Theorem on Fixed Points in n- Metric Spaces

Vishal Gupta*, Ashima Kanwar and Richa Sharma
Department of mathematics, Maharishi Markandeshwar University, Mullana, Ambala, Haryana, India

(Received on: 05-06-12; Accepted on: 30-06-12)

Abstract

In this paper, we prove a fixed point theorem on n - metric spaces. Here we are dealing with n-metric spaces and n mapping. This paper result extends the result of L.Kikina [1] from three metric spaces to n-metric spaces and also it generalizes the results of S.Č.Nešić [2] from two metric spaces to n-metric spaces.

Keywords: Complete metric space, fixed point.
2010 AMS Mathematics Subject Classification: 47H10, 54H25.

1. INTRODUCTION

The following Fixed point theorem on two complete metric spaces proved by B. Fisher [3].
Theorem1.1: Let (X, d) and (Y, e) be complete metric spaces. If T is a mapping of X into Y and S is mapping of Y into X satisfying the Inequality

$$
\begin{aligned}
& e(T x, T S y) \leq c \max \{d(x, S y), e(y, T x), e(y, T S y)\} \\
& d(S y, S T x) \leq c \max \{e(y, T x), d(x, S y), d(x, S T x)\}
\end{aligned}
$$

For all x in X and y in Y . where $0 \leq \mathrm{c}<1$, then ST has a unique fixed point z in X and TS has unique fixed point w in y . Further, $\mathrm{Tz}=\mathrm{w}$ and $\mathrm{Sw}=\mathrm{z}$.

In 1991, V. Popa [5] gave a result on two complete metric spaces.
Theorem1.2: Let (X, d) and (Y, ρ) be complete metric spaces, if T is a mapping of X into Y and S is a mapping of Y into X satisfying the inequalities

$$
\begin{aligned}
& d^{2}(\text { Sy }, \text { STx }) \leq \mathrm{c}_{1} \max \{\rho(\mathrm{y}, \mathrm{Tx}) \mathrm{d}(\mathrm{x}, \text { Sy }), \rho(\mathrm{y}, \mathrm{Tx}) \mathrm{d}(\mathrm{x}, \text { STx }), \mathrm{d}(\mathrm{x}, \text { Sy }) \mathrm{d}(\mathrm{x}, \text { STx })\} \\
& \rho^{2}(\mathrm{Tx}, \mathrm{TSy}) \leq \mathrm{c}_{2} \max \{\mathrm{~d}(\mathrm{x}, \text { Sy }) \rho(\mathrm{y}, \text { Tx }), \mathrm{d}(\mathrm{x}, \text { Sy }), \rho(\mathrm{y}, \mathrm{TSy}), \rho(\mathrm{y}, \text { Tx }) \rho(\mathrm{y}, \text { TSy })\}
\end{aligned}
$$

For all x in X and y in Y where $0 \leq \mathrm{c}_{1} \cdot \mathrm{C}_{2}<1$, then ST has a unique fixed point z in X and TS has a unique fixed point w in Y . Further $\mathrm{Tz}=\mathrm{w}$ and $\mathrm{Sw}=\mathrm{z}$.

The following Fixed point theorem on three complete metric spaces proved by R.K .Jain [4].
Theorem1.3: Let $\left(\mathrm{X}, \mathrm{d}_{1}\right),\left(\mathrm{Y}, \mathrm{d}_{2}\right)$ and $\left(\mathrm{Z}, \mathrm{d}_{3}\right)$ be complete metric spaces. If T is continuous mapping X into Y, S is continuous mapping Y into Z and R is mapping of Z into X satisfying the following inequalities

$$
\begin{aligned}
& d_{2}(\text { TRSy }, T R S y ') \leq c \max \left\{\mathrm{~d}_{2}\left(\mathrm{y}, \mathrm{y}^{\prime}\right), \mathrm{d}_{2}(\mathrm{y}, \text { TRSy }), \mathrm{d}_{2}\left(\mathrm{y}^{\prime}, \text { TRS } \mathrm{y}^{\prime}\right), \mathrm{d}_{3}\left(\mathrm{Sy}, \mathrm{Sy}^{\prime}\right), \mathrm{d}_{1}\left(R S y, R S y^{\prime}\right)\right\} \\
& \mathrm{d}_{3}(\text { STRz, STRz' }) \leq \mathrm{c} \max \left\{\mathrm{~d}_{3}\left(\mathrm{z}, \mathrm{z}^{\prime}\right), \mathrm{d}_{3}(\mathrm{z}, \text { STRz }), \mathrm{d}_{3}\left(\mathrm{z}^{\prime}, \text { STR } \mathrm{z}^{\prime}\right), \mathrm{d}_{1}\left(\mathrm{Rz}, R \mathrm{R}^{\prime}\right), \mathrm{d}_{2}(\text { TRz, TRz' })\right\}
\end{aligned}
$$

