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ABSTRACT 
We introduce the concept of *gα-closed sets in a topological space and characterize it using its Gαo-kernel. Moreover 
we investigate new seperation axioms and new functions in topological spaces. For the digital plane, we have explicite 
forms of Gαo-kernel and α-kernel of a subset in the plane. 
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1. INTRODUCTION  
 
Levine [14] and Njastad [19] introduced semi-open sets and α-sets respectively.  The complement of a semi-open (resp. 
α-open) set is called a semi-closed [3] (resp.α-closed [19]) set. Levine [13] introduced g-closed sets and studied their 
most fundamental properties. S.P. Arya and T. Nour [1], H. Maki et.al. [16, 17] introduced gs-closed sets, αg-closed 
sets and gα-closed sets respectively. Dontchev [9] and Gnanambal [10] introduced gsp-closed sets and gpr-closed sets 
respectively. 
 
In this paper, we introduce a new class of sets, namely *gα-closed sets by generalizing gα-open sets. This new class is 
properly placed between the class of closed sets and the class of g-closed sets. Applying *gα-closed sets, we introduce 
and study some new spaces, namely αT1/2

** spaces, Tc
** spaces, αTc

** spaces and **
αT1/2 spaces. In the fifth chapter we 

introduce and study *gα-continuous, *gα-irresolute maps and its group structure., In the sixth chapter we  investigate 
*gαc- homeomorphism and its properties. In the seventh chapter, we investigate the explicite form in the digital plane of 
Gαo-kernel and  α-kernel which are used for charaterization of *gα-closed sets and gα-closed sets, respectively. The 
digital plane is a mathematical model of the computer screen (cf.[5],[11],[12]).  
 
2. PRELIMINARIES 
 
Throughout this paper (X, τ), (Y,σ) and (Z,η) represent topological space on which no separation axioms are assumed 
unless otherwise mentioned. For a subset A of a space (X,τ), cl(A), int(A) and C(A) denote the closure of A, the interior 
of A and the complement of A in X respectively.  
 
Let us recall the following definitions, which are useful in the sequel. 
 
Definition 2.1: A subset A of a space (X, τ) is called  
1. a semi-open set [14] if A ⊆  cl(int(A)) and a semi-closed set if int(cl(A)) ⊆  A, 
2. an  α-open  set [19]  if  A ⊆  int(cl(int((A))) and an α-closed set if cl(int(cl(A))) ⊆  A and 
 
Definition 2.2: A subset A of a space (X, τ) is called  
1. a generalized closed (briefly g-closed) set [13] if cl(A) ⊆  U whenever A ⊆  U and  U is op en in (X, τ). The 

complement of a g- closed set is called a g-open set, 
2. a generalized semi-closed (briefly gs-closed) set [1] if scl(A) ⊆  U whenever A ⊆  U  and U is open in (X, τ), 
3. an α-generalized closed (briefly αg-closed) set [16] if αcl(A) ⊆  U whenever A ⊆  U and U is open in (X, τ). The 

complement of an αg-closed set is called an  αg-open set, 
4. a generalized α-closed ( briefly gα-closed )  set [17] if αcl(A) ⊆ U whenever A ⊆  U  and U is α-open in (X, τ ), 
5. a generalized preclosed (briefly gp-closed ) set [18] if pcl(A) ⊆ U  whenever A ⊆  U and U is open in (X, τ), 
6. a generalized semi-preclosed ( briefly gsp-closed ) set [9] if spcl(A) ⊆  U whenever A ⊆  U and U is open in (X , τ), 
7. a generalized preregular closed ( briefly gpr-closed ) set [10] if pcl(A) ⊆ U whenever A ⊆  U and is regular open in 

(X, τ), 
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Definition 2.3: A function f: (X, τ) →(Y,σ) is called  
1.    semi-continuous [14] if f-1(V) is semi-open in (X, τ) for every closed set V of (Y,σ), 
2. α-continuous [15] if f-1(V) is α-closed in (X, τ) for every closed set V of (Y,σ), 
3. g-continuous [2] if f-1(V) is g-closed in (X, τ) for every closed set V of (Y,σ), 
4. gs-continuous [7] if f-1(V) is gs-closed in (X, τ) for every closed set V of (Y,σ), 
5. αg-continuous [4] if f-1(V) is αg-closed in (X, τ) for every closed set V of (Y,σ), 
6. gα-continuous [17] if f-1(V) is gα-closed in (X, τ) for every closed set V of (Y,σ), 
7. gsp-continuous [9] if f-1(V) is gsp-closed in (X, τ) for every closed set V of (Y,σ), 
8. gpr-continuous [10] if f-1(V) is gpr-closed in (X, τ) for every closed set V of (Y,σ), 
9. gc-irresolute [2] if f-1(V) is g-closed in (X, τ) for every g-closed set V of (Y,σ), 
10. gs-irresolute [7] if f-1(V) is gs-closed in (X, τ) for every gs-closed set V of (Y,σ), 
11. αg -irresolute [4] if f-1(V) is αg -closed in (X, τ) for every αg -closed set V of (Y,σ) and 
12. gα-irresolute [17] if f-1(V) is gα -closed in (X, τ) for every gα -closed set V of (Y,σ). 
 
Definition 2.4:A space (X, τ) is called  
1. a T1/2 space [13] if every g-closed set is closed, 
2. a Tb space [6] if every gs-closed set is closed, 
3.   a Td space [6] if every gs-closed set is g-closed, 
4. an αTb space [4] if every αg-closed set is closed, 
5. an αTd space [4] if every αg-closed set is g-closed. 
 
Notation 2.5: For a space (X, τ), C(X, τ) (resp.SC(X, τ), αC(X, τ), GαC(X, τ),GC(X, τ),GSC(X, τ), αGC(X, τ)) denote 
the class of all closed (resp.semi-closed, α-closed, gα-closed, g-closed, gs-closed, αg-closed) subsets of  (X, τ). 
 
3. BASIC PROPERTIES OF *gα-CLOSED SETS 
 
We introduce the following definition. 
 
Definition 3.1: A subset A of (X, τ) is called a *gα-closed set if cl(A) ⊆ U whenever A ⊆ U and U is gα-open in (X, τ). 
 
The class of *gα-closed subsets of (X, τ) is denoted by *GαC(X, τ). 
 
Theorem 3.2: Every closed set is a *gα -closed set. 
 
Proof: Let A⊆U, where U is gα-open set in X. Since A is closed, cl(A) = A⊆U. Therefore cl(A) ⊆U.  
 
Hence A is *gα-closed. 
 
Following example shows that the above implication is not reversible. 
 
Example 3.3: Let X = {a, b, c} and τ  = {X, φ, {a, b}}. *GαC(X, τ) = {X, φ, {c}, {b, c}, {a, c}}. 
 
Here{b, c}is a *gα-closed set of (X, τ) but it is not a closed set of (X, τ). 
 
Theorem 3.4: Every *gα -closed set is g-closed set. 
 
Proof: Let A⊆U, where U is an open set in X. Since every open set is gα-open, U is gα-open .Since A is *gα-closed, 
cl(A) ⊆U. Hence A is g-closed. 
 
Following example shows that the above implication is not reversible. 
 
Example 3.5: Let X = {a, b, c} and τ = {X, φ, {a}, {b, c}}. GC(X, τ) = {X, φ, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}}. 
*GαC(X, τ) = {X, φ, {a}, {b, c}}. 
 
Here {b} is a g-closed set of (X, τ) it is not a *gα-closed set of (X, τ). 
 
Theorem 3.6: Every *gα-closed set is gα-closed set. 
 
Proof: Let A⊆U, where U is an α-open set in X. Since every α-open set is gα-open, U is gα-open. Since A is *gα-
closed, cl(A) ⊆U. But αcl(A) ⊆ cl(A) ⊆U. Therefore A is gα-closed.  
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Following example shows that the above implication is not reversible. 
 
Example 3.7: Let X and τ be as in the example 3.5. Let A = {a, c}. A is a gα-closed set of (X, τ). But A is not a *gα-
closed set of (X, τ).     
 
Theorem 3.8: Every *gα-closed set is gp-closed set. 
 
Proof: Let A⊆U, where U is an open set in X. Since every open set is gα-open, U is gα-open. Since A is *gα-closed, 
cl(A) ⊆U. But pcl(A) ⊆ cl(A) ⊆U. Therefore A is gp-closed set. 
 
