ . ,-��#9$! 
 

(6)  ,-��#,-��#"$$ � ,-��#" R ,-���#"$$ � #" R ,-���#"$$ R ,-���#" R ,-���#"$$ � ����" R ,-���#"$ � ,-��#"$. 
 

(7) By theorem 1.11, " is ,-closed if and only if ,-���#"$ . "� i. e. if and only if ,-��#"$ � "!  
 

The reverse inclusion in theorem 1.15, parts (3) and (4) are not true as shown by the following example.  

 

Example: 1.16 Consider the bitopological space #�� )*� )+$ in example 1.2.  Take " � �0
 and 9 � �1
, then ,-��#"$ � �0
�  ,-
��#9$ � �1
 and ,-��#" R 9$ � �! Therefore ,-��#" R 9$ W ��  ,-��("$ R ,-��#9$! Now take " � �1� 2
 and  9 � �0� 1
� then ,-
��#"$ � �1� 2
, ,-��#9$ � � and ,-��#" L 9$ � �1
! Therefore ,-��#"$ L ,-��#9$ W ,-��#" L 9$!  
 

����������������������	
����������������	���������������,�������������������������������������������������	��	�����������

�

Definition: 1.17 A point  ' ; � is said to be a ,- interior point of " . �  if and only if there exist - ; ,! /! #�$ containing  '� such 

that - . "! The set of all ,- interior of " is said to be the ,-interior of "  and is denoted by ,-��	#"$ . 
 

The following theorem gives some properties of  ,- interior sets. 

 

Theorem: 1.18 Let " and 9 be two subsets of a bitopological space #�� )*� )+$�, then:  
#X$�,-��	#"$� is  ,-open 
#_$�,-��	 (") is the largest ,- open set contained in ", 
#Y$�" is ,- open  if and only if  " � ,-��	 ("), 

#Z$�,-��	#,-��	 ("))� ,-��	("), 
#[$�,-��	("$ � "S,-���#�S"$� 

������#\$�#�$ ��S,-��	#"$ � ,-��#�S"$,                       (b) ,-��	#�S"$ . �S,-��	#"$� 
������#]$�#�$  �S,-��#"$ � ,-��	#�S"$                        (b) If�" . 9�  then �, P ��	 #"$ �. , P ��	 #9),  

������#^$�#�$  ,-��	(")�R ,-��	(9$ . ,-��	#" R 9$�     (b) ,-��	(" L 9$ . ,-��	(A)L ,-��	#9$!  
������#`$�#�$  = ,:;< -��	#":$ . ,-��	7= "::;< 8�         (b) ,-��	#"S9$ . ,-��	#"$S9 . ,-��	#"$S,-��	#9$!    

 

Proof: We prove parts (1), (2), (5), (6) and the others follow directly from the definitions. 

  (1) Let ' ; ,-��	#"$� then - . " for some - ; ,! /! #�$ containing '. Also � ; -� then � ; ,-��	#"$�  therefore - . ,-
���������	#"$!  Hence ,-��	#"$ is ,-�����V������� of  '. Therefore by theorem 1.7,  ,-��	#"$ is ,-open. 

 

 (2) Let 6 ; ,! /! #�$�  6 . "! Then � ; 6� implies that y�; "� so that � ; ,-��	#"$! Therefore 6 . ,-��	#"$! Now the result      

      follow from part (1). 

 

 (5) Let ' ; "� implies that ' U ,-���#�S"$! Then there exist ,-open set -�containing ' such that - L #�S"$ � 3� implies that 

' ; - . "�  then ' ; ,-��	#"$! Conversely, let  ' ;  ,-��	#"$� then ' ; ,-���#�S"$ for ,-��	#"$ is ,-open and ,-��	#"$ L
#�S"$ � 3. Therefore ,-��	#"$ � "S,-���#�S"$! 
 

 (6)�#a$��S,-��	#"$ � �S#"S,-���#�S"$ � #�S"$ R ,-���#�S"$ � ,-��#�S"$!    
       (b) ,-��	#�S"$ . �S" . ,-��#�S"$ � �S,-��	#"$! 
 

The reverse inclusion in theorem 1.18, parts (8a) and (8b) are not true as shown by the following example. 

Example: 1.19. Consider the bitopological space (�� )*� )+$ defined in example 1.13, take " � ��
 and 9 � �V
! Then ,-��	#"$ �
3 and ,-��	#9$ � �V
� but ,-��	#" R 9$ � �V� �
!    Therefore ,-��	#" R 9$ W ,-��	#"$ R ,-��	#9$! Also if " � ��
 and 9 �
��� �
� then ,-��	#"$ � ��
 and ,-��	#9$ � ��
! Therefore ,-��	#"$ � ,-��	#9$ does not imply " � 9! Now let � � ��� V� �� �
�
)* � 4�� 3� ��
� �V� �
� ��� V� �
5��and��)+ � ��� 3� ��
� ��
� ��� V
� ��� �
� ��� V� �
� ��� �
� ��� �� �

. So (�� )*� )+$�is a bitopological 

space and ,! /! #�$ � ��� 3�� ��
� �V� �
� ��� V� �
� ��� V
� �V� �� �
! Take " � �V� �
�  9 � ��� V� �
� then ,-��	#"$ � �V� �
, ,-
��	#9$ � ��� V
 and ,-��	#" L 9$ � 3! Therefore ,-��	#"$ L ,-��	#9$ W ,-��	#" L 9$!    
 