for all $\mathrm{x}, \mathrm{x}^{\prime}$ in $\mathrm{X}, \mathrm{y}, \mathrm{y}^{\prime}$ in Y and $\mathrm{z}, \mathrm{z}^{\prime}$ in Z , where $0 \leq \mathrm{c}<1$, then RST has unique fixed point u in X , TRS has unique fixed point v in Y and STR has fixed point w in Z. Further, $T u=v, S v=w$ and $R w=u$.

[^0]
2. PRELIMINARIES

Definition 2.1 A Metric space is an ordered pair (X, d) where X is a non empty Set and d is a metric on X or also called distance function or simple distance, i.e a function $\mathrm{d}: \mathrm{XxX} \rightarrow \mathrm{R}$ such that
i. $\quad \mathrm{d}(\mathrm{x}, \mathrm{y}) \geq 0 \quad$ (non -negative)
ii. $\quad d(x, y)=0 \quad$ iff $x=y$
iii. $d(x, y)=d(y, x) \quad$ (symmetric)
iv. $\quad d(x, y) \leq d(x, z)+d(z, y) \quad$ (triangle inequality)

Definition2.2: Let (X, d) be a Metric Space. A Sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ in X is said to converge to point x in X iff the following criterion is satisfied.

For each $\varepsilon>0$, there exit a positive integer $\mathrm{n}_{0}(\varepsilon)$, Such that

$$
\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}\right)<\varepsilon \text {, for all } \mathrm{n} \geq \mathrm{n}_{0}
$$

Definition2.3: A sequence $\left\{x_{n}\right\}$ in a metric space (X, d) is said to be a Cauchy Sequence iff for each $\varepsilon>0$, there exist a positive integer number $n_{0}(\varepsilon)$ such that

$$
\mathrm{d}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{n}}\right)<\varepsilon \text {, for all } \mathrm{n}, \mathrm{~m} \geq \mathrm{n}_{0}
$$

Definition2.4: A metric space (X, d) is said to be complete iff every Cauchy sequence in X converges to point of X.
Let $\left(X_{i}, d_{i}\right)$ be complete metric spaces where $i=1,2,3, \ldots, n$. If A_{i} is mapping of X_{i} to X_{i+1} where $i=1,2,3, \ldots, n-1$ and A_{n} is mapping of x_{n} to x_{1}.
we denote

$$
\begin{align*}
& M_{1}\left(x^{1}, x^{2}\right)=\left\{d_{1}^{p}\left(x^{1}, A_{n} A_{n-1} \ldots A_{2} x^{2}\right), d_{1}^{p}\left(x^{1}, A_{n} A_{n-1} \ldots A_{2} A_{1} x^{1}\right), d_{2}^{p}\left(x^{2}, A_{1} x^{1}\right)\right\} \tag{2.1}\\
& M_{2}\left(x^{2}, x^{3}\right)=\left\{d_{2}^{p}\left(x^{2}, A_{1} A_{n} \ldots A_{3} x^{3}\right), d_{2}^{p}\left(x^{2}, A_{1} A_{n} \ldots A_{2} x^{2}\right), d_{3}^{p}\left(x^{3}, A_{2} x^{4}\right)\right\} \tag{2.2}\\
& M_{3}\left(x^{3}, x^{4}\right)=\left\{d_{3}^{p}\left(x^{3}, A_{2} A_{1} A_{n} \ldots A_{4} x^{4}\right), d_{3}^{p}\left(x^{3}, A_{2} A_{1} A_{n} \ldots A_{3} x^{3}\right), d_{4}^{p}\left(x^{4}, A_{3} x^{3}\right)\right\} \tag{2.3}
\end{align*}
$$

