International Journal of Mathematical Archive-3(6), 2012, 2327-2330 Available online through <u>www.ijma.info</u> ISSN 2229 - 5046

A UNIOUENESS RESULT RELATED TO CERTAIN NON-LINEAR DIFFERENTIAL POLYNOMIALS

HARINA P. WAGHAMORE* & A. TANUJA

Department of Mathematics, Central College Campus, Bangalore University, Bangalore-560 001, INDIA Department of Mathematics, Central College Campus, Bangalore University, Bangalore-560 001, INDIA

(Received on: 02-04-12; Accepted on: 19-04-12)

ABSTRACT

In this paper, we deal with some uniqueness question of meromorphic functions whose certain non-linear differential polynomials have a nonzero finite value, and obtain some results, which improve and generalize the related results due to I. Lahiri and R. Pal[4], X. M. Li and H. X. Yi[6] and A. Banerjee and P. Bhattacharjee[1].

1. INTRODUCTION

In this paper, by meromorphic function we will always mean meromorphic function in complex plane. We adopt the standard notations of Nevanlinna theory of meromorphic function as explained in [2], [7] and [8]. It will be convenient to let E denote any set of positive real numbers of finite linear measure, not necessarily the same at each occurrence. For a nonconstant meromorphic function h, we denote by T(r, h) the Nevanlinna characteristic of h and by S(r, h) any quantity satisfying $S(r, h)=o\{T(r, h)\}$, as $r \to \infty$ and $r \in E$.

Let f and g be two nonconstant meromorphic functions, and let a be a value in the extended plane. We say that f and g share the value a CM, provided that f and g have the same a -points with the same multiplicities. We say that f and g share the value a IM, provided that f and g have the same a-points ignoring multiplicities (see [8]). We say that a is a small function of f, if a is a meromorphic function satisfying T(r, a) = S(r, f) (see [8]). Let l be a positive integer or ∞ . Next we denote by $E_{l}(a; f)$ the set of those *a*-points of f in the coplex plane, where each point is of multiplicity $\leq l$ and counted according to its multiplicity. By $\overline{E}_{l}(a; f)$ we denote the reduced form of $E_{l}(a; f)$. If $\overline{E}_{l}(a; f) = \overline{E}_{l}(a; g)$, we say that a is a *l*-order pseudo common value of f and g (see[3]).

Obviously, if $E_{\infty}(a; f) = E_{\infty}(a; g)$ ($\overline{E}_{\infty}(a; f) = \overline{E}_{\infty}(a; g)$), resp. then f and g share a CM (IM, resp.).

In 2006, I. Lahiri and R. Pal [4] proved the following theorem.

Theorem A: Let f and g be two non-constant meromorphic functions, and let $n \ge 14$ be positive integer.

If
$$E_{3}(1; f^n(f^3 - 1)f') = E_{3}(1; g^n(g^3 - 1)g')$$
, then $f \equiv g$.

Theorem B: Let f and g be two transcendental meromorphic functions, and let n, k be two positive integers satisfying n > 3k+11 and max { χ_1, χ_2 } < 0, where

$$\chi_1 = \frac{2}{n-2k+1} + \frac{2}{n+2k+1} + \frac{2k+1}{n+k+1} + 1 - \theta_{k}(1,f) - \theta_{k-1}(1,f)$$

and

$$\chi_2 = \frac{2}{n-2k+1} + \frac{2}{n+2k+1} + \frac{2k+1}{n+k+1} + 1 - \theta_{k}(1,g) - \theta_{k-1}(1,g).$$

If $\theta > 2/n$ and if $\{f^n(f-1)\}^{(k)} - P$ and $\{g^n(g-1)\}^{(k)} - P$ share 0CM, where P is nonzero polynomial, then $f \equiv g$.

Theorem C: Let f and g be two transcendental meromorphic functions, and let n, k be two positive integers satisfying n>9k+20 and where max{ χ_1 , χ_2 }<0, where χ_1 , χ_2 are defined as in Theorem B.

If $\theta > 2/n$ and if $\{f^n(f-1)\}^{(k)} - P$ and $\{g^n(g-1)\}^{(k)} - P$ share 0 IM, where P is a nonzero polynomial, then $f \equiv g$.

In 2011, A. Banerjee and P. Bhattacharjee [1] proved the following theorem.