Following example shows that the above implication is not reversible. 
 
Example 3.9: Let X and τ be as in the example 3.5. Let B= {a, b}. B is a gp-closed set of (X, τ). But B is not a *gα-
closed set of (X, τ). 
 
Thus the class of *gα-closed sets are contained in the class of g-closed sets, gα-closed sets, αg-closed sets, gs-closed 
sets, gsp-closed sets, gpr-closed sets and gp-closed sets. The class of *gα-closed sets contains the class of closed sets. 
 
Remark 3.10: *gα-closedness is independent of  semi-closedness  and α-closedness. 
 
Proof: It can be seen by the following example. 
 
Example 3.11: Let X = {a, b, c} and τ = {X, φ, {a}}. SC(X, τ) = {X, φ, {b}, {c}, {b, c}} = αC(X, τ) 
*GαC(X, τ) = {X, φ, {b, c}}. 
 
Here {b} is semi-closed set and α-closed set of (X, τ). But it is not a *gα-closed set of (X, τ). 
 
Example 3.12: Let X and τ be as in the example 3.3. Here {b, c} is not a semi-closed and α-closed set of (X, τ). But it 
is a *gα-closed set of (X, τ). 
 
Theorem 3.13: The intersection of two gα-closed sets is again in gα-closed set.   
 
Proof: Let A and B are gα-closed sets. Let A∩B ⊆ U, U is α-open. Since A and B are gα-closed sets, αcl(A) ⊆ U and 
αcl(B) ⊆ U. This implies that αcl(A∩B) = αcl(A) ∩ αcl(B) ⊆ U ⇒ αcl(A∩B) ⊆ U. Therefore A∩B is gα-closed. 
 
Theorem 3.14: Let A be an open set and B be an gα-open set, then A∪B is gα-open set. 
 
Proof: Suppose that A is an open set and B is an gα-open set. Since every open set is gα-open set, A is gα-open set. 
Then A∪B is gα-open set, since union of two gα-open set is again gα-open set. 
 
Theorem 3.15:  
1. Let A be a *gα-closed set of (X, τ) if and only if cl(A)-A does not contain any non empty gα-closed set. 
 
2. If A is a   *gα-closed and A ⊆ B ⊆ cl(A), then B is *gα-closed.  
 
Proof: 
1. Necessity part- Suppose that A is *gα-closed and let F be a non empty gα-closed set with F ⊆ cl(A)-A. Then A ⊆ X-
F and so cl(A) ⊆ X-F. Hence F ⊆ X-cl(A), a contradiction.  
 
Sufficient part - Suppose A is a subset of (X, τ)  such that cl(A)-A does not contain any non-empty gα-closed set. Let 
U be a gα-open set of (X,τ) such that A ⊆ U. If cl(A)⊆ U, then cl(A)∩C(U) ≠ φ.Then φ ≠ cl(A)∩C(U) is a gα-closed set 
of (X, τ), since the intersection of two gα-closed sets is again gα-closed set.   
 
2. Let U be a g α-open set of (X, τ) such that B ⊆ U. Then A ⊆ U. Since A is *gα-closed, cl(A) ⊆ U. Now 
cl(B) ⊆ cl(cl(A))=cl(A) ⊆ U. Therefore B is also a *gα-closed set of (X, τ).   
 
Theorem 3.16: Let X be a topological space. A subset A of (X, τ) is *gα-open if and only if  U⊆Int(A), whenever U is 
gα-closed set and U⊆ A. 
 
Proof: Let A be a *gα-open set and U is gα-closed set  such that U⊆ A implies X-U ⊇ X-A and X-A is *gα-closed set. 
So cl(X-A) ⊆ X-U implies (X- cl(X-A)) ⊇ (X-(X-U)) = U. But (X- cl(X-A)) = Int(A). Thus U⊆Int(A). 
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Conversely, suppose A is subset such that  U⊆Int(A). Whenever U is gα-closed and U⊆ A. We show that X-A is *gα-
closed set. Let X-A ⊆ U, where U is gα-open. Since X-A ⊆ U implies X-U ⊆ A. By assumption that we must have X-U 
⊆Int(A) or X-Int(A) ⊆ U. Now X-Int(A) = cl(X-A) which implies that cl(X-A) ⊆ U and X-A is *gα-closed set. 
 
Theorem 3.17: The union of two *gα-closed sets is a *gα-closed set.   
 
Proof: Let A and B are *gα-closed sets. Let A∪B ⊆ U, U is   gα-open. Since A and B are *gα-closed sets, cl(A) ⊆ U 
and cl(B) ⊆ U. This implies that cl(A∪B) = cl(A) ∪ cl(B) ⊆ U ⇒ cl(A∪B) ⊆ U. Therefore A∪B is *gα-closed. 
 
Remark 3.18: The intersection of two *gα-closed sets is again in *gα-closed set.   
(i) The intersection of two *gα-closed sets is again in *gα-closed set.  
(ii) The intersection of an open and a *gα-open sets is a *gα-open set.  
(iii) The union of an open and a *gα-open sets is a *gα-open set. 

 
We prepare the following notations:       
 
For a subset A of (X, τ), 
GαO(X, τ) = {U/U is gα-open in  (X, τ)}; 
ker(A) = ∩{U/U∈τ and A ⊆ U};  
α-ker(A) = ∩{U/U is α-open set and A ⊆ U}; 
GαO-ker(A) = ∩{U/U∈ GαO(X, τ) and A ⊆ U}. 
Xgαc = {x∈X / {x} is gα-closed in (X, τ)} and 
X*gαo  = {x∈X / {x} is *gα-open in  (X, τ)}. 
 
Theorem 3.19: Any subset A is gα-closed set if and only if  αcl(A) ⊆ α-ker(A) holds. 
 
Proof: Necessary: We know that A ⊆ α-ker(A). Since A is gα-closed, then αcl(A) ⊆ α-ker(A). 
 
Sufficiency: Let A ⊆ U and U is α-open. Given that αcl(A) ⊆ α-ker(A). If U ⊆ αcl(A), then α-ker(A) ⊆ U ⊆ αcl(A), 
which is a contradiction to the hypothesis. Therefore αcl(A) ⊆ U. Hence A is gα-closed. 
 
Lemma 3.20: For any space (X, τ),  X = Xgαc ∪ X*gαo  holds. 
 
Proof: Let x∈X. Suppose that {x} is not *gα-closed set in (X, τ). Then X is a unique gα-open set containing X/{x}. 
Thus X/{x} is *gα-closed in (X, τ) and so {x} is *gα-open. Therefore x∈ Xgαc ∪ X*gαo. 
 
Theorem 3.21: For a subset A of (X, τ), the following conditions are equivalent: 
1. A is *gα-closed in  (X, τ). 
2. cl(A) ⊆ GαO-ker(A) holds. 
3. (i) cl(A) ∩ Xgαc⊆ A and (ii) cl(A) ∩ X*gαo  ⊆ GαO-ker(A) holds. 
 
Proof: 
(1)⇒(2): Let x∉ GαO-ker(A). Then there exists a set U∈ GαO(X, τ) such that x∉U and A ⊆ U.   
 
Since A is *gα-closed, cl(A) ⊆ U and x∉cl(A). This is a contradiction. 
 
(2)⇒(3): 
 
(i): It follows from (2) that cl(A) ∩ Xgαc ⊆ GαO-ker(A) ∩ Xgαc. We claim that GαO-ker(A) ∩ Xgαc ⊆ A.Suppose x ∈ 

GαO-ker(A) ∩ Xgαc and assume that x∉A.Since the set X/{x}∈ GαO(X, τ) and A ⊆ X/{x}. Then we have that x ∈ 
X/{x} and so this is a contradiction. Thus we show that cl(A) ∩ Xgαc ⊆ A. by using (2) cl(A) ∩ Xgαc ⊆ GαO-ker(A) 
∩ Xgαc ⊆ A.  

 
(ii): It is obtained by (2). 
 