And so on,

$$
\begin{equation*}
M_{n}\left(x^{n}, x^{1}\right)=\left\{d_{n}^{p}\left(x^{n}, A_{n-1} \ldots A_{2} A_{1} x^{1}\right), d_{n}^{p}\left(x^{n}, A_{n-1} \ldots A_{1} A_{n} x^{n}\right), d_{1}^{p}\left(x^{1}, A_{n} x^{n}\right)\right\} \tag{2.4}
\end{equation*}
$$

Let $F:[0, \infty] \rightarrow R^{+}$be continuous mapping in 0 with $F(0)=0$
In this paper we prove a fixed point theorem on n metric spaces and some corollaries which extend the result of L.Kikina [1] from three metric spaces to n-metric spaces and a version of Vishal Gupta et al [6-7].

3. MAIN RESULT

Theorem 3.1: Let $\left(X_{i}, d_{i}\right)$ be complete metric spaces where $i=1,2,3, \ldots, n$. If A_{i} is mapping of X_{i} to X_{i+1} where $i=1,2,3, \ldots, n-1$ and A_{n} is mapping of x_{n} to x_{1} satisfying the following inequalities.
$d_{1}^{p}\left(A_{n} A_{n-1} \ldots A_{2} x^{2}, A_{n} A_{n-1} \ldots A_{2} A_{1} x^{1}\right) \leq c \max M_{1}\left(x^{1}, x^{2}\right)+F\left(\min M_{1}\right)$
$d_{2}^{p}\left(A_{1} A_{n} \ldots A_{4} A_{3} x^{3}, A_{1} A_{n} \ldots A_{3} A_{2} x^{2}\right) \leq c \max M_{2}\left(x^{2}, x^{3}\right)+F\left(\min M_{2}\right)$
$d_{3}^{p}\left(A_{2} A_{1} A_{n} \ldots A_{5} A_{4} x^{4}, A_{2} A_{1} A_{n} \ldots A_{4} A_{3} x^{3}\right) \leq c \max M_{3}\left(x^{3}, x^{4}\right)+F\left(\min M_{3}\right)$
So continuously like above.
$d_{n}^{p}\left(A_{n-1} A_{n-2} \ldots A_{2} A_{1} x^{1}, A_{n-1} A_{n-2} \ldots A_{2} A_{1} A_{n} x^{n}\right) \leq c \max M_{n}\left(x^{n}, x^{1}\right)+F\left(\min M_{n}\right)$
$\forall x^{1} \in X_{1}, x^{2} \in X_{2}, \ldots, x^{n} \in X_{n}$, where $0 \leq \mathrm{c}<1$. Then $A_{n} A_{n-1} \ldots A_{2} A_{1}$ has a unique fixed point $\beta_{1} \in X_{1}$, $A_{1} A_{n} \ldots A_{3} A_{2}$ has a unique fixed point $\beta_{2} \in X_{2}, A_{2} A_{1} \ldots A_{4} A_{3}$ has a unique fixed point $\beta_{3} \in X_{3}$ and so on $A_{n-1} A_{n-2} \ldots A_{1} A_{n}$ has a unique fixed point $\beta_{n} \in X_{n}$. Further, $A_{1}\left(\beta_{1}\right)=\beta_{2}, A_{2}\left(\beta_{2}\right)=\beta_{3}, A_{3}\left(\beta_{3}\right)=\beta_{4}$, $\ldots, A_{n-1}\left(\beta_{n-1}\right)=\beta_{n}, A_{n}\left(\beta_{n}\right)=\beta_{1}$

Proof: Let x_{0}^{1} be an arbitrary point in X_{1}, let define sequence $\left\{x_{m}^{1}\right\},\left\{x_{m}^{2}\right\}, \ldots,\left\{x_{m}^{n}\right\}$ in $X_{1}, X_{2}, \ldots, X_{n}$ respectively by

$$
\begin{aligned}
\left(A_{n} A_{n-1} \ldots A_{3} A_{2} A_{1}\right)^{m} x_{0}^{1} & =x_{m}^{1}, \\
x_{m}^{2} & =A_{1}\left(x_{m-1}^{1}\right), \\
x_{m}^{3} & =A_{2}\left(x_{m}^{2}\right) \\
\vdots & \\
x_{m}^{n} & =A_{n-1}\left(x_{m}^{n-1}\right) \\
x_{m}^{1} & =A_{n}\left(x_{m}^{n}\right) \quad \text { for } m=1,2,3, \ldots
\end{aligned}
$$