Theorem D: Let f and g be two transcendental meromorphic functions, and let n, k (≥ 1) and m (≥ 2) be three positive integers. Suppose for two nonzero constants a and b, $E_{l_1}(1; [f^n(af^m + b)]^{(k)}) = E_{l_2}(1; [g^n(ag^m + b)]^{(k)})$. Then f \equiv g or f \equiv - g or $[f^n(af^m + b)]^{(k)} [g^n(ag^m + b)]^{(k)} \equiv 1$ provided one of the following holds:

(i) when l ≥ 3 and n > 3k+m+8;
(ii) when l = 2 and n > 4k+ ^{3m}/₂+9;
(iii) when l = 1 and n > 7k+3m+12.

When k=1 the possibility $[f^n(af^m + b)]^{(k)} [g^n(ag^m + b)]^{(k)} \equiv 1$ does not occur. Also the possibility $f \equiv -g$ arises only if n and m are both even.

Question: What can be said about the relationship between two meromorphic functions f and g, if the condition $E_{l_1}(1; [f^n(af^m + b)]^{(k)}) = E_{l_1}(1; [g^n(ag^m + b)]^{(k)})$ in Theorem B is replaced with the condition $\overline{E}_{l_1}(1; [f^n(af^m + b)]^{(k)}) = \overline{E}_{l_1}(1; [g^n(ag^m + b)]^{(k)}).$

We prove the following two theorems, which generalize and improves Theorem A, B, C and D and deals with above Question.

Theorem 1.1: Let f and g be two transcendental meromorphic functions, and let n, $k \ge 1$ and $m \ge 2$ be three positive integers with $n > \frac{13k+13m+28}{3}$ and a and b be nonzero constants.

If $\overline{E}_{l_{j}}(1; [f^{n}(af^{m}+b)]^{(k)}) = \overline{E}_{l_{j}}(1; [g^{n}(ag^{m}+b)]^{(k)})$ and $E_{1_{j}}(1; [f^{n}(af^{m}+b)]^{(k)}) = E_{1_{j}}(1; [g^{n}(ag^{m}+b)]^{(k)})$, where $l \ge 3$ is an integer, then either $f \equiv g$ or $f \equiv -g$ or $[f^{n}(af^{m}+b)]^{(k)}[g^{n}(ag^{m}+b)]^{(k)} \equiv 1$.

The possibility $[f^n(af^m + b)]^{(k)}[g^n(ag^m + b)]^{(k)} \equiv 1$ does not arise for k=1 and the possibility $f \equiv -g$ does not arise if n and m are both odd or if n is even and m is odd or if n is odd and m is even.

Theorem 1.2: Let f and g be two transcendental meromorphic functions, and let n, $k \ge 1$) and $m(\ge 2)$ be three positive integers with $n > \frac{3k+m+8}{3}$ and a and b be nonzero constants. If $\overline{E}_{l_1}(1; [f^n(af^m + b)]^{(k)}) = \overline{E}_{l_1}(1; [g^n(ag^m + b)]^{(k)})$ and $E_{2_1}(1; [f^n(af^m + b)]^{(k)}) = E_{2_2}(1; [g^n(ag^m + b)]^{(k)})$, where $l\ge 4$ is an integer, then the conclusions of Theorem 1.1 still holds.

Remark 1: Theorem 1.2 is an improvement of Theorem A and Theorem D.

Remark 2: Theorem 1.2 is an improvement of Theorem C for m = 1, a = 1 and b = -1.

2. LEMMAS

In this section, we present some lemmas which are needed in the sequel.

Lemma 2.1: ([7]) Let f be a nonconstant meromorphic function and

 $P(f) = a_0 + a_1 f + \dots + a_n f^n$, where a_0, a_1, \dots, a_n are constants and $a_n \neq 0$. Then

$$T(r,P(f)) = nT(r,f) + S(r,f).$$

Lemma 2.2: ([5]) Let $\overline{E}_{l}(1; [F *]^{(k)}) = \overline{E}_{l}(1; [G *]^{(k)}), E_{1}(1; [F *]^{(k)}) = E_{1}(1; [G *]^{(k)}) \text{ and } H^* \neq 0$, where $l \ge 3$.

