A UNIQUENESS RESULT RELATED TO CERTAIN NON-LINEAR DIFFERENTIAL POLYNOMIALS

HARINA P. WAGHAMORE* \& A. TANUJA
Department of Mathematics, Central College Campus, Bangalore University, Bangalore-560 001, INDIA
Department of Mathematics, Central College Campus, Bangalore University, Bangalore-560 001, INDIA

(Received on: 02-04-12; Accepted on: 19-04-12)

Abstract

In this paper, we deal with some uniqueness question of meromorphic functions whose certain non-linear differential polynomials have a nonzero finite value, and obtain some results, which improve and generalize the related results due to I. Lahiri and R. Pal[4], X. M. Li and H. X. Yi[6] and A. Banerjee and P. Bhattacharjee[1].

1. INTRODUCTION

In this paper, by meromorphic function we will always mean meromorphic function in complex plane. We adopt the standard notations of Nevanlinna theory of meromorphic function as explained in [2], [7] and [8]. It will be convenient to let E denote any set of positive real numbers of finite linear measure, not necessarily the same at each occurrence. For a nonconstant meromorphic function h, we denote by $T(r, h)$ the Nevanlinna characteristic of h and by $S(r, h)$ any quantity satisfying $\mathrm{S}(\mathrm{r}, \mathrm{h})=\mathrm{o}\{\mathrm{T}(\mathrm{r}, \mathrm{h})\}$, as $\mathrm{r} \rightarrow \infty$ and $\mathrm{r} \in \mathrm{E}$.

Let f and g be two nonconstant meromorphic functions, and let a be a value in the extended plane. We say that f and g share the value a CM, provided that f and g have the same a-points with the same multiplicities. We say that f and g share the value $a \mathrm{IM}$, provided that f and g have the same a-points ignoring multiplicities (see [8]). We say that a is a small function of f , if a is a meromorphic function satisfying $\mathrm{T}(\mathrm{r}, \mathrm{a})=\mathrm{S}(\mathrm{r}, \mathrm{f})$ (see [8]). Let l be a positive integer or ∞. Next we denote by $E_{l)}(a ; f)$ the set of those a-points of f in the coplex plane, where each point is of multiplicity $\leq l$ and counted according to its multiplicity. By $\bar{E}_{l)}(a ; f)$ we denote the reduced form of $E_{l)}(a ; f)$. If $\bar{E}_{l)}(a ; f)=\bar{E}_{l)}(a ; g)$, we say that a is a l-order pseudo common value of f and g (see[3]).

Obviously, if $E_{\infty)}(a ; f)=E_{\infty)}(a ; g)\left(\bar{E}_{\infty)}(a ; f)=\bar{E}_{\infty)}(a ; g)\right)$, resp. then f and g share $a \mathrm{CM}$ (IM, resp.).
In 2006, I. Lahiri and R. Pal [4] proved the following theorem.
Theorem A: Let f and g be two non-constant meromorphic functions, and let $n(\geq 14)$ be positive integer.
If $E_{3)}\left(1 ; f^{n}\left(f^{3}-1\right) f^{\prime}\right)=E_{3)}\left(1 ; g^{n}\left(g^{3}-1\right) g^{\prime}\right)$, then $\mathrm{f} \equiv \mathrm{g}$.
Theorem B: Let f and g be two transcendental meromorphic functions, and let n, k be two positive integers satisfying $\mathrm{n}>3 \mathrm{k}+11$ and $\max \left\{\chi_{1}, \chi_{2}\right\}<0$, where

$$
\chi_{1}=\frac{2}{n-2 k+1}+\frac{2}{n+2 k+1}+\frac{2 k+1}{n+k+1}+1-\theta_{k)}(1, f)-\theta_{k-1)}(1, f)
$$

and

$$
\chi_{2}=\frac{2}{n-2 k+1}+\frac{2}{n+2 k+1}+\frac{2 k+1}{n+k+1}+1-\theta_{k)}(1, g)-\theta_{k-1)}(1, g) .
$$

If $\theta>2 / \mathrm{n}$ and if $\left\{f^{n}(f-1)\right\}^{(k)}-P$ and $\left\{g^{n}(g-1)\right\}^{(k)}-P$ share 0 CM , where P is nonzero polynomial, then $\mathrm{f} \equiv \mathrm{g}$.
Theorem C: Let f and g be two transcendental meromorphic functions, and let n, k be two positive integers satisfying $\mathrm{n}>9 \mathrm{k}+20$ and where $\max \left\{\chi_{1}, \chi_{2}\right\}<0$, where χ_{1}, χ_{2} are defined as in Theorem B.