We will assume that $x_{m}^{1} \neq x_{m+1}^{1}, x_{m}^{2} \neq x_{m+1}^{2}$ and so on $x_{m}^{n} \neq x_{m+1}^{n}$ for all m . Otherwise, if $x_{m}^{1}=x_{m+1}^{1}$ for some m , then $x_{m}^{2}=x_{m+1}^{2}, x_{m}^{3}=x_{m+1}^{3}$ and so on $x_{m}^{n}=x_{m+1}^{n}$, we could put $x_{m}^{1}=\beta_{1}, x_{m+1}^{2}=\beta_{2}$ and so on $x_{m+1}^{n}=\beta_{n}$.

First, we prove the sequences $\left\{x_{m}^{1}\right\},\left\{x_{m}^{2}\right\}, \ldots,\left\{x_{m}^{n}\right\}$ are cauchy sequences.
Taking $x^{1}=x_{m}^{1}, x^{2}=x_{m}^{2}$ in (2.1) and (3.1), we obtain

$$
\begin{aligned}
M_{1}\left(x_{m}^{1}, x_{m}^{2}\right) & =\left\{d_{1}^{p}\left(x_{m}^{1}, A_{n} A_{n-1} \ldots A_{2} x_{m}^{2}\right), d_{1}^{p}\left(x_{m}^{1}, A_{n} A_{n-1} \ldots A_{2} A_{1} x_{m}^{1}\right), d_{2}^{p}\left(x_{m}^{2}, A_{1} x_{m}^{1}\right)\right\} \\
& =\left\{d_{1}^{p}\left(x_{m}^{1}, x_{m}^{1}\right), d_{1}^{p}\left(x_{m}^{1}, x_{m+1}^{1}\right), d_{2}^{p}\left(x_{m}^{2}, x_{m+1}^{2}\right)\right\} \\
& =\left\{0, d_{1}^{p}\left(x_{m}^{1}, x_{m+1}^{1}\right), d_{2}^{p}\left(x_{m}^{2}, x_{m+1}^{2}\right)\right\} \\
d_{1}^{p}\left(x_{m}^{1}, x_{m+1}^{1}\right) & =d_{1}^{p}\left(A_{n} A_{n-1} \ldots A_{2} x_{m}^{2}, A_{n} A_{n-1} \ldots A_{2} A_{1} x_{m}^{1}\right) \\
& \leq c \max M_{1}\left(x_{m}^{1}, x_{m}^{2}\right)+F\left(\min M_{1}\left(x_{m}^{1}, x_{m}^{2}\right)\right) \\
& =c \max \left\{0, d_{1}^{p}\left(x_{m}^{1}, x_{m+1}^{1}\right), d_{2}^{p}\left(x_{m}^{2}, x_{m+1}^{2}\right)\right\}+F(0) \\
& =c d_{2}^{p}\left(x_{m}^{2}, x_{m+1}^{2}\right)
\end{aligned}
$$

Since, if $\max M_{1}\left(x_{m}^{1}, x_{m}^{2}\right)=d_{1}^{p}\left(x_{m}^{1}, x_{m+1}^{1}\right)$, then
$d_{1}^{p}\left(x_{m}^{1}, x_{m+1}^{1}\right) \leq c d_{1}^{p}\left(x_{m}^{1}, x_{m+1}^{1}\right)$
It follows $x_{m}^{1}=x_{m+1}^{1}$ since $0 \leq c<1$, so

$$
\begin{equation*}
d_{1}^{p}\left(x_{m}^{1}, x_{m+1}^{1}\right) \leq c d_{2}^{p}\left(x_{m}^{2}, x_{m+1}^{2}\right) \tag{3.5}
\end{equation*}
$$