Then

$$T(r, F^*) \leq \left(\frac{8}{3} + \frac{2}{3}k\right) \overline{N}(r, \infty; F^*) + \frac{5}{3} \overline{N}(r, 0; F^*) + \frac{2}{3} N_k(r, o; F^*) + N_{k+1}(r, o; F^*) + (k+2)\overline{N}(r, \infty; F^*) + \overline{N}(r, 0; G^*) + N_{k+1}(r, o; G^*) + S(r, F^*) + S(r, G^*)$$

Where

$$\mathbf{H}^* \equiv \left[\frac{(F*)^{(k+2)}}{(F*)^{(k+1)}} - \frac{2(F*)^{(k+1)}}{(F*)^{(k)} - 1}\right] - \left[\frac{(G*)^{(k+2)}}{(G*)^{(k+1)}} - \frac{2(G*)^{(k+1)}}{(G*)^{(k)} - 1}\right]$$

Lemma 2.3: ([5]) Let $\overline{E}_{l_{l}}(1; [F *]^{(k)}) = \overline{E}_{l_{l}}(1; [G *]^{(k)})$ and $E_{1_{l}}(1; [F *]^{(k)}) = E_{1_{l}}(1; [G *]^{(k)})$, where $l \ge 3$. If $\Delta_{1l} = \left(\frac{8}{3} + \frac{2}{3}k\right) \Theta(\infty, F *) + (k + 2)\Theta(\infty, G *) + \frac{5}{3}\Theta(0, F *) + \Theta(0, G *) + \delta_{k+1}(0, F *) + \delta_{k+1}(0, G *) + \frac{2}{3}\delta_{k}(0, F *)$

$$\Delta_{1l} > \frac{5}{3}k + 9$$
, then either $[F *]^{(k)}[G *]^{(k)} \equiv 1$ or $F^* = G^*$.

Lemma 2.4: ([5]) Let $\overline{E}_{l}(1; [F *]^{(k)}) = \overline{E}_{l}(1; [G *]^{(k)}), E_{2}(1; [F *]^{(k)}) = E_{2}(1; [G *]^{(k)}) \text{ and } H^* \neq 0$, where $l \ge 4$.

Then

$$\begin{split} \mathrm{T}(\mathbf{r}, \mathbf{F}^*) + \mathrm{T}(\mathbf{r}, \mathbf{G}^*) \leq & (k+4)\overline{N}(r, \infty; F^*) + 2\,\overline{N}(r, 0; F^*) + 2N_{k+1}(r, o; F^*) \\ & + (k+4)\overline{N}(r, \infty; G^*) + 2\overline{N}(r, 0; G^*) + 2N_{k+1}(r, o; G^*) + S(r, F^*) + S(r, G^*) \end{split}$$

Where H* is defined as Lemma 2.2.

Lemma 2.5: ([5]) Let
$$\overline{E}_{l}(1; [F *]^{(k)}) = \overline{E}_{l}(1; [G *]^{(k)})$$
 and $E_{2}(1; [F *]^{(k)}) = E_{2}(1; [G *]^{(k)})$, where $l \ge 4$
If $\Delta_{2l} = \left(2 + \frac{1}{2}k\right) \Theta(\infty, F *) + \left(\frac{1}{2}k + 2\right) \Theta(\infty, G *) + \Theta(0, F *) + \Theta(0, G *) + \delta_{k+1}(0, F *) + \delta_{k+1}(0, G *)$
 $\Delta_{2l} > k + 5$, then either $[F *]^{(k)}[G *]^{(k)} \equiv 1$ or $F^* = G^*$.

Lemma 2.6: ([1]) Let f and g be two nonconstant meromorphic functions and a and b be nonzero constants. Then $[f^n(af^m + b)]^1[g^n(ag^m + b)]^1 \neq 1$, where n, m ≥ 2 be two positive integers and n (\geq m+3).

3. PROOF OF THE THEOREM

Proof of Theorem 1.1: Let $F^* = f^n(af^m + b)$, $G^* = g^n(ag^m + b)$.

By Lemma 2.1, we get

(3.1)
$$\theta(0, F^*) = 1 - \lim_{r \to \infty} \sup \frac{\overline{N}(r, 0; F^*)}{T(r, F^*)} \ge \frac{n-1}{n+m}$$

Similarly

(3.2)
$$\theta(0,G*) \ge \frac{n-1}{n+m}$$

(3.3)
$$\theta(\infty, F^*) = 1 - \lim_{r \to \infty} \sup \frac{N(r, \infty; F^*)}{T(r, F^*)} \ge \frac{n+m-1}{n+m}$$

Similarly

(3.4)
$$\theta(\infty, G *) \ge \frac{n+m-1}{n+m}$$

(3.5)
$$\delta_{k+1}(0,F^*) = 1 - \lim_{r \to \infty} \sup \frac{N_{k+1}(r,o;F^*)}{\Gamma(r,F^*)} \ge \frac{n-k-1}{n+m}$$

Similarly

(3.6)
$$\delta_{k+1}(0,G^*) \ge \frac{n-k-1}{n+m}, \quad \delta_k(0,F^*) \ge \frac{n-k}{n+m} \text{ and } \quad \delta_k(0,G^*) \ge \frac{n-k}{n+m}$$