(3) ⇒(2):  By Remark 3.8 and (3), 
 
        cl(A) = cl(A) ∩ X = cl(A) ∩ (Xgαc ∪ X*gαo) 
                                      = (cl(A) ∩ Xgαc)  ∪ (cl(A) ∩  X*gαo) 
                                      ⊆ A ∪ GαO-ker(A)  
                                      = GαO-ker(A).       
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That is cl(A) ⊆ GαO-ker(A) holds. 
 
(2) ⇒ (1): Let U∈ GαO(X, τ) such that A ⊆ U. Then we have that GαO-ker(A) ⊆ U and so by (2) cl(A) ⊆ U. Therefore 
A is *gα-closed. 
 
Remark 3.22: The following diagram shows the relationships established between *gα-closed sets and some other 
sets in theorem 3.2, 3.4, 3.6, 3.8, remark3.10 and reference [22], [21]. A→B (A ↔ B) represents A implies B but not 
conversely(A and B are independent each other). 

 
 
4. APPLICATIONS OF *gα-CLOSED SETS 
 
We introduce the following definition. 
 
Definition 4.1: A space (X, τ) is called an αT1/2

** space if every *gα-closed set is closed. 
 
The following theorem gives a characterization of αT1/2

** spaces. 
 
Theorem 4.2: If (X, τ) is an αT1/2

** space, then every singleton of X is either gα-closed or open. 
 
Proof: Let x∈X and suppose that {x} is not a gα-closed set of (X, τ). Then X/{x} is not gα-open. This implies that X 
is the only gα-open set containing X/{x}, so X/{x} is a *gα-closed set of (X, τ).Since (X, τ) is an αT1/2

** space, X/{x} is 
closed or equivalently {x} is open in (X, τ).      
 
Theorem 4.3: Every T1/2 space is an αT1/2

** space.  
 
Proof: Let A be a *gα-closed set of (X, τ). Since every *gα-closed set is g-closed, A is g-closed. Since (X, τ) is a T1/2 
space, A is closed. Therefore (X, τ) is an αT1/2

** space. 
 
The space in the following example is an αT1/2

** space but not a T1/2 space. 
 
Example 4.4: Let X={a, b, c}with τ ={X, φ,{a},{a, b}}. 
*GαC(X, τ)={X, φ,{c}, {b, c}} 
GC(X, τ) = {X,  φ,{c}, {b, c}, {a, c}}. 
 
Here (X, τ) is an αT1/2

** space but not a T1/2 space. Since {a, c} is a g-closed set but not a closed set.  
 
Theorem 4.5: Every Tb space is an αT1/2

** space.  
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Proof: Let A be a *gα-closed set of (X, τ). Since every *gα-closed set is gs-closed, A is gs-closed. Since (X, τ) is a Tb 
space, A is closed. Therefore (X, τ) is an αT1/2

** space. 
 
The space in the following example is an αT1/2

** space but not a Tb space. 
 
Example 4.6: Let X= {a, b, c} with τ ={X,  φ,{b}, {b, c}}.  *GαC(X, τ) ={X, φ,{a}, {a, c}}  
GSC(X, τ) = {X, φ,{a}, {c}, {a, b}, {a, c}}. 
 
Here (X, τ) is an  αT1/2

** space but not a Tb space. Since {a, b} is a gs-closed set but not a closed set. 
 
Theorem 4.7: Every αTb space is an αT1/2

** space. 
 
Proof: Let A be a *gα-closed set of (X, τ). Since every *gα-closed set is αg-closed, A is αg-closed. Since (X, τ) is an  
αTb space, A is closed. Therefore (X, τ) is an αT1/2

** space. 
 
The space in the following example is an αT1/2

** space but not an αTb space. 
 
Example 4.8: Let X and τ be as in example 4.6. Here (X, τ) is an αT1/2

** space but not an αTb space. Since {c}is an αg-
closed set but not a closed set. 
 
Definition 4.9: A space (X, τ) is called a Tc

** if every gs-closed set is *gα-closed. 
 
The following theorem gives a characterization of Tc

** spaces. 
 
Theorem 4.10: If (X, τ) is a Tc

** space, then every singleton of X is either closed or *gα-open. 
 
Proof: Let x ∈X and suppose that {x} is not a closed set of (X, τ). Then X/{x} is not open. This implies X is the only 
open set containing X/{x}.  So X/{x} is a gs-closed set of (X, τ). Since (X, τ) is a Tc

** space, X/{x} is a *gα-closed set 
or equivalently {x} is *gα-open in (X, τ). 
 
The converse of the above theorem is not true as can be seen by the following example. 
 
Example 4.11: Let X = {a, b, c} with τ = {X, φ,{a},{b},{a, b}}. 
*gα-open sets of (X, τ) are X, φ,{a},{b},{a, b}. 
GSC(X, τ) ={X, φ,{a},{b},{c},{b, c},{a, c}}. 
*GαC(X, τ) = {X, φ,{c},{b, c},{a, c}}. 
 
Here {a} and {b} are *gα-open sets and {c} is a closed set but (X, τ) is not a Tc

** space. Since {b} is a gs-closed set but 
not a *gα-closed set of (X, τ). 
 
Theorem 4.12: Every Tb space is a Tc

** space. 
 
Proof: Let A be a gs-closed set of (X, τ). Since (X, τ) is a Tb space, A is closed. Since every closed set is *gα-closed, A 
is *gα-closed set. Therefore (X, τ) is a Tc

** space. 
 
The space in the following example is a Tc

** space but not a Tb space. 
 
Example 4.13: Let X and τ be as in example 3.3. Here (X, τ) is a Tc

** space but not a Tb space. Since {a, c} is a gs-
closed set but not a closed set. 
 
Theorem 4.14: Every Tc

** space is a Td space. 
 
Proof: Let A be a gs-closed set of (X, τ). Since (X, τ) is a Tc

** space, A is*gα- closed. Since every *gα -closed set is  
g-closed, A is g-closed set. Therefore (X, τ) is a Td   space. 
 
The space in the following example is a Td space but not a Tc

** space. 
 
Example 4.15: Let X and τ be as in example 3.5. Here (X, τ) is a Td space but not a Tc

** space. Since {b} is a gs-closed 
set but not *gα-closed set. 
 
Theorem 4.16: Every Tc

** space is an  αTd space. 
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Proof: Let A be a αg -closed set of (X, τ). Since every αg -closed set is gs-closed, A is gs-closed. Since (X, τ) is a Tc

** 
space, A is*gα- closed. Since every *gα -closed set is g-closed, A is g-closed set. Therefore (X, τ) is an αTd space. 
 
The space in the following example is an  αTd space but not a Tc

** space.  
 
Example 4.17: Let X and τ be as in example 3.5. Here (X, τ) is an  αTd space but not a Tc

** space. Since {a, c} is a gs-
closed set but not *gα-closed set. 
 
Theorem 4.18: The space (X, τ) is a Tb space if and only if it is a Tc

** space and an αT1/2
** space. 

 
Proof: Necessity part: By theorem 4.12 and 4.5. 
 
Sufficient part: Let A be a gs-closed sets of (X, τ). Since (X, τ) is a Tc

** space, A is *gα-closed set. Since (X, τ) is an 
αT1/2

** space, A is closed. Therefore (X, τ) is an Tb space. 
 
Remark 4.19: Tc

**space and αT1/2
** space are independent of each other. 

 
It can be seen by the following examples. 
 
Example 4.20: Let X and τ be as in example 3.5. Here (X, τ) is an  αT1/2

** space but not a Tc
**space. Since {b}is gs-

closed set but not *gα-closed  set. 
 
Example 4.21: Let X and τ be as in example 3.3. Here (X, τ) is a  Tc

** space but not an αT1/2
** space. Since {b, c}is *gα 

-closed set but not closed  set. 
 