If $\theta>2 / \mathrm{n}$ and if $\left\{f^{n}(f-1)\right\}^{(k)}-P$ and $\left\{g^{n}(g-1)\right\}^{(k)}-P$ share 0 IM, where P is a nonzero polynomial, then $\mathrm{f} \equiv \mathrm{g}$.

In 2011, A. Banerjee and P. Bhattacharjee [1] proved the following theorem.
Theorem D: Let f and g be two transcendental meromorphic functions, and let $\mathrm{n}, \mathrm{k}(\geq 1)$ and $\mathrm{m}(\geq 2)$ be three positive integers. Suppose for two nonzero constants a and b, $E_{l)}\left(1 ;\left[f^{n}\left(a f^{m}+b\right)\right]^{(k)}\right)=E_{l)}\left(1 ;\left[g^{n}\left(a g^{m}+b\right)\right]^{(k)}\right)$. Then $\mathrm{f} \equiv \mathrm{g}$ or $\mathrm{f} \equiv-\mathrm{g}$ or $\left[f^{n}\left(a f^{m}+b\right)\right]^{(k)}\left[g^{n}\left(a g^{m}+b\right)\right]^{(k)} \equiv 1$ provided one of the following holds:
(i) when $l \geq 3$ and $\mathrm{n}>3 \mathrm{k}+\mathrm{m}+8$;
(ii) when $l=2$ and $\mathrm{n}>4 \mathrm{k}+\frac{3 m}{2}+9$;
(iii) when $l=1$ and $\mathrm{n}>7 \mathrm{k}+3 \mathrm{~m}+12$.

When $\mathrm{k}=1$ the possibility $\left[f^{n}\left(a f^{m}+b\right)\right]^{(k)}\left[g^{n}\left(a g^{m}+b\right)\right]^{(k)} \equiv 1$ does not occur. Also the possibility $\mathrm{f} \equiv-\mathrm{g}$ arises only if n and m are both even.

Question: What can be said about the relationship between two meromorphic functions f and g , if the condition $E_{l)}\left(1 ;\left[f^{n}\left(a f^{m}+b\right)\right]^{(k)}\right)=E_{l)}\left(1 ;\left[g^{n}\left(a g^{m}+b\right)\right]^{(k)}\right)$ in Theorem B is replaced with the condition $\bar{E}_{l)}\left(1 ;\left[f^{n}\left(a f^{m}+b\right)\right]^{(k)}\right)=\bar{E}_{l)}\left(1 ;\left[g^{n}\left(a g^{m}+b\right)\right]^{(k)}\right)$.

We prove the following two theorems, which generalize and improves Theorem A, B, C and D and deals with above Question.

Theorem 1.1: Let f and g be two transcendental meromorphic functions, and let $n, k(\geq 1)$ and $m(\geq 2)$ be three positive integers with $\mathrm{n}>\frac{13 \mathrm{k}+13 \mathrm{~m}+28}{3}$ and a and b be nonzero constants.

If $\bar{E}_{l)}\left(1 ;\left[f^{n}\left(a f^{m}+b\right)\right]^{(k)}\right)=\bar{E}_{l)}\left(1 ;\left[g^{n}\left(a g^{m}+b\right)\right]^{(k)}\right)$ and $E_{1)}\left(1 ;\left[f^{n}\left(a f^{m}+b\right)\right]^{(k)}\right)=E_{1)}\left(1 ;\left[g^{n}\left(a g^{m}+b\right)\right]^{(k)}\right)$, where $l \geq 3$ is an integer, then either $f \equiv g$ or $f \equiv-g$ or $\left[f^{n}\left(a f^{m}+b\right)\right]^{(k)}\left[g^{n}\left(a g^{m}+b\right)\right]^{(k)} \equiv 1$.

The possibility $\left[f^{n}\left(a f^{m}+b\right)\right]^{(k)}\left[g^{n}\left(a g^{m}+b\right)\right]^{(k)} \equiv 1$ does not arise for $\mathrm{k}=1$ and the possibility $\mathrm{f} \equiv-\mathrm{g}$ does not arise if n and m are both odd or if n is even and m is odd or if n is odd and m is even.