Taking $x^{2}=x_{m}^{2}, x^{3}=x_{m-1}^{3}$ in (2.2) and (3.2), we get

$$
\begin{aligned}
M_{2}\left(x_{m}^{2}, x_{m-1}^{3}\right) & =\left\{d_{2}^{p}\left(x_{m}^{2}, A_{1} A_{n} \ldots A_{3} x_{m-1}^{3}\right), d_{2}^{p}\left(x_{m}^{2}, A_{1} A_{n} \ldots A_{2} x_{m}^{2}\right), d_{3}^{p}\left(x_{m-1}^{3}, A_{2} x_{m}^{2}\right)\right\} \\
& =\left\{d_{2}^{p}\left(x_{m}^{2}, x_{m}^{2}\right), d_{2}^{p}\left(x_{m}^{2}, x_{m+1}^{2}\right), d_{3}^{p}\left(x_{m-1}^{3}, x_{m}^{3}\right)\right\} \\
& =\left\{0, d_{2}^{p}\left(x_{m}^{2}, x_{m+1}^{2}\right), d_{3}^{p}\left(x_{m-1}^{3}, x_{m}^{3}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
d_{2}^{p}\left(x_{m}^{2}, x_{m+1}^{2}\right) & =d_{2}^{p}\left(A_{1} A_{n} \ldots A_{4} A_{3} x_{m-1}^{3}, A_{1} A_{n} \ldots A_{3} A_{2} x_{m}^{2}\right) \\
& \leq c \max M_{2}\left(x_{m}^{2}, x_{m-1}^{3}\right)+F\left(\min M_{2}\left(x_{m}^{2}, x_{m-1}^{3}\right)\right) \\
& =c \max \left\{0, d_{2}^{p}\left(x_{m}^{2}, x_{m+1}^{2}\right), d_{3}^{p}\left(x_{m-1}^{3}, x_{m}^{3}\right)\right\}+F(0)
\end{aligned}
$$

Since $0 \leq c<1$, we get
$d_{2}^{p}\left(x_{m}^{2}, x_{m+1}^{2}\right) \leq c d_{3}^{p}\left(x_{m-1}^{3}, x_{m}^{3}\right)$
Taking $x^{3}=x_{m}^{3}, x^{4}=x_{m-1}^{4}$ in (2.3) and (3.3), we get

$$
\begin{aligned}
M_{3}\left(x_{m}^{3}, x_{m-1}^{4}\right) & =\left\{d_{3}^{p}\left(x_{m}^{3}, A_{2} A_{1} A_{n} \ldots A_{4} x_{m-1}^{4}\right), d_{3}^{p}\left(x_{m}^{3}, A_{2} A_{1} A_{n} \ldots A_{3} x_{m}^{3}\right), d_{4}^{p}\left(x_{m-1}^{4}, A_{3} x_{m}^{3}\right)\right\} \\
& =\left\{d_{3}^{p}\left(x_{m}^{3}, x_{m}^{3}\right), d_{3}^{p}\left(x_{m}^{3}, x_{m+1}^{3}\right), d_{4}^{p}\left(x_{m-1}^{4}, x_{m}^{4}\right)\right\} \\
& =\left\{0, d_{3}^{p}\left(x_{m}^{3}, x_{m+1}^{3}\right), d_{4}^{p}\left(x_{m-1}^{4}, x_{m}^{4}\right)\right\} \\
d_{3}^{p}\left(x_{m}^{3}, x_{m+1}^{3}\right) & =d_{3}^{p}\left(A_{2} A_{1} A_{n} \ldots A_{5} A_{4} x_{m-1}^{4}, A_{2} A_{1} A_{n} \ldots A_{4} A_{3} x_{m}^{3}\right) \\
& \leq c \max M_{3}\left(x_{m}^{3}, x_{m-1}^{4}\right)+F\left(\min M_{3}\left(x_{m}^{3}, x_{m-1}^{4}\right)\right) \\
& =c \max \left\{0, d_{3}^{p}\left(x_{m}^{3}, x_{m+1}^{3}\right), d_{4}^{p}\left(x_{m-1}^{4}, x_{m}^{4}\right)\right\}+F(0) \\
& =c d_{4}^{p}\left(x_{m-1}^{4}, x_{m}^{4}\right)
\end{aligned}
$$

Replacing m with $\mathrm{m}-1$ we obtain
$d_{3}^{p}\left(x_{m-1}^{3}, x_{m}^{3}\right) \leq c d_{4}^{p}\left(x_{m-2}^{4}, x_{m-1}^{4}\right)$