Definition 4.22: A space (X, τ) is called an  αTc

**space if every αg-closed set is *gα-closed. 
 
Theorem 4.23: Every Tb space is an αTc

**space.  
 
Proof: Let A be a αg-closed set of (X, τ). Since every αg-closed set is gs-closed, A is gs-closed. Since (X, τ) is a Tb 
space, A is closed. Since every closed set is *gα-closed, A is *gα-closed set. Therefore (X, τ) is a αTc

**space. 
 
The space in the following example is an  αTc

**space but not a Tb space. 
 
Example 4.24: Let X and τ be as in example 3.3. Here (X, τ) is an αTc

** space but not a Tb space. Since {b, c} is a gs-
closed set but not closed set. 
 
Theorem 4.25: Every αTb space is an αTc

**space. 
 
Proof: Let A be a αg-closed set of (X, τ). Since (X, τ) is a αTb space, A is closed. Since every closed set is *gα-closed, 
A is *gα-closed set. Therefore (X, τ) is an αTc

**space. 
 
The space in the following example is an αTc

**space but not an αTb space. 
 
Example 4.26: Let X and τ be as in example 3.3. Here (X, τ) is an αTc

**space but not an αTb space. Since {a, c} is a  αg-
closed set but not closed set. 
 
Theorem 4.27: Every αTc

**space is an αTd
 space. 

 
Proof: Let A be a αg-closed set of (X, τ). Since (X, τ) is a αTc

** space, A is *gα -closed. Since every *gα -closed set is 
g-closed, A is g-closed set. Therefore (X, τ) is an αTd

  space. 
 
The space in the following example is an  αTd

 space but not an  αTc
**space. 

 
Example 4.28: Let X and τ be as in example 3.5. Here (X, τ) is an  αTd

 space but not an  αTc
**space. Since {c} is a αg-

closed set but not *gα-closed set.  
 
Theorem 4.29: Every Tc

**space is an  αTc
** space. 

 
Proof: Let A be a αg-closed set of (X, τ). Since every αg-closed set is gs-closed, A is gs-closed. Since (X, τ) is a Tc

** 

space, A is *gα-closed. Therefore (X, τ) is an  αTc
**space. 
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The space in the following example is an  αTc

**space but not a Tc
** space. 

 
Example 4.30: Let X and τ be as in example 4.11. Here (X, τ) is an   αTc

**space but not a  Tc
** space. Since{a} is a gs-

closed set but not *gα-closed set.  
 
Theorem 4.31: The space (X, τ) is an αTb space if and only if it is a αTc

**space and an αT1/2
**space. 

 
Proof: Necessity part: By theorem 4.25 and 4.7. 
 
Sufficient part: Let A be a αg-closed set of (X, τ). Since (X, τ) is an αTc

** space, A is *gα-closed. Since (X, τ) is an  
αT1/2

**, A is closed set. Therefore (X, τ) is an  αTb space. 
 
Remark 4.32: αTc

** space and αT1/2
** space are independent of each other. 

 
It can be seen by the following examples. 
 
Example 4.33: Let X and τ be as in example 3.5. Here (X, τ) is an αT1/2

** space but not an αTc
** space. Since {b}is αg-

closed set but not *gα-closed  set. 
 
Example 4.34: Let X and τ be as in example 3.3.Here (X, τ) is an αTc

** space. But not an αT1/2
** space. Since {b, c}is 

*gα -closed set but not closed  set. 
 
Definition 4.35: A space (X, τ) is called a **

αT1/2
 space if every g-closed set is *gα-closed set. 

 
Theorem 4.36: Every T1/2 space is a **

αT1/2
 space. 

 
Proof: Let A be a g-closed set of (X, τ). Since (X, τ) is a T1/2 space, A is closed. Since every closed set is *gα-closed, A 
is *gα-closed. Therefore (X, τ) is an **

αT1/2
   space. 

 
The space in the following example is a **

αT1/2
 space but not a T1/2 space. 

 
Example 4.37: Let X and τ be as in example 3.3. Here (X, τ) is a **

αT1/2
 space but not a T1/2 space. Since {b, c} is a g-

closed set but not closed set. 
 
Theorem 4.38: Every Tb space is a **

αT1/2
 space. 

 
Proof: Let A be a g-closed set of (X, τ). Since every g-closed set is gs-closed, A is gs-closed set. Since (X, τ) is an Tb 
space, A is closed. Since every closed set is *gα-closed, A is *gα-closed. Therefore (X, τ) is an **

αT1/2
   space. 

 
The space in the following example is a **

αT1/2
 space but not a Tb space. 

 
Example 4.39: Let X and τ be as in example 3.3. Here (X, τ) is a **

αT1/2 space but not a Tb space. Since a, c} is a gs-
closed set but not closed set. 
 
Theorem 4.40: Every αTb space is a **

αT1/2
 space. 

 
Proof: Let A be a g-closed set of (X, τ). Since every g-closed set is αg-closed, A is αg-closed set. Since (X, τ) is an 
αTb space, A is closed. Since every closed set is *gα-closed, A is *gα-closed. Therefore (X, τ) is an **

αT1/2
   space. 

 
The space in the following example is a **

αT1/2
 space but not an αTb space. 

 
Example 4.41: Let X and τ be as in example 3.3.Here (X, τ) is a **

αT1/2
 space but not an  αTb space. Since {a, c} is a αg-

closed set but not closed set. 
 
Theorem 4.42: Every Tc

**
 space is a **

αT1/2
 space. 

 
Proof: Let A be a g-closed set of (X, τ). Since every g-closed set is gs-closed, A is gs-closed set. Since (X, τ) is a Tc

**
 

space, A is *gα-closed. Therefore (X, τ) is an **
αT1/2

   space. 
 
The space in the following example is a **

αT1/2
 space but not a Tc

**
 space. 

 
Example 4.43: Let X and τ be as in example 4.11. Here (X, τ) is an **

αT1/2 space but not a Tc
** space. Since {a} is a gs-

closed set but not a *gα-closed set. 
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Theorem 4.44: The space (X, τ) is a T1/2 space if and only if it is a **

αT1/2
 space and an  αT1/2

** space. 
 
Proof: Necessity part: By theorem 4.36 and 4.3. 
 
Sufficient part: Let A be a g-closed set of (X, τ). Since (X, τ) is a **

αT1/2  
 space, A is *gα-closed. Since (X, τ) is an 

αT1/2
** space, A is closed. Therefore (X, τ) is an T1/2

   space. 
 
Remark 4.45:  **

αT1/2 space and αT1/2
** space are independent of each other. 

 
It can be seen by the following examples. 
 
Example 4.46: Let X and τ be as in example 3.5. Here (X, τ) is an αT1/2

** space but not an **
αT1/2 space. Since {b} is g-

closed set but not *gα-closed set. 
 
Example 4.47: Let X and τ be as in example 3.3. Here (X, τ) is an **

αT1/2 space but not an αT1/2
** space. Since {b, c} is 

*gα -closed set but not closed set. 
 
Remark 4.48: The following diagram shows them relationship among the separation axioms considered in this paper 
and reference [18], [19]. A → B (A↔ B) represents A implies B but B need not imply A always (A and B are 
independent of each other). 
  

 
 
5. *gα – CONTINUITY AND *gα – IRRESOLUTNESS: 
 
We introduce the following definition  
 
Definition 5.1: A function f: (X, τ) →(Y,σ) is called *gα – continuous if f-1(V) is a *gα – closed set of (X, τ) for every 
closed set V of  (Y, σ).    
 
Theorem 5.2: Every continuous map is *gα – continuous. 
 
Proof: Let V be a closed set of (Y,σ). Since f is continuous f-1(V) is closed in (X, τ). But every closed  set is *gα-
closed set. Hence f-1(V) is *gα-closed set in (X, τ). Thus f is *gα – continuous. 
 
The converse of the above theorem need not be true by the following example. 
 
Example 5.3: Let X= {a, b, c} =Y with τ={X, φ, {a, b}} and σ={Y, φ, {a}}. 
 
Define f: (X, τ) →(Y, σ)  by f(a)=b, f(b)=a, f(c)=c. 
*Gα C(X, τ) ={X, φ, {c}, {b, c}, {a, c}}. 
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Here f-1({b, c}) = {a, c} is not a closed set in (X, τ). Therefore f is not continuous. However f is *gα – continuous. 
 
Theorem 5.4: Every *gα – continuous map is g–continuous. 
 
Proof: Let V be a closed set of (Y,σ).Since f is *gα – continuous, f-1(V) is *gα –closed in (X, τ). But every *gα –closed 
set is g-closed set. Hence f-1(V) is g-closed set in (X, τ). Thus f is g – continuous. 
 
The converse of the above theorem need not be true by the following example. 
 