Theorem 1.2: Let f and g be two transcendental meromorphic functions, and let $\mathrm{n}, \mathrm{k}(\geq 1)$ and $\mathrm{m}(\geq 2)$ be three positive integers with $\mathrm{n}>\frac{3 k+m+8}{3}$ and a and b be nonzero constants. If $\bar{E}_{l)}\left(1 ;\left[f^{n}\left(a f^{m}+b\right)\right]^{(k)}\right)=\bar{E}_{l)}\left(1 ;\left[g^{n}\left(a g^{m}+b\right)\right]^{(k)}\right)$ and $E_{2)}\left(1 ;\left[f^{n}\left(a f^{m}+b\right)\right]^{(k)}\right)=E_{2)}\left(1 ;\left[g^{n}\left(a g^{m}+b\right)\right]^{(k)}\right)$, where $l \geq 4$ is an integer, then the conclusions of Theorem 1.1 still holds.

Remark 1: Theorem 1.2 is an improvement of Theorem A and Theorem D.
Remark 2: Theorem 1.2 is an improvement of Theorem C for $\mathrm{m}=1, \mathrm{a}=1$ and $\mathrm{b}=-1$.

2. LEMMAS

In this section, we present some lemmas which are needed in the sequel.
Lemma 2.1: ([7]) Let f be a nonconstant meromorphic function and
$P(f)=a_{0}+a_{1} f+\cdots+a_{n} f^{n}$, where $a_{0}, a_{1}, \ldots, a_{n}$ are constants and $a_{n} \neq 0$. Then

$$
T(r, P(f))=n T(r, f)+S(r, f)
$$

Lemma 2.2: ([5]) Let $\bar{E}_{l)}\left(1 ;[F *]^{(k)}\right)=\bar{E}_{l)}\left(1 ;[G *]^{(k)}\right), E_{1)}\left(1 ;[F *]^{(k)}\right)=E_{1)}\left(1 ;[G *]^{(k)}\right)$ and $\mathrm{H}^{*} \neq 0$, where $1 \geq 3$. Then

$$
\begin{aligned}
\mathrm{T}\left(\mathrm{r}, \mathrm{~F}^{*}\right) \leq & \left(\frac{8}{3}+\frac{2}{3} k\right) \bar{N}(r, \infty ; F *)+\frac{5}{3} \bar{N}(r, 0 ; F *)+\frac{2}{3} N_{k}(r, o ; F *)+N_{k+1}(r, o ; F *) \\
& +(k+2) \bar{N}(r, \infty ; F *)+\bar{N}(r, 0 ; G *)+N_{k+1}(r, o ; G *)+S(r, F *)+S(r, G *)
\end{aligned}
$$

Where

$$
\mathrm{H}^{*} \equiv\left[\frac{(F *)^{(k+2)}}{(F *)^{(k+1)}}-\frac{2(F *)^{(k+1)}}{(F *)^{(k)}-1}\right]-\left[\frac{(G *)^{(k+2)}}{(G *)^{(k+1)}}-\frac{2(G *)^{(k+1)}}{(G *)^{(k)}-1}\right] .
$$

Lemma 2.3: ([5]) Let $\bar{E}_{l)}\left(1 ;[F *]^{(k)}\right)=\bar{E}_{l)}\left(1 ;[G *]^{(k)}\right)$ and $E_{1)}\left(1 ;[F *]^{(k)}\right)=E_{1)}\left(1 ;[G *]^{(k)}\right)$, where $l \geq 3$.
If $\Delta_{1 l}=\left(\frac{8}{3}+\frac{2}{3} k\right) \theta(\infty, F *)+(k+2) \theta(\infty, G *)+\frac{5}{3} \theta(0, F *)+\theta(0, G *)+\delta_{k+1}(0, F *)+\delta_{k+1}(0, G *)+$ $\frac{2}{3} \delta_{k}(0, F *)$

$$
\Delta_{1 l}>\frac{5}{3} k+9 \text {, then either }[F *]^{(k)}[G *]^{(k)} \equiv 1 \text { or } \mathrm{F}^{*}=\mathrm{G}^{*} \text {. }
$$

Lemma 2.4: ([5]) Let $\bar{E}_{l)}\left(1 ;[F *]^{(k)}\right)=\bar{E}_{l)}\left(1 ;[G *]^{(k)}\right), E_{2)}\left(1 ;[F *]^{(k)}\right)=E_{2)}\left(1 ;[G *]^{(k)}\right)$ and $\mathrm{H}^{*} \neq 0$, where $1 \geq 4$.
Then

$$
\begin{aligned}
\mathrm{T}\left(\mathrm{r}, \mathrm{~F}^{*}\right)+\mathrm{T}\left(\mathrm{r}, \mathrm{G}^{*}\right) \leq(k & +4) \bar{N}(r, \infty ; F *)+2 \bar{N}(r, 0 ; F *)+2 N_{k+1}(r, o ; F *) \\
& +(k+4) \bar{N}(r, \infty ; G *)+2 \bar{N}(r, 0 ; G *)+2 N_{k+1}(r, o ; G *)+S(r, F *)+S(r, G *)
\end{aligned}
$$