Continuously like above, taking $x^{n}=x_{m}^{n}, x^{1}=x_{m-1}^{1}$ in (2.4) and (3.4) we obtain

$$
\begin{aligned}
M_{n}\left(x_{m}^{n}, x_{m-1}^{1}\right) & =\left\{d_{n}^{p}\left(x_{m}^{n}, A_{n-1} \ldots A_{2} A_{1} x_{m-1}^{1}\right), d_{n}^{p}\left(x_{m}^{n}, A_{n-1} \ldots A_{1} A_{n} x_{m}^{n}\right), d_{1}^{p}\left(x_{m-1}^{1}, A_{n} x_{m-1}^{1}\right)\right\} \\
& =\left\{d_{n}^{p}\left(x_{m}^{n}, x_{m}^{n}\right), d_{n}^{p}\left(x_{m}^{n}, x_{m+1}^{n}\right), d_{1}^{p}\left(x_{m-1}^{1}, x_{m}^{1}\right)\right\} \\
& =\left\{0, d_{n}^{p}\left(x_{m}^{n}, x_{m+1}^{n}\right), d_{1}^{p}\left(x_{m-1}^{1}, x_{m}^{1}\right)\right\} \\
d_{n}^{p}\left(x_{m}^{n}, x_{m+1}^{n}\right) & =d_{n}^{p}\left(A_{n-1} A_{n-2} \ldots A_{2} A_{1} x_{m-1}^{1}, A_{n-1} A_{n-2} \ldots A_{2} A_{1} A_{n} x_{m}^{n}\right) \\
& \leq c \max M_{n}\left(x_{m}^{n}, x_{m-1}^{1}\right)+F\left(\min M_{n}\left(x_{m}^{n}, x_{m-1}^{1}\right)\right) \\
& =c \max \left\{0, d_{n}^{p}\left(x_{m}^{n}, x_{m+1}^{n}\right), d_{1}^{p}\left(x_{m-1}^{1}, x_{m}^{1}\right)\right\}+F(0) \\
& =c d_{1}^{p}\left(x_{m-1}^{1}, x_{m}^{1}\right)
\end{aligned}
$$

Replacing m with $\mathrm{m}-\mathrm{n}+2$, we get

$$
\begin{equation*}
d_{n}^{p}\left(x_{m-n+2}^{n}, x_{m-n+3}^{n}\right) \leq c d_{1}^{p}\left(x_{m-n+1}^{1}, x_{m-n+2}^{1}\right) \tag{3.8}
\end{equation*}
$$

Using (3.5), (3.6), (3.7) and (3.8), we get

$$
\begin{aligned}
d_{1}^{p}\left(x_{m}^{1}, x_{m+1}^{1}\right) & \leq c d_{2}^{p}\left(x_{m}^{2}, x_{m+1}^{2}\right) \leq c^{2} d_{3}^{p}\left(x_{m-1}^{3}, x_{m}^{3}\right) \leq \ldots \leq c^{n-1} d_{n}^{p}\left(x_{m-n+2}^{n}, x_{m-n+3}^{n}\right) \leq c^{n} d_{1}^{p}\left(x_{m-n+1}^{n}, x_{m-n+2}^{n}\right) \\
& \leq c^{2 n} d_{1}^{p}\left(x_{m-2 n+2}^{n}, x_{m-2 n+3}^{n}\right) \\
& \leq \ldots \leq\left\{\begin{array}{l}
c^{n k} d_{1}^{p}\left(x_{1}^{1}, x_{2}^{1}\right), m=(n-1) k+1 \\
c^{n k} d_{1}^{p}\left(x_{0}^{1}, x_{1}^{1}\right),, m=(n-1) k
\end{array}\right\}
\end{aligned}
$$

Since $0 \leq c<1$, the sequences $\left\{x_{m}^{1}\right\},\left\{x_{m}^{2}\right\}, \ldots,\left\{x_{m}^{n}\right\}$ are cauchy sequences. Since $\left(X_{i}, d_{i}\right)$ be complete metric spaces where $i=1,2,3, \ldots, n$.