Example 5.5: Let X= {a, b, c} =Y with τ={X, φ, {a},{a, c}} and σ={Y, φ, {a},{a, b}}. 
Define f: (X, τ) →(Y,σ) by f(a)=b, f(b)=c, f(c)=a. 
*Gα C(X, τ) ={X, φ, {b},{b, c}}.  
GC(X, τ) ={X,φ, {b}, {a, b},{b, c}}. 
 
Here f-1({b, c}) = {a, b} is not a *gα -closed set in (X, τ). Therefore f is not *gα -continuous. However f is  
g– continuous. 
 
Theorem 5.6: Every *gα – continuous map is gα-continuous. 
 
Proof: Let V be a closed set of (Y,σ). Since f is *gα – continuous f-1(V) is *gα –closed in (X, τ). But every *gα –closed 
set is gα-closed set in (X, τ). Hence f-1(V) is gα-closed set in (X, τ). Thus f is gα-continuous. 
. 
The converse of the above theorem need not be true by the following example. 
 
Example 5.7: Let X= {a, b, c} =Y with τ ={ X, φ, {a},{b, c}} and σ={Y, φ, {a},{a, c}}. 
Define f: (X, τ) →(Y,σ) by f (a) =b, f (b) =c, f(c) =a. 
*Gα C(X, τ) ={X, φ, {a},{b, c}}.  
GαC(X, τ) ={X,φ, {a},{b}, {c}, {a, b},{b, c}, {a, c}}. 
 
Here f-1({b, c}) = {a, b} is not a *gα -closed set in (X, τ). Therefore f is not *gα -continuous. However f  is gα-
continuous. 
 
Remark 5.8: Every *gα – continuous map is αg-continuous, gs-continuous, gsp-continuous and gpr-continuous. 
 
Theorem 5.9: Every *gα – continuous map is gp-continuous. 
 
Proof: Let V be a closed set of (Y, σ). Since f is *gα – continuous f-1(V) is *gα –closed in (X, τ). But every *gα –closed 
set is gp-closed set in (X, τ). Hence f-1(V) is gp-closed set in (X, τ). Thus f is gp-continuous. 
 
The converse of the above theorem need not be true by the following example. 
 
Example 5.10: Let (X, τ) and (Y,σ) be as in example 5.7. Here f-1({b, c}) = {a, b} is not a *gα -closed set in (X, τ). 
Therefore f is not *gα -continuous. However f is gp-continuous. 
 
Remark 5.11: *gα –continuity is independent of semi-continuity and α-continuity. 
 
The proof follows from the following example. 
 
Example 5.12: Let X= {a, b, c} =Y with τ ={X, φ, {a}} and σ={Y, φ, {a},{a, b}}. 
Define f: (X, τ) →(Y,σ) by f (a) =a, f (b) =b, f(c) =c. 
*Gα C(X, τ) ={X, φ, {b, c}}.  
SC(X, τ) ={X,φ, {b}, {c}, {b, c}}= αC(X, τ) 
 
Here f-1({b}) = {b} is not a *gα -closed set in (X, τ). Therefore f is not *gα -continuous. However f is semi–continuous 
and α-continuous. 
 
Example 5.13: Let X={a, b, c}=Y with τ ={ X, φ, {a, b}} and σ={Y, φ, {b},{b, c}}. 
Define f: (X, τ) → (Y, σ) by f(a)=c, f(b)=b, f(c)=a. 
*GαC(X, τ) ={X,φ, {c},{b, c},{a, c}}. SC(X, τ) ={X,φ, {c}}= αC(X, τ) 
 
Here f-1({a, c}) = {a, c} is not a semi -closed set and α-closed set in (X, τ). Therefore f is not semi-continuous and α-
continuous. However f is *gα -continuous. 
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Remark 5.14: The composition of two *gα –continuous map need not be a *gα –continuous. 
 
The proof follows from the example. 
 
Example 5.15: Let X={a, b, c}=Y =Z with τ={ X, φ, {a},{a, b}} ,σ={Y, φ, {a, b}} and η={ Z, φ, {b},{b, c}} 
Define f: (X, τ) → (Y, σ)   by  f(a)=a, f(b)=b, f(c)=c. 
Define g: (Y, σ) → (Z, η) by g(a)=c, g(b)=b, g(c)=a. 
*Gα C(X, τ)={X, φ, {c},{b, c}}.  
*Gα C(Y, σ)={Y, φ, {c},{b, c},{a, c}}. 
 
Clearly f and g are *gα –continuous. 
 
Here {a, c} is a closed set in (Z,η). But (gof)-1({a, c}) = {a, c} is not a *gα –closed set in (X, τ).  
 
Therefore gof is not *gα -continuous. 
 
We introduce the following definition. 
 
Definition 5.16: A function f: (X, τ) → (Y, σ)  is called *gα –irresolute if f-1(V) is a *gα –closed set of  (X, τ) for every 
*gα –closed set of (Y, σ).  
 
Theorem 5.17: Every *gα –irresolute function is *gα -continuous. 
 
Proof: Let V be a closed set of (Y,σ). Since every closed set is *gα -closed set. Therefore V is *gα -closed set of 
(Y,σ). Since f is *gα – irresolute f-1(V) is *gα –closed in (X, τ). Therefore f is *gα -continuous. 
 
The converse of the above theorem need not be true by the following example. 
 
Example 5.18: Let X={a, b, c}=Y with τ={ X, φ, {b},{b, c}} and σ={Y, φ, {a, b}}. 
Define f: (X, τ) →(Y, σ)  by f(a)=c, f(b)=a, f(c)=b. 
*Gα C(X, τ) ={X, φ, {a},{b, c}}. 
 *Gα C(Y, σ)  ={Y, φ, {c},{b, c},{b, c}}. 
 
Here f is *gα –continuous but f is not *gα –irresolute. Since {a, c} is *gα –closed set in (Y, σ)  but  f-1({a, c})={a, b} is 
not *gα –closed set in (X, τ). 
                     
Theorem 5.19: Let f: (X, τ) → (Y, σ)  and g: (Y, σ) →(Z, η) be any two functions. Then 
(i) gof: (X, τ) →(Z, η) is *gα –continuous if g is continuous and f is *gα –continuous. 
(ii) gof: (X, τ) → (Z, η) is *gα –irresolute if both g and f are *gα – irresolute. 
(iii) gof: (X, τ) → (Z, η) is *gα –continuous if g is *gα –continuous and f is *gα – irresolute. 
 
Proof: 
(i) Let V be a closed set in (Z, η). Since g is continuous, g-1(V) is closed in (Y, σ). Since f is *gα –continuous, f-1(g-

1(V))= (gof)-1(V) is *gα –closed in (X, τ). Therefore gof is *gα –continuous. 
 
Similarly we can prove (ii) and (iii). 
 
Theorem 5.20: Let f: (X, τ)→ (Y, σ)  be a *gα –continuous(resp.gs-continuous, αg-continuous, g-continuous) map. If 
(X, τ) is an  αT1/2

**
 ( resp. Tc

**
 , αTc

**
 , **

αT1/2  ) space, then f is continuous  ( *gα –continuous, *gα –continuous, *gα –
continuous). 
 
Proof: Let V be a closed set of (Y, σ).Since f is *gα –continuous (resp.gs-continuous, αg-continuous,   g-continuous), 
f-1(V) is *gα –closed (resp.gs-closed, αg-closed, g-closed) in (X, τ). Since (X, τ) is an αT1/2

**
 space( resp. Tc

**
 , αTc

**
 , 

**
αT1/2 space ), f-1(V) is closed (*gα –closed) in (X, τ). Therefore f is continuous (*gα –continuous, *gα –continuous, *gα 

–continuous). 
 
Theorem 5.21: Let f: (X, τ) → (Y, σ)  be a surjective, gα-irresolute and a closed map. Then f(A) is *gα –closed set of 
(Y, σ)  for every *gα –closed set A of (X, τ). 
 
Proof: Let A be a *gα –closed set of (X, τ). Let U be a gα-open set of (Y, σ) such that f(A)⊆U. Since f is surjective and 
gα-irresolute, f-1(U) is a gα-open set of (X, τ). Since A⊆ f-1(U) and A is *gα –closed set of (X, τ),cl(A) ⊆ f-1(U).  
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Then f(cl(A)) ⊆ f(f-1(U)) = U. Since f is closed, f(cl(A))=cl(f(cl(A))). This implies cl(f(A)) ⊆ cl(f(cl(A)))= f(cl(A)) ⊆U. 
Therefore f(A) is a *gα –closed set of (Y, σ).   
 
