International Journal of Mathematical Archive-3(6), 2012, 2374-2376 MA Available online through <u>www.ijma.info</u> ISSN 2229 - 5046

COMMON FIXED POINTS OF WEAKLY COMPATIBLE MAPPINGS ON NONARCHIMEDEAN MENGER SPACES

Oamar Alam*

Department of Mathematics, R. H. G. P. G. College, Kashipur, (U.S. Nagar) 244713, Uttarakhand, India

(Received on: 02-04-12; Revised & Accepted on: 22-04-12)

ABSTRACT

In this paper we prove a common fixed point theorem for weakly compatible mappings on a nonarchimedean Menger space. This improves a number of fixed point theorems in metric and Menger spaces.

AMS (2000) Mathematics Subject Classification: 54H25.

Key words: Nonarchimedean Menger space, fixed point, compatible mapping.

INTRODUCTION

The existence of fixed point of mappings on nonarchimedean Menger space has been established by Istratescu [4]. Achari [1] has proved some fixed point theorems for quasi-contraction type mappings on a nonarchimedean Menger space. Also Cho et al. [3] have proved a common fixed point theorem for compatible mappings in nonarchimedean Menger PM- space.

On the other hand, Singh and Pant [6] proved a common fixed point theorem for weakly commuting mappings on a nonarchimedean Menger space. In this paper our attempt has been to combine the ideas of [3] and [6] and to prove a common fixed point theorem for weakly compatible mappings on a nonarchimedean Menger space.

PRELIMINARIES

Definition 1: A t- norm is a function t: $[0, 1] \times [0, 1] \rightarrow [0, 1]$ which is associative, commutative, non decreasing in each coordinate and t (a, 1) = a \forall a $\in [0, 1]$

Definition 2: let $F_{u,v}$ denotes the value at $(u, v) \in X \times X$ of the function F: $X \times X \to L$ the collection of all distribution functions. A nonarchimedean Menger space is a triplet (X, F, t), where (X, F) is a nonarchimedean probabilistic metric space (PM-space) and t is t-norm such that the nonarchimedean triangle inequality

 $F_{u,w}(\max \{x, y\}) \ge t \{F_{u,v}(x), F_{v,w}(y)\}$ for all $u, v, w \in X$ and $x, y \ge 0$.

Definition 3: Two self mappings P and S on a PM-space X will be called weakly compatible iff Pu = Su implies that SPu = PSu, for all $u \in X$.

RESULTS

In order to state the theorem we need the following lemmas:

Lemma (1) Let X be a nonarchimedean Menger space and $\Phi: [0, \infty) \rightarrow [0, \infty)$ be an upper semicontinuous function with $\Phi(0) = 0$ and $\Phi(t) < t$ for all t > 0. If $\{u_n\}$ is a sequence in X such that for any $\varepsilon > 0$ and any n $\varepsilon \in N$

 $F_{un un+1} (\Phi (\varepsilon)) \ge F_{un-1 un} (\varepsilon)$

Then $\{u_n\}$ is a Cauchy sequence in X.

Lemma (2): Let (X, F) be a PM-space and β (0) = 0 and β (t) < t for all t > 0.

If for u, v ε X and for all $\,\epsilon \! > \! 0$

 $F_{u,v}(\beta(\varepsilon)) > F_{u,v}(\varepsilon)$, then u = v.

Now we state our main theorem:

Theorem 1: Let (X, F, t) be a nonarchimedean Menger space and P, Q, S, T: $X \rightarrow X$ satisfy the following:

(1). $P(X) \subseteq T(X)$ and $Q(X) \subseteq S(X)$;

(2). T(X) or S(X) is a complete subspace of X;

(3). (P, S) and (Q, T) are weakly compatible pairs;

(4). There exists an upper semi continuous function with $\Phi(0) = 0$ and $\Phi(t) < t$ for all t > 0 such that

 $F_{Pu, Qv}$ ($\Phi(\epsilon)$) $\geq max \{F_{Su, Tv}(\epsilon), F_{Su, Pu}(\epsilon), F_{Qv, Tv}(\epsilon), F_{Su, Qv}(\epsilon), F_{Tv, Pu}(\epsilon)\}$

For all u, v in X and $\epsilon > 0$. Then P, Q, S and T have a unique common fixed point.

Proof: Let $u_0 \in X$. We define the sequence $\{u_n\}$ in X given by the rule

 $Tu_{2n+1} = Pu_{2n} = v_{2n} \text{ (say), and } Su_{2n+2} = Qu_{2n+1} = v_{2n+1} \text{ (say)}$ where $n \in N \cup \{0\}$.

This can be done by the virtue of (1).

Without loss of generality, we can assume that $v_n \neq v_{n+1}$ for all $n \in N$. By (4) and for $n \in N$ and all $\epsilon > 0$,

 $F_{v2n, v2n+2}(\varepsilon) = F_{v2n, v2n+2}(max \{\varepsilon, \Phi(\varepsilon)\})$

 $\geq \max \{F v_{2n}, v_{2n+1}(\varepsilon), F v_{2n+2}, v_{2n+1}(\Phi(\varepsilon))\}$

Now

 $\begin{array}{l} F \ v_{2n+2}, \ v_{2n+1}(\Phi \ (\epsilon)) = F \ _{Pu2n+2, \ Qu2n + l}(\Phi \ (\epsilon)) \\ & \geq max \ \{F_{Su2n+2, \ Tu2n + l}(\epsilon), \quad F_{Su2n+2, \ Pu2n+2}(\epsilon), \end{array}$