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} x_{m}^{1}=\beta_{1} \in X_{1} \\
& \lim _{m \rightarrow \infty} x_{m}^{2}=\beta_{2} \in X_{2} \\
& \lim _{m \rightarrow \infty} x_{m}^{3}=\beta_{3} \in X_{3} \\
& \cdot \\
& \cdot \\
& \lim _{m \rightarrow \infty} x_{m}^{n}=\beta_{n} \in X_{n}
\end{aligned}
$$

Now taking $x^{1}=x_{m}^{1}$ and $x^{2}=\beta_{2}$ in the inequality (3.1) we obtain

$$
\begin{align*}
d_{1}^{p}\left(A_{n} A_{n-1} \ldots A_{2} \beta_{2}, x_{m+1}^{1}\right) & =d_{1}^{p}\left(A_{n} A_{n-1} \ldots A_{2} \beta_{2}, A_{n} A_{n-1} \ldots A_{2} A_{1} x_{m}^{1}\right) \\
& \leq c \max M_{1}\left(x_{m}^{1}, \beta_{2}\right)+F\left(\min M_{1}\left(x_{m}^{1}, \beta_{2}\right)\right) \tag{3.9}
\end{align*}
$$

Where $M_{1}\left(x_{m}^{1}, \beta_{2}\right)=\left\{d_{1}^{p}\left(x_{m}^{1}, A_{n} A_{n-1} \ldots A_{2} \beta_{2}\right), d_{1}^{p}\left(x_{m}^{1}, A_{n} A_{n-1} \ldots A_{2} A_{1} x_{m}^{1}\right), d_{2}^{p}\left(\beta_{2}, A_{1} x_{m}^{1}\right)\right\}$

$$
=\left\{d_{1}^{p}\left(x_{m}^{1}, A_{n} A_{n-1} \ldots A_{2} \beta_{2}\right), d_{1}^{p}\left(x_{m}^{1}, x_{m+1}^{1}\right), d_{2}^{p}\left(\beta_{2}, x_{m+1}^{2}\right)\right\}
$$

As m tend to infinity in (3.9) and F is continuous in 0 we get

$$
d_{1}^{p}\left(A_{n} A_{n-1} \ldots A_{2} \beta_{2}, \beta_{1}\right) \leq c d_{1}^{p}\left(\beta_{1}, A_{n} A_{n-1} \ldots A_{2} \beta_{2}\right)
$$

So we get, $\quad A_{n} A_{n-1} \ldots A_{2} \beta_{2}=\beta_{1}$
In same way, we obtain

$$
A_{1} A_{n} \ldots A_{4} A_{3} \beta_{3}=\beta_{2}, A_{2} A_{1} A_{n} \ldots A_{5} A_{4} \beta_{4}=\beta_{3}, \ldots, A_{n-1} A_{n-2} \ldots A_{2} A_{1} \beta_{1}=\beta_{n}
$$

Using (3.1), taking $x^{1}=\beta_{1}, x^{2}=x_{m}^{2}$ we get

$$
\begin{aligned}
d_{1}^{p}\left(x_{m}^{1}, A_{n} A_{n-1} \ldots A_{2} A_{1} \beta_{1}\right) & =d_{1}^{p}\left(A_{n} A_{n-1} \ldots A_{2} x_{m}^{2}, A_{n} A_{n-1} \ldots A_{2} A_{1} \beta_{1}\right) \\
& \leq c \max M_{1}\left(\beta_{1}, x_{m}^{2}\right)+F\left(\min M_{1}\left(\beta_{1}, x_{m}^{2}\right)\right)
\end{aligned}
$$

Where, $M_{1}\left(\beta_{1}, x_{m}^{2}\right)=\left\{d_{1}^{p}\left(\beta_{1}, A_{n} A_{n-1} \ldots A_{2} x_{m}^{2}\right), d_{1}^{p}\left(\beta_{1}, A_{n} A_{n-1} \ldots A_{2} A_{1} \beta_{1}\right), d_{2}^{p}\left(x_{m}^{2}, A_{1} \beta_{1}\right)\right\}$

$$
=\left\{d_{1}^{p}\left(\beta_{1}, A_{n} A_{n-1} \ldots A_{2} x_{m}^{1}\right), d_{1}^{p}\left(\beta_{1}, A_{n} A_{n-1} \ldots A_{2} A_{1} \beta_{1}\right), d_{2}^{p}\left(x_{m}^{2}, A_{1} \beta_{1}\right)\right\}
$$

Now letting m tend to infinity we get

$$
\begin{aligned}
d_{1}^{p}\left(\beta_{1}, A_{n} A_{n-1} \ldots A_{2} A_{1} \beta_{1}\right) & \leq c \max \left\{d_{1}^{p}\left(\beta_{1}, \beta_{1}\right), d_{1}^{p}\left(\beta_{1}, A_{n} A_{n-1} \ldots A_{2} A_{1} \beta_{1}\right), d_{2}^{p}\left(\beta_{2}, A_{1} \beta_{1}\right)\right\} \\
& =c \max \left\{d_{1}^{p}\left(\beta_{1}, A_{n} A_{n-1} \ldots A_{2} A_{1} \beta_{1}\right), d_{2}^{p}\left(\beta_{2}, A_{1} \beta_{1}\right)\right\}
\end{aligned}
$$