2 b-boundary and b-exterior operators: 

In this section we define ,-boundary (,-co-dense) and ,-exterior  of a set. We will study these three operators and prove some 

standard results. 

Definition: 2.1 Let " be a subset of a bitopological space #�� )*� )+$!  
         (i)  "S,-��	#"$ is said to be the ,-boundary of " and is denoted by ,- �#"$!  
         (ii)  ,-��	#�S"$ is said to be the ,-exterior of " and is denoted by ,-ext(A). 
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The most important properties of the boundary and exterior operators are listed in the following theorems. 

 

Theorem: 2.2.  For any subsets " and 9 of bitopological space  #�� )*� )+$! Then: 

(1) (i)  " � ,-��	#"$ R ,- �#"$�                  (ii) ,-��	#"$ L ,- �#"$ � 3, 

(2)  " is  ,-open if and only if ,- �#"$ � 3�  
(3) (i)  ,- �#,-��	#"$$ � 3�                          (ii)  ,-��	#,- �#"$$ � 3, 

(4)  ,- �#,- �#"$$ � ,- �#"$, 
(5)  ,- �#"$ � " L ,- �#"$, 
(6) (i) ,- �#"$ � ,-���#�S"$�                     (ii) ,-���#"$ � ,- �#�S"$, 
(7)  If " . 9, then ,- �#"$ . ,- �#9$, 
(8) (i) ,- �#" R 9$ . ,- �#"$ R ,- �#9$   (ii)  ,- �#"$ L ,- �#9$ . ,- �#" L 9$. 
 

Proof: We prove parts (3ii), (5), (6i), (7) and the others follow directly from the definitions and above theorems. 

(3ii) Let ' ; ,-��	#,- �#"$, then  ' ; ,- �#"$ . "! Therefore ' ; ,-��	#,- �#"$$ . ,-��	#"$! Hence ' ; ,-��	#"$ L ,- �#"$, 
which contradicts part (1ii). Consequently ,-��	#,- �#"$$ � 3�  
(5) ,- �#"$ � "S,-��	#"$ � "S#�S,-��#�S"$$ � " L ,-��#�S"$�  
(6i) ,- �#"$ � "S,-��	#"$ � "S#"S,-���#�S"$$ � ,-���#�S"$�  
(7) Let ' ; "� ������' ; ,- �#9$� then ' U ,-��	#9$� implies that ' U ,-��	#"$! Then  ' ; ,- �#"$, therefore ,- �#9$ . ,-
 �#"$!  
 

The reverse inclusion in theorem 2.2, parts (8 i, ii) are not true as shown by the following example. 

 

Example: 2.3 Consider the bitopological space (�� )*� )+$ defined in example 1.19. Take " � ��� �
, 9 � �V� �
, then ,- �#"$ �
��
 and ,- �#9$. Therefore ,- �#"$ R ,- �#9$ � ��� V� �
 W ,- �#" R 9$ � 3! Now take " � �V
 and  9 � ��� V� �
�  then ,-
 �#"$ � �V
�     ,- �#9$ � 3 and ,- �#" L 9$ � �V
! Then ,- �#" L 9$ W ,- �#"$ L ,- �#9$!  
 

Theorem: 2.4 For any two subsets " and 9 of bitopological space (�� )*� )+$! Then 

(1) ,-�'	#"$ is  ,-open set,  

(2) ,-�'	#"$ � �S,-��#"$,  
(3) ,-�'	#c-�'	#"$$ � ,-��	#,-��#"$$,  
(4) (i) ,-�'	#" R 9$ . ,-��	#"$ L ,-�'	#9$ ,      (ii) ,-�'	#"$ R ,-�'	#9$ . ,-�'	#" R 9$.  
 

Proof: We prove parts (2), (3), (4i) and the others follow directly from the definitions and theorems. 

(2) ,-�'	#"$ � ,-��	#�S"$ � �S,-��#"$,  
(3) ,-�'	#,-�'	#"$$ � ,-�'	#�S,-��#"$$ � �S,-��	#�S,-��#"$$ � ,-��	#,-��#"$$, 
(4i) ,-�'	#" R 9$ � ,-��	#�S#" R 9$$ � ,-��	##�S"$ L #�S9$$ . ,-��	#�S"$ L ,-��	#�S9$ � ,-�'	#"$ L ,-�'	#9$!  
 

The reverse inclusion in theorem 2.4, part (4ii) is not true as shown by the following example. 

 

Example: 2.5 Consider the bitopological space (�� )*� )+$ defined in example 1.13. Take " � ��� V
 and 9 � ��� �
� then ,-
�'	#"$ � 3, ,-�'	#9$ � 3 and ,-�'	#" L 9$ � �V� �� �
. Therefore  ,-�'	#" L 9$ W ,-�'	#"$ R ,-�'	#9$. 
 

CONCLUSION: 

The class of open sets initiated in this paper has an importance in both theoretical and application domains. In the theory of 

bitopological spaces, the class can be used in constructing new concepts related to bitopological concepts, for example 

compactness, separation axioms and connectedness among others. In the application fields the concepts of lower and upper 

approximations in rough set theory can be obtained in a different manner from that used in [5] and [7], which in turn help in 

looking to the process of decision making from a different point of view. In our future work we will study in detail the effect of 

applying this class in rough set data analysis and its generalizations. 
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