Theorem 5.22: Let f: (X, τ) →(Y,σ) be a surjective, *gα-irresolute and a closed map. If (X, τ) is an αT1/2

**
 space, then 

(Y,σ) is also an αT1/2
** space. 

 
Proof: Let A be a *gα –closed set of (Y,σ). Since f is *gα-irresolute, f-1(A) is a *gα-closed set of (X, τ). Since (X, τ) is 
an αT1/2

** space, f-1(A) is a closed set of (X, τ). Then f(f-1(A)) = A is closed in (Y, σ). Thus A is a closed set of (Y,σ). 
Therefore (Y,σ) is a αT1/2

** space. 
 
Definition 5.23: A function f: (X, τ) →(Y, σ) is called pre-*gα-closed if f(A) is a *gα-closed set of (Y, σ) for every  *gα-
closed set A of (X, τ). 
 
Theorem 5.24: Let f: (X, τ) → (Y,σ) be a surjective, gs-irresolute and a pre-*gα-closed map. If (X, τ) is an Tc

**
 space, 

then (Y,σ) is also an Tc
** space. 

 
Proof: Let A be a gs –closed set of (Y,σ). Since f is gs-irresolute, f-1(A) is a gs-closed set in (X, τ). Since (X, τ) is a 
Tc

** space, f-1(A) is a *gα-closed set in (X, τ). Since f is pre-*gα-closed map, f(f-1(A)) is *gα-closed in (Y, σ) for every 
*gα-closed set f-1(A) of  (X, τ). Since f is surjection, A=f (f-1(A)). Thus A is a *gα-closed set of (Y,σ). Therefore (Y, σ) 
is a Tc

** space. 
 
Theorem 5.25 Let f: (X, τ) →(Y,σ) be a surjective, αg-irresolute and a pre-*gα-closed map. If (X, τ) is an αTc

** space, 
then (Y, σ) is also an αTc

** space. 
 
Proof: Let A be a αg–closed set of (Y, σ). Since f is αg -irresolute, f-1(A) is a αg -closed set in (X, τ). Since (X, τ) is a 
αTc

** space, f-1(A) is a *gα-closed set in (X, τ). Since f is pre-*gα-closed map, f(f-1(A)) is *gα-closed in (Y, σ) for every 
*gα-closed set f-1(A) of  (X, τ). Since f is surjection, A=f(f-1(A)). Thus A is a *gα-closed set of (Y, σ). Therefore (Y,σ) 
is a αTc

** space. 
 
Theorem 5.26: Let f: (X, τ) → (Y,σ) be a surjective, gc-irresolute and a pre-*gα-closed map. If (X, τ) is an **

αT1/2 space, 
then (Y, σ) is also an **

αT1/2  space. 
 
Proof: Let A be a g–closed set of (Y,σ). Since f is gc-irresolute, f-1(A) is a g -closed set in(X, τ). Since (X, τ) is a **

αT1/2 
space, f-1(A) is a *gα-closed set in (X, τ). Since f is pre-*gα-closed map, f(f-1(A)) is *gα-closed in (Y, σ) for every *gα-
closed set f-1(A) of  (X, τ). Since f is surjection, A=f(f-1(A)). Thus A is a *gα-closed set of (Y, σ). Therefore (Y, σ) is a 
**

αT1/2 space. 
 
6.*Generalized αc - homeomorphism and their group structure  
 
Definition 6.1: A function f: (X, τ) →(Y,σ) is said to be *gα-open if the image f (U) is *gα-open in (Y, σ) for every 
open set U of (X, τ). 
 
Definition 6.2: A function f: (X, τ) → (Y,σ) is said to be *gα-closed if the image f (U) is *gα-closed in (Y,σ) for every 
closed set U of (X, τ). 
 
Definition 6.3: A function f: (X, τ) →(Y,σ) is said to be *gαc- homeomorphism (resp.*gα- homoeomorphism) if f is 
bijective and f and f-1 are *gα-irresolute (resp. *gα-continuous). 
 
Theorem 6.4: 
(i) Suppose that f is bijection. Then the following conditions are equivalent: 
(1) f is *gα- homoeomorphism. 
(2)   f is *gα-open and *gα-continuous. 
(3) f is *gα-closed and *gα-continuous. 
(ii) If f is a homeomorphism, then f and f-1  are *gα-irresolute. 
(iii) Every *gαc- homeomorphism is a *gα- homoeomorphism. 
 
Proof: 
(ii) First we prove that f-1  is *gα-irresolute. Let A be a *gα-closed set of (X, τ). To show (f-1)-1(A) = f(A) is *gα-closed 
in (Y, σ). Let U be a gα-open set such that f(A) ⊆ U. Then A = (f-1(f(A)) ⊆ f-1(U) is gα-open. Since A is  *gα-closed, 
cl(A) ⊆ f-1(U).We have cl(f(A)) ⊆ f(cl(A)) ⊆ f(f-1(U)) = U and so f(A) is *gα-closed. Thus f-1 is *gα-irresolute. Since f-1 

is also a homeomorphism (f-1 )-1 = f is *gα-irresolute. 
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(iii) Let f is bijective. Since f is *gαc- homeomorphism, f and f-1 are *gα-irresolute. Since every *gα-irresolute map is 
*gα-continuous, then f and f-1 are *gα-continuous. Therefore f is *gα- homoeomorphism. 
 
Definition 6.5: For a topological space (X, τ) we define the following three collections of functions: 
(i)  *gαch (X, τ) = {f/ f: (X, τ) → (X, τ) is a *gαc- homeomorphism}. 
(ii)  *gαh (X, τ) = {f/ f: (X, τ) → (X, τ) is a *gα- homeomorphism}. 
(iii)   h (X, τ) = {f/ f: (X, τ)→ (X, τ) is a  homeomorphism}. 
 
Corollary 6.6: For a space (X, τ) the following properties hold. 
(i) h (X, τ) ⊆ *gαch (X, τ) ⊆ *gαh (X, τ). 
(ii) The set *gαch (X, τ) forms a group under composition of functions. 
(iii) The group h (X, τ) is a subgroup of *gαch (X, τ). 
(iv) If f: (X, τ) →(Y,σ) is a *gαc- homeomorphism then it induces an isomorphism f*: *gαch (X, τ) → *gαch(Y, σ). 
 
Proof: 
(i) These implications are obtained by theorem 6.4(ii), (iii). 
(ii) By theorem 5.19. 
(iii) By (i). 
(iv)   We define f*: *gαch (X, τ) → *gαch(Y, σ) by f*(h) = fohof-1. Then using 5.19 we have that f*(h)∈ *gαch (X, τ). It is 
shown that f* is the required group isomorphism. 
 
Remark 6.7: The following example shown that the converse of the above theorem (iv) is not true. 
 
Example 6.8: Let X = {a, b, c}= Y with with τ = { X, φ, {a},{b, c}} and σ = {Y, φ, {a, b}}. 
Define f: (X, τ) →(Y, σ)  by f(a)=c, f(b)=a, f(c)=b. 
*Gα C(X, τ)={X, φ, {a},{b, c}}. 
 *Gα C(Y, σ)  ={Y, φ, {c},{b, c},{a,c}}. 
 
Also define three functions ha, hb, hc: (X, τ)→(X, τ) by 
ha(a)=a, ha(b)=c,  ha(c)=b 
hb(a)=a, hb(b)=b,  hb(c)=c 
hc(a)=b,  hc(b)=a,  hc(c)=c 
 
Then it is shown that *gαch (X, τ) = {1x, ha}, *gαch(Y,σ) = {1y, hc} and f*: *gαch (X, τ) → *gαch(Y,σ) is an 
isomorphism such that f*(ha) = hb. However f is not *gαc- homeomorphism. 
 