 $\begin{array}{l} F_{Qu2n+1, Tu2n+1}(\epsilon), F_{Su2n+2, Qu2n+1}(\epsilon), F_{Tu2n+1, Pu2n+2}(\epsilon) \} \\ &= max \left\{ F v_{2n+1}, v_{2n} \left(\epsilon \right), F v_{2n+1}, v_{2n+2}(\epsilon), F v_{2n+1} v_{2n} \left(\epsilon \right) \right\} \end{array}$

 $F v_{2n+1} v_{2n+1}(\epsilon), F v_{2n}, v_{2n+2}(\epsilon) \} = max \{Fv_{2n+1}, v_{2n}(\epsilon), F v_{2n+1}, v_{2n+2}(\epsilon) \}$

Thus in view of Lemma (2), we have

 $F v_{2n+1}, v_{2n+2} (\Phi (\varepsilon)) \ge F v_{2n+1}, v_{2n} (\varepsilon),$

Similarly, we can prove that for $n \in N$ and for all $\epsilon > 0$.

F v_{2n+3} , v_{2n+2} (Φ (ϵ)) \geq F v_{2n+2} , $v_{2n+1}(\epsilon)$.

Thus in general

F v_{n+1} , $v_n (\Phi(\varepsilon)) \ge F v_n$, $v_{n-1}(\varepsilon)$, for all n and every $\varepsilon > 0$.

So, by Lemma (1), $\{v_n\}$ is a Cauchy sequence. Suppose T(X) is complete, then $\{v_n\}$ has a limit in T(X). Call it w. Hence there exists a point p in X such that Tp = w. Consequently, the subsequences $\{Pu_{2n}\}$, $\{Qu_{2n+1}\}$ and $\{Su_{2n}\}$ also converge to w.

For $\varepsilon > 0$, by (4)

 $F_{Pu2n, Qp}(\Phi(\epsilon)) \ge max \{F_{Su2n, Tp}(\epsilon), F_{Su2n, Pu2n}(\epsilon), F_{Qp, Tp}(\epsilon), F_{Su2n, Qp}(\epsilon), F_{Tp, Pu2n}(\epsilon)\}.$

Qamar Alam*/ COMMON FIXED POINTS OF WEAKLY COMPATIBLE MAPPINGS ON NONARCHIMEDEAN MENGER SPACES / IJMA- 3(6), June-2012, Page: 2374-2376

Letting $n \rightarrow \infty$,

 $F_{w, Qp} (\Phi(\epsilon)) \ge \max \{ F_{w, w}(\epsilon), F_{w, w}(\epsilon), F_{Qp, w}(\epsilon) \}$

Which implies that Qp = w.

Hence w = Tp = Qp. But $Q(X) \subseteq S(X)$, so there exists a point $q \in X$ such that

$$\mathbf{S}\mathbf{q} = \mathbf{Q}\mathbf{p} = \mathbf{T}\mathbf{p}.$$

Using (4), we get

 $F_{Pq, Qp}(\Phi(\varepsilon)) \ge \max \{F_{Sq, Tp}(\varepsilon), F_{Sq, Pq}(\varepsilon), F_{Qp, T}(\varepsilon), F_{Sq, Qp}(\varepsilon), F_{Tp, Pq}(\varepsilon)\}$

 $= F_{Pq, Qp}(\varepsilon).$

Therefore by Lemma (2), we have Pq = Qp.

Thus w = Pq = Sq = Qp = Tp. This shows that p and q are the coincidence points of (Q, T) and (P, S) respectively.

Now, let Pq = Sq. By the hypothesis of weak compatibility of P and S, we have SPq = PSq. This implies that Sw = Pw.

To prove Pw = w, suppose $Pw \neq w$, then by (4),

$$\begin{split} F_{Pw,w}(\Phi(\epsilon)) &= F_{Pw,Qp}(\Phi(\epsilon)) \\ &\geq \max \{F_{Sw,Tp(\epsilon)}, F_{Sw,Pw}(\epsilon), F_{Qp,Tp}(\epsilon), F_{Sw,Qp}(\epsilon), F_{Tp,Pw}(\epsilon)\} \\ &= F_{Pw,w}(\epsilon) \end{split}$$

Therefore Pw = w = Sw, by Lemma (2)

In similar way, taking Qp = Tp and weak compatibility of Q and T, we can prove Qw = Tw and then Qw = w = Tw.

Thus, we have proved that w is common fixed point of P, Q, S and T. Same result holds good if S(X) is taken to be complete.

Finally, we have to prove the uniqueness of w as a common fixed point of P, Q, S and T and this can be done easily using (4).

REFERENCES

[1] J. Achari, fixed point theorems for a class of mappings on nonarchimedean probabilistic metric space. Mathematics 25(1983), 5-9.

[2] S.S. Chang fixed point theorem for single-valued and muti-valued mappings in Non-Archimedean Menger PM-space, Math. Japonica, 35(5) (1990), 875-885.

[3] Y.J. Cho, K.S. Ha, and S.S. Chang Common fixed point theorem for compatible mappings of type (A) in Non-Archimedean Menger PM-space, Math. Japon, 46(1) (1997), 169-179.

[4] V.I. Istratescu, Fixed point theorems for some classes of contraction mappings on nanarchimedean probabilistic metric space, Puble. Math. (Debrecen) 25(1978), 29-34.

[5] S.L. Singh and B.D. Pant Common fixed points theorems inprobabilistic metric space and extension touniform spaces, Honam Math. J. 6(1984)12.

[6] S.L. Singh and B.D. Pant Common fixed points of weakly commuting mappings on Non-Archimedean menger PM-space (1986), 27-31.

Source of support: Nil, Conflict of interest: None Declared