Where H^{*} is defined as Lemma 2.2 .
Lemma 2.5: ([5]) Let $\bar{E}_{l)}\left(1 ;[F *]^{(k)}\right)=\bar{E}_{l)}\left(1 ;[G *]^{(k)}\right)$ and $E_{2)}\left(1 ;[F *]^{(k)}\right)=E_{2)}\left(1 ;[G *]^{(k)}\right)$, where $1 \geq 4$.
If $\Delta_{2 l}=\left(2+\frac{1}{2} k\right) \theta(\infty, F *)+\left(\frac{1}{2} k+2\right) \theta(\infty, G *)+\theta(0, F *)+\theta(0, G *)+\delta_{k+1}(0, F *)+\delta_{k+1}(0, G *)$
$\Delta_{2 l}>k+5$, then either $[F *]^{(k)}[G *]^{(k)} \equiv 1$ or $\mathrm{F}^{*}=\mathrm{G}^{*}$.
Lemma 2.6: ([1]) Let f and g be two nonconstant meromorphic functions and a and b be nonzero constants. Then $\left[f^{n}\left(a f^{m}+b\right)\right]^{1}\left[g^{n}\left(a g^{m}+b\right)\right]^{1} \neq 1$, where $\mathrm{n}, \mathrm{m} \geq 2$ be two positive integers and $\mathrm{n}(\geq \mathrm{m}+3)$.

3. PROOF OF THE THEOREM

Proof of Theorem 1.1: Let $\mathrm{F}^{*}=f^{n}\left(a f^{m}+b\right), \mathrm{G}^{*}=g^{n}\left(a g^{m}+b\right)$.
By Lemma 2.1, we get

$$
\begin{equation*}
\theta(0, F *)=1-\lim _{r \rightarrow \infty} \sup \frac{\bar{N}(r, 0 ; F *)}{\mathrm{T}(\mathrm{r}, \mathrm{~F} *)} \geq \frac{n-1}{n+m} \tag{3.1}
\end{equation*}
$$

Similarly

$$
\begin{align*}
& \theta(0, G *) \geq \frac{n-1}{n+m} \tag{3.2}\\
& \theta(\infty, F *)=1-\lim _{r \rightarrow \infty} \sup \frac{\bar{N}(r, \infty ; F *)}{T(r, F *)} \geq \frac{n+m-1}{n+m} \tag{3.3}
\end{align*}
$$

Similarly

$$
\begin{align*}
& \theta(\infty, G *) \geq \frac{n+m-1}{n+m} \tag{3.4}\\
& \delta_{k+1}(0, F *)=1-\lim _{r \rightarrow \infty} \sup \frac{N_{k+1}(r, o ; F *)}{\mathrm{T}(\mathrm{r}, \mathrm{~F} *)} \geq \frac{n-k-1}{n+m} \tag{3.5}
\end{align*}
$$

Similarly

$$
\begin{equation*}
\delta_{k+1}(0, G *) \geq \frac{n-k-1}{n+m}, \quad \delta_{k}(0, F *) \geq \frac{n-k}{n+m} \quad \text { and } \quad \delta_{k}(0, G *) \geq \frac{n-k}{n+m} \tag{3.6}
\end{equation*}
$$

From the condition of Theorem 1.1, we have
$\bar{E}_{l)}\left(1 ;\left[f^{n}\left(a f^{m}+b\right)\right]^{(k)}\right)=\bar{E}_{l)}\left(1 ;\left[g^{n}\left(a g^{m}+b\right)\right]^{(k)}\right)$ and $E_{1)}\left(1 ;\left[f^{n}\left(a f^{m}+b\right)\right]^{(k)}\right)=E_{1)}\left(1 ;\left[g^{n}\left(a g^{m}+b\right)\right]^{(k)}\right)$, where $l \geq 3$.