 
7. EXAMPLES IN THE DIGITAL PLANE 
 
In the digital plane, we investigate explicite forms of GαO-kernel α-kerenl and of a subset. The digital line or the so 
called Khalimsky line is the set of the integers Z, equipped with the topology k having {{2n+1,2n,2n –1}/n∈Z} as a 
subbase. This is denoted by (Z, k). Thus, a subset U is open in (Z, k) if and only if whenever x∈U is an even integer, 
then x-1,x+1∈U. Let (Z2,k2 ) be the topological product of two digital lines (Z, k), where Z2 =Z×Z and k2=k×k. This 
space is called the digital plane in the present paper(cf.[5],[11],[12]). We note that for each point x∈ Z2   there exists the 
smallest open set containing x, say U(x). For the case of x = (2n+1,2m+1), U(x)={2n+1}× {2m+1}; for the case of x = 
(2n,2m), U(x) = {2n-1,2n,2n+1}× {2m-1,2m,2m+1}; for the case of  x = (2n,2m+1), U(x) = {2n-1,2n,2n+1}× {2m+1}; 
for the case of x = (2n+1,2m), U(x) = {2n+1}× 2m-1,2m,2m+1}, where n,m∈Z. For a subset E of (Z2,k2 ), we define 
the following three subsets as follows:    EF = {x∈E/ x is closed in (Z2,k2 )}; E k

2
 = {x∈E/ x is open in (Z2,k2 )}; Emix= 

E\( EF ∪ Ek2). Then it is shown that  EF = {(2n, 2m)∈E/ n,m ∈ Z},Ek
2= {(2n+1, 2m+1)∈E/ n,m∈ Z} and Emix={(2n, 

2m+1) ∈E/ n,m ∈ Z}∪ {(2n+1, 2m) ∈E/ n,m ∈ Z}. 
 
Theorem 7.1: Let A and E be subsets of (z2 , k2). 
(i) If E is non - empty α–closed set, then EF ≠ φ[8].  
(ii) If E is α– closed and E ⊆ B mix ∪ Bk

2 holds for some subset B of ( z2 , k2 ) then E =  φ[8]. 
(iii) The set U (AF)  ∪ A mix ∪ Ak

2  is a gα-open set containing A. 
 
Proof: 
(iii): We claim that A mix ∪ Ak

2   is a gα-open set . Let F be any non –empty α– closed set such that F ⊆ A mix ∪ Ak
2 . 

Then by (ii) , F = φ. Thus, we have that F ⊆ α - Int (A mix ∪ Ak
2 ) then A mix ∪ Ak

2  is gα - open . But we know that U 
(AF) is a open set. Then U (AF )  ∪ Amix ∪ Ak

2  is gα-open  by theorem 3.14. But A = AF  ∪ A mix ∪ Ak
2. A ⊆ U(AF ) ∪ 

A mix ∪ Ak
2. This implies that gα-open set contains A. 
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Theorem 7.2: Let A be a subset of (Z2 , k2 ). The Gαo– kernel of A and the α-kernel of A are obtained precisely as 
follows: 
(i) Gαo–ker (A) = U (AF) ∪ A mix ∪ Ak

2 , where U (AF) = ∪ { U(x)  x ∈ AF}. 
(ii) α-ker (A) = U(A) , where U (A) = ∪ { U (x) | x ∈A}[8].  
 
Proof:  
(i): Let UA = U (AF) ∪ A mix ∪ Ak

2.  By Lemma 7.1 (iii), Gαο - ker (A) ⊆ UA. 
 
To prove UA ⊆ Gαο-ker (A), it is claimed that (*)if there exists a gα-open set V such that A ⊆ V ⊂ UA then V = UA.  
Indeed, let x be any point of UA. There are three cases for the point x. 
 
Case (1): x∈(UA)F. we note that (UA)F = (U(AF))F  ∪ (Amix ∪ Ak

2)F = AF.  
 
Then we have that x ∈AF ⊆ A ⊆ V. 
 
Case (2): X ∈(UA) k2. We note that  
 
(UA)k

2 = (U (AF)k
2) ∪ (Amix)k

2 ∪ (Ak
2 )k

2  = (U(AF)) k2 ∪ Ak
2

 . 
 
Firstly suppose that x ∈ U(AF) Then x ∈U(y) for some y ∈AF. Since y∈AF ⊆ A ⊆ V and V is gα-open, we have {y} ⊆ 
α-Int (V). Then U(y) ⊆ α-Int (V), because α-Int (V) is α-open. Thus we have that x ∈ V.  
 
Secondly, suppose x ∈ Ak

2, then we have x ∈ V, because x ∈Ak
2 ⊆ A ⊆ V. 

 
Case (3): x ∈ (UA)mix. We note that  
 
(UA)mix = (U (AF))mix ∪ (A k

2)mix ∪ (Amix)mix  
            = (U (AF))mix ∪ Amix  
 
Firstly suppose that x ∈ U (AF). Then x ∈ U (y) for some y ∈ AF. Then y be a α–closed point since every closed point 
is α–closed point. Since y ∈ AF ⊆ A ⊆ V, {y} is α–closed and V is gα - open set, we have {y} ⊆ α - Int (V). Then U 
(y) ⊆ α - Int (V) and so x∈ V. 
 
Secondly, suppose that x ∈ Amix. Then x ∈ Amix   ⊆ A ⊆ V implies x ∈ V. 
 
For all cases we assume that x ∈ UA then we show that x ∈ V, then UA ⊆ V. But we know that V ⊆ UA. From the 
above cases we conclude that V =  UA. Thus we shown (*). 
 
Let Gαο(A) be the family of all gα-open sets containing A. Then, we have that UA ⊆ W for each W∈ Gαο(A), using 
(*) above and properties that A ⊆ W ∩ UA ⊆  UA and  W ∩ UA is gα -open set. Hence, we show that UA ⊆ ∩{W/ W∈ 
Gαο(A)}= Gαo–ker (A). 
 
That is UA ⊆ Gαo–ker (A). Therefore Gαo–ker (A) = UA. 
 
Theorem 7.3: Let E be a  subset of ( Z2 , k2 ). 
(i) If E is a non-empty gα-closed set, then EF ≠ φ. 
(ii) If E is gα-closed set and E ⊆ Bmix ∪ Bk

2 holds for some subset B of (Z2, k2), then E =  φ. 
 
Proof: 
(i): We recall that a subset E is gα-closed if and only if αcl(E) ⊆ α-ker (E).Let y be a point of  E.  
 
We consider the following three cases for the point y. 
 
 
 
Case 1: y∈ E k

2
. Let y = (2n+1, 2m+1) for some n,m ∈ Z. Then αcl(y)= {2n, 2n+1, 2n+2} × {2m, 2m+1, 

2m+2}⊆αcl(E) ⊆ α-ker (E). Thus there exists a point  (2n, 2m)∈ α-ker (E), say y1 = (2n, 2m). Using theorem 7.2(ii), 
we have that  y1∈ U(z) for some z∈E. 
 
If z∈ Emix, say z = (2s+1, 2t) for some s,t∈Z, then U(z) = {2s+1}× {2t-1,2t,2t+1} and  y1∉U(Z). This is a contradiction.  
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Next if z∈E k

2, say z = (2s+1, 2t+1) for some s,t∈Z, then U(z) = {(2s+1, 2t+1)} and y1∉U(z). This is also a 
contradiction. 
 
Thus we have that  z∈ EF and hence EF ≠ φ for case1. 
 
Case 2: y∈ Emix. Let y = (2n+1, 2m) for some n,m ∈ Z. Then αcl(y)= {2n, 2n+1, 2n+2} × {2m}⊆αcl(E) ⊆ α-ker (E). 
Thus there exists a point  (2n, 2m)∈ α-ker (E), say y1 = (2n, 2m). Using theorem 7.2(ii), we have that  y1∈ U(z) for 
some z∈E. 
 
If z∈ Emix, say z = (2s+1, 2t) for some s,t∈Z, then U(z) = {2s+1}× {2t-1,2t,2t+1} and  y1∉U(z). This is a contradiction.  
 
Next if z∈E k

2, say z = (2s+1, 2t+1) for some s,t∈Z, then U(z) = {(2s+1, 2t+1)} and y1∉U(z). This is also a 
contradiction. 
 
Thus we have that  z∈ EF and hence EF ≠ φ for case2. 
 
Case 3: y∈ EF.  Then EF ≠ φ. 
 
We shown that EF ≠ φ for all cases. 
 
(ii): Suppose that  E ≠ φ. By (i) we have that EF ≠ φ. It follows from assumption and definition that EF ⊆ (B mix ∪ Bk

2)F 

= φ. We have a contradiction. 
 