From the condition of Theorem 1.1, we have

 $\bar{E}_{l}(1; [f^n(af^m + b)]^{(k)}) = \bar{E}_{l}(1; [g^n(ag^m + b)]^{(k)}) and E_{1}(1; [f^n(af^m + b)]^{(k)}) = E_{1}(1; [g^n(ag^m + b)]^{(k)}), where l \ge 3.$

From (3.1) - (3.6) and Lemma 2.3, we have

$$\Delta_{1l} = \left(\frac{14}{3} + \frac{5}{3}k\right)\frac{n+m-1}{n+m} + \frac{8}{3}\frac{n-1}{n+m} + 2\frac{n-k-1}{n+m} + \frac{2}{3}\frac{n-k}{n+m}$$

It is easily verified that if $n > \frac{13k+13m+28}{3}$, then $\Delta_{1l} > \frac{5}{3}k + 9$. So by Lemma 2.3, we have $[F *]^{(k)}[G *]^{(k)} \equiv 1$ or $F^* \equiv G^*$. Also by Lemma 2.6 the case $[F *]^{(k)}[G *]^{(k)} \equiv 1$ does not arise for k = 1 and $m \ge 2$.

Let $F^* \equiv G^*$, i.e.,

$$f^n(af^m + b) \equiv g^n(ag^m + b)$$

Clearly if n and m are both odd or if n is even and m is odd or if n is odd and m is even, then $f \equiv -g$ contradicts $F^* \equiv G^*$. Let neither $f \equiv g$ nor $f \equiv -g$. We put $h = \frac{g}{f}$. Then $h \neq 1$ and $h \neq -1$. Also $F^* \equiv G^*$ implies

$$f^m = -\frac{b}{a} \frac{h^n - 1}{h^{n+m} - 1}.$$

Since f is non-constant it follows that h is non-constant. Again since f^m has no simple pole $h - u_r$ has no simple zero, where $u_r = exp\left(\frac{2\pi i r}{n+m}\right)$ and r = 1, 2...n+m-1. Therefore either $f \equiv g$ or $f \equiv -g$. This proves the theorem.

Proof of Theorem 1.2: From the condition of Theorem 1.2,

we have $\overline{E}_{l}(1; [f^n(af^m + b)]^{(k)}) = \overline{E}_{l}(1; [g^n(ag^m + b)]^{(k)})$ and $E_{2}(1; [f^n(af^m + b)]^{(k)}) = E_{2}(1; [g^n(ag^m + b)]^{(k)})$, where $l \ge 4$.

From (3.1)-(3.6) and Lemma 2.5, we have

$$\Delta_{2l} = (k+4)\frac{n+m-1}{n+m} + 2\frac{n-1}{n+m} + 2\frac{n-k-1}{n+m}.$$

It is easily verified that if $n > \frac{3k+m+8}{3}$, then $\Delta_{2l} > k+5$. So by Lemma 2.5, we have $[F *]^{(k)}[G *]^{(k)} \equiv 1$ or $F^* \equiv G^*$.

Proceeding as in the proof of Theorem 1.1, we can get the conclusion of Theorem 1.2. Thus, we complete the proof of Theorem 1.2.

REFERENCES

[1] A. Banerjee and P. Bhattacharjee, A uniqueness result related to certain non-linear differential polynomials sharing *1-points*, Math. Slovaca, **61**(2011), no. 2, 181-196.

[2] W. K. Hayman, Meromorphic functions, The Clarendon Press, Oxford, 1964.

[3] Lahiri, I., Sarkar, A., Uniqueness of meromorphic functions and its derivative, J. Inequal. Pure Appl. Math. 5, (2004), Art. 20.

[4] Lahiri, I., Pal, R., Nonlinear differential polynomials sharing 1-points, Bull. Korean Math.Soc. 43, (2006), 161-168.

[5] X.-Y.Xu, T.-B.Cao and S.Liu, Uniqueness results of meromorphic functions whose nonlinear differential polynomials have one nonzero pseudo value, Matemat.Bech. **62**, 1(2012), 1-16.

[6] X. M. Li., H. X. Yi., Uniqueness of meromorphic functions whose certain nonlinear differential polynomials share a polynomial, Comput. Math. Appl., **62** (2011), 539-550.

[7] L. Yang, Value Distribution Theory, Springer Verlag, Berlin, 1993.

[8] H.X.Yi, C.C. Yang, Uniqueness Theory of Meromorphic Functions, Science Press, Beijing, 1995.

Source of support: Nil, Conflict of interest: None Declared