From (3.1) - (3.6) and Lemma 2.3, we have

$$
\Delta_{1 l}=\left(\frac{14}{3}+\frac{5}{3} k\right) \frac{n+m-1}{n+m}+\frac{8}{3} \frac{n-1}{n+m}+2 \frac{n-k-1}{n+m}+\frac{2}{3} \frac{n-k}{n+m}
$$

It is easily verified that if $\mathrm{n}>\frac{13 \mathrm{k}+13 \mathrm{~m}+28}{3}$, then $\Delta_{1 l}>\frac{5}{3} k+9$. So by Lemma 2.3, we have $[F *]^{(k)}[G *]^{(k)} \equiv 1$ or $\mathrm{F}^{*} \equiv \mathrm{G}^{*}$. Also by Lemma 2.6 the case $[F *]^{(k)}[G *]^{(k)} \equiv 1$ does not arise for $\mathrm{k}=1$ and $\mathrm{m} \geq 2$.

Let $\mathrm{F}^{*} \equiv \mathrm{G}^{*}$, i.e.,

$$
f^{n}\left(a f^{m}+b\right) \equiv g^{n}\left(a g^{m}+b\right)
$$

Clearly if n and m are both odd or if n is even and m is odd or if n is odd and m is even, then $f \equiv-g$ contradicts $F^{*} \equiv$ G^{*}. Let neither $\mathrm{f} \equiv \mathrm{g}$ nor $\mathrm{f} \equiv-\mathrm{g}$. We put $\mathrm{h}=\frac{g}{f}$. Then $\mathrm{h} \neq 1$ and $\mathrm{h} \neq-1$. Also $\mathrm{F}^{*} \equiv \mathrm{G}^{*}$ implies

$$
f^{m}=-\frac{b}{a} \frac{h^{n}-1}{h^{n+m}-1} .
$$

Since f is non-constant it follows that h is non-constant. Again since f^{m} has no simple pole $\mathrm{h}-u_{r}$ has no simple zero, where $u_{r}=\exp \left(\frac{2 \pi i r}{n+m}\right)$ and $\mathrm{r}=1,2 \ldots \mathrm{n}+\mathrm{m}-1$. Therefore either $\mathrm{f} \equiv \mathrm{g}$ or $\mathrm{f} \equiv-\mathrm{g}$. This proves the theorem.

Proof of Theorem 1.2: From the condition of Theorem 1.2,
we have $\bar{E}_{l)}\left(1 ;\left[f^{n}\left(a f^{m}+b\right)\right]^{(k)}\right)=\bar{E}_{l)}\left(1 ;\left[g^{n}\left(a g^{m}+b\right)\right]^{(k)}\right)$
and $E_{2)}\left(1 ;\left[f^{n}\left(a f^{m}+b\right)\right]^{(k)}\right)=E_{2)}\left(1 ;\left[g^{n}\left(a g^{m}+b\right)\right]^{(k)}\right)$, where $\mathrm{l} \geq 4$.
From (3.1)-(3.6) and Lemma 2.5, we have

$$
\Delta_{2 l}=(k+4) \frac{n+m-1}{n+m}+2 \frac{n-1}{n+m}+2 \frac{n-k-1}{n+m}
$$

It is easily verified that if $\mathrm{n}>\frac{3 k+m+8}{3}$, then $\Delta_{2 l}>\mathrm{k}+5$. So by Lemma 2.5 , we have $[F *]^{(k)}[G *]^{(k)} \equiv 1$ or $\mathrm{F}^{*} \equiv \mathrm{G}^{*}$.
Proceeding as in the proof of Theorem 1.1, we can get the conclusion of Theorem 1.2. Thus, we complete the proof of Theorem 1.2.

REFERENCES

[1] A. Banerjee and P. Bhattacharjee, A uniqueness result related to certain non-linear differential polynomials sharing 1-points, Math. Slovaca, 61(2011), no. 2, 181-196.
[2] W. K. Hayman, Meromorphic functions, The Clarendon Press, Oxford, 1964.
[3] Lahiri, I., Sarkar, A., Uniqueness of meromorphic functions and its derivative, J. Inequal. Pure Appl. Math. 5, (2004), Art. 20.
[4] Lahiri, I., Pal, R., Nonlinear differential polynomials sharing 1-points, Bull. Korean Math.Soc. 43, (2006), 161-168.
[5] X.-Y.Xu, T.-B.Cao and S.Liu, Uniqueness results of meromorphic functions whose nonlinear differential polynomials have one nonzero pseudo value , Matemat.Bech. 62, 1(2012), 1-16.
[6] X. M. Li., H. X. Yi., Uniqueness of meromorphic functions whose certain nonlinear differential polynomials share a polynomial, Comput. Math. Appl., 62 (2011), 539-550.
[7] L. Yang, Value Distribution Theory, Springer Verlag, Berlin, 1993.
[8] H.X.Yi, C.C. Yang, Uniqueness Theory of Meromorphic Functions, Science Press, Beijing, 1995.