Theorem 7.4: Let A be a subset in (Z2, k2). 
(i) If (Z2)F ⊆ A holds, then A is *gα-closed. 
(ii) If (Z2)F ⊆ A holds and there exists a point x∈ Ak

2
 such that cl{x}⊆ A, then A is *gα-closed set which is not α-

closed. 
 
Proof: 
(i) Using theorem 7.2, we have  Gαο-ker (A) = U(AF) = Z2 . Then, A is *gα-closed set by  theorem 3.21. 
(ii) By(i), A is *gα-closed set. Since {x} ⊆ Ak

2 ⊆ A and Int(cl({x})) = {x}, we have that cl({x}) ⊆ cl(Int(cl(A))) and so 
cl({x}) ⊆ αcl(A). Suppose that A is α-closed. Then, we have that cl({x}) ⊆ A. This is a contradiction. 
 
Example 7.5: The converse of the theorem 7.3(i) is not true in general. A set A={x, y, z} where x = (3, 3), y = (3, 2) 
and z = (4, 2) is not gα-closed but AF ≠ φ. 
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	Remark 4.32: αTc** space and αT1/2** space are independent of each other.
	Example 4.33: Let X and τ be as in example 3.5. Here (X, τ) is an αT1/2** space but not an αTc** space. Since {b}is αg-closed set but not *gα-closed  set.
	Example 4.34: Let X and τ be as in example 3.3.Here (X, τ) is an αTc** space. But not an αT1/2** space. Since {b, c}is *gα -closed set but not closed  set.

	Definition 4.35: A space (X, τ) is called a **αT1/2 space if every g-closed set is *gα-closed set.
	Example 4.37: Let X and τ be as in example 3.3. Here (X, τ) is a **αT1/2 space but not a T1/2 space. Since {b, c} is a g-closed set but not closed set.
	Theorem 4.40: Every αTb space is a **αT1/2 space.

	Theorem 4.44: The space (X, τ) is a T1/2 space if and only if it is a **αT1/2 space and an  αT1/2** space.
	Proof: Necessity part: By theorem 4.36 and 4.3.
	Remark 4.45:  **αT1/2 space and αT1/2** space are independent of each other.
	Example 4.46: Let X and τ be as in example 3.5. Here (X, τ) is an αT1/2** space but not an **αT1/2 space. Since {b} is g-closed set but not *gα-closed set.
	Example 4.47: Let X and τ be as in example 3.3. Here (X, τ) is an **αT1/2 space but not an αT1/2** space. Since {b, c} is *gα -closed set but not closed set.
	Remark 4.48: The following diagram shows them relationship among the separation axioms considered in this paper and reference [18], [19]. A ( B (A↔ B) represents A implies B but B need not imply A always (A and B are independent of each other).
	Definition 5.1: A function f: (X, τ) →(Y,() is called *gα – continuous if f-1(V) is a *gα – closed set of (X, τ) for every closed set V of  (Y, ().
	Theorem 5.2: Every continuous map is *gα – continuous.
	Example 5.3: Let X= {a, b, c} =Y with τ={X, (, {a, b}} and (={Y, (, {a}}.
	Theorem 5.4: Every *gα – continuous map is g–continuous.
	Example 5.5: Let X= {a, b, c} =Y with τ={X, (, {a},{a, c}} and (={Y, (, {a},{a, b}}.
	Theorem 5.6: Every *gα – continuous map is gα-continuous.
	Example 5.7: Let X= {a, b, c} =Y with τ ={ X, (, {a},{b, c}} and (={Y, (, {a},{a, c}}.
	Remark 5.8: Every *gα – continuous map is αg-continuous, gs-continuous, gsp-continuous and gpr-continuous.
	Theorem 5.9: Every *gα – continuous map is gp-continuous.
	Example 5.10: Let (X, τ) and (Y,() be as in example 5.7. Here f-1({b, c}) = {a, b} is not a *gα -closed set in (X, τ). Therefore f is not *gα -continuous. However f is gp-continuous.
	Remark 5.11: *gα –continuity is independent of semi-continuity and α-continuity.
	Example 5.12: Let X= {a, b, c} =Y with τ ={X, (, {a}} and (={Y, (, {a},{a, b}}.
	Example 5.13: Let X={a, b, c}=Y with τ ={ X, (, {a, b}} and (={Y, (, {b},{b, c}}.
	Remark 5.14: The composition of two *gα –continuous map need not be a *gα –continuous.
	Example 5.15: Let X={a, b, c}=Y =Z with τ={ X, (, {a},{a, b}} ,(={Y, (, {a, b}} and (={ Z, (, {b},{b, c}}
	Definition 5.16: A function f: (X, τ) → (Y, ()  is called *gα –irresolute if f-1(V) is a *gα –closed set of  (X, τ) for every *gα –closed set of (Y, ().
	Theorem 5.17: Every *gα –irresolute function is *gα -continuous.
	Example 5.18: Let X={a, b, c}=Y with τ={ X, (, {b},{b, c}} and (={Y, (, {a, b}}.
	Theorem 5.19: Let f: (X, τ) → (Y, ()  and g: (Y, () →(Z, () be any two functions. Then
	Theorem 5.20: Let f: (X, τ)→ (Y, ()  be a *gα –continuous(resp.gs-continuous, αg-continuous, g-continuous) map. If (X, τ) is an  αT1/2** ( resp. Tc** , αTc** , **αT1/2  ) space, then f is continuous  ( *gα –continuous, *gα –continuous, *gα –continuous).
	Theorem 5.21: Let f: (X, τ) → (Y, ()  be a surjective, gα-irresolute and a closed map. Then f(A) is *gα –closed set of (Y, ()  for every *gα –closed set A of (X, τ).
	Theorem 5.22: Let f: (X, τ) →(Y,() be a surjective, *gα-irresolute and a closed map. If (X, τ) is an αT1/2** space, then (Y,() is also an αT1/2** space.
	Definition 5.23: A function f: (X, τ) →(Y, () is called pre-*gα-closed if f(A) is a *gα-closed set of (Y, () for every  *gα-closed set A of (X, τ).
	Theorem 5.24: Let f: (X, τ) → (Y,() be a surjective, gs-irresolute and a pre-*gα-closed map. If (X, τ) is an Tc** space, then (Y,() is also an Tc** space.
	Theorem 5.25 Let f: (X, τ) →(Y,() be a surjective, αg-irresolute and a pre-*gα-closed map. If (X, τ) is an αTc** space, then (Y, () is also an αTc** space.
	Theorem 5.26: Let f: (X, τ) → (Y,() be a surjective, gc-irresolute and a pre-*gα-closed map. If (X, τ) is an **αT1/2 space, then (Y, () is also an **αT1/2  space.
	6.*Generalized αc - homeomorphism and their group structure
	Definition 6.1: A function f: (X, τ) →(Y,() is said to be *gα-open if the image f (U) is *gα-open in (Y, () for every open set U of (X, τ).
	Definition 6.2: A function f: (X, τ) → (Y,() is said to be *gα-closed if the image f (U) is *gα-closed in (Y,() for every closed set U of (X, τ).
	Definition 6.3: A function f: (X, τ) →(Y,() is said to be *gαc- homeomorphism (resp.*gα- homoeomorphism) if f is bijective and f and f-1 are *gα-irresolute (resp. *gα-continuous).
	Theorem 6.4:
	Proof:
	Definition 6.5: For a topological space (X, τ) we define the following three collections of functions:

	Corollary 6.6: For a space (X, τ) the following properties hold.
	Proof:
	Remark 6.7: The following example shown that the converse of the above theorem (iv) is not true.
	Example 6.8: Let X = {a, b, c}= Y with with τ = { X, (, {a},{b, c}} and ( = {Y, (, {a, b}}.

	7. EXAMPLES IN THE DIGITAL PLANE
	Theorem 7.1: Let A and E be subsets of (z2 , k2).
	Proof:

	Proof:
	Theorem 7.3: Let E be a  subset of ( Z2 , k2 ).
	Proof:

	Theorem 7.4: Let A be a subset in (Z2, k2).
	Proof:

	Example 7.5: The converse of the theorem 7.3(i) is not true in general. A set A={x, y, z} where x = (3, 3), y = (3, 2) and z = (4, 2) is not gα-closed but AF ( (.
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