From which it follows, or

$$
\begin{aligned}
& \quad d_{1}^{p}\left(\beta_{1}, A_{n} A_{n-1} \ldots A_{2} A_{1} \beta_{1}\right) \leq c d_{1}^{p}\left(\beta_{1}, A_{n} A_{n-1} \ldots A_{2} A_{1} \beta_{1}\right) \Leftrightarrow A_{n} A_{n-1} \ldots A_{2} A_{1} \beta_{1}=\beta_{1} \\
& \text { Or } d_{1}^{p}\left(\beta_{1}, A_{n} A_{n-1} \ldots A_{2} A_{1} \beta_{1}\right) \leq c d_{2}^{p}\left(\beta_{2}, A_{1} \beta_{1}\right)
\end{aligned}
$$

This can be also written in following form

$$
\begin{equation*}
d_{1}^{p}\left(\beta_{1}, A_{n} \beta_{n}\right) \leq c d_{2}^{p}\left(\beta_{2}, A_{1} \beta_{1}\right) \tag{3.10}
\end{equation*}
$$

Since, $A_{n-1} A_{n-2} \ldots A_{2} A_{1} \beta_{1}=\beta_{n}$
Taking $x^{3}=x_{m}^{3}, x^{2}=\beta_{2}$ in inequality (3.2) in the same way as above, we obtain

$$
\begin{equation*}
d_{2}^{p}\left(\beta_{2}, A_{1} \beta_{1}\right) \leq c d_{3}^{p}\left(\beta_{3}, A_{2} \beta_{2}\right) \tag{3.11}
\end{equation*}
$$

Continuously like above, we get

$$
\begin{equation*}
d_{n}^{p}\left(\beta_{n}, A_{n-1} \beta_{n-1}\right) \leq c d_{1}^{p}\left(\beta_{1}, A_{n} \beta_{n}\right) \tag{3.12}
\end{equation*}
$$

By (3.10), (3.11) and (3.12), we obtain

$$
\begin{aligned}
d_{1}^{p}\left(\beta_{1}, A_{n} \beta_{n}\right) & \leq c d_{2}^{p}\left(\beta_{2}, A_{1} \beta_{1}\right) \leq c^{2} d_{3}^{p}\left(\beta_{3}, A_{2} \beta_{2}\right) \leq \ldots \leq c^{n-1} d_{n}^{p}\left(\beta_{n}, A_{n-1} \beta_{n-1}\right) \leq c^{n} d_{1}^{p}\left(\beta_{1}, A_{n} \beta_{n}\right) \\
& \Rightarrow d_{1}^{p}\left(\beta_{1}, A_{n} \beta_{n}\right) \leq c^{n} d_{1}^{p}\left(\beta_{1}, A_{n} \beta_{n}\right) \\
& \Leftrightarrow A_{n} \beta_{n}=\beta_{1}, \text { since } 0 \leq c<1
\end{aligned}
$$

Thus again $d_{1}^{p}\left(\beta_{1}, A_{n} A_{n-1} \ldots A_{2} A_{1} \beta_{1}\right)=d_{1}^{p}\left(\beta_{1}, A_{n} \beta_{n}\right)=0$

$$
\Leftrightarrow A_{n} A_{n-1} \ldots A_{2} A_{1} \beta_{1}=\beta_{1}
$$

So, we proved that β_{1} is a fixed point of $A_{n} A_{n-1} \ldots A_{2} A_{1} \beta_{1}$
In same way it can be shown that $A_{1} A_{n} \ldots A_{3} A_{2}$ has a unique fixed point $\beta_{2} \in X_{2}, A_{2} A_{1} \ldots A_{4} A_{3}$ has a unique fixed point $\beta_{3} \in X_{3}$ and so on $A_{n-1} A_{n-2} \ldots A_{1} A_{n}$ has a unique fixed point $\beta_{n} \in X_{n}$.

Further, we also showed that $A_{1}\left(\beta_{1}\right)=\beta_{2}, A_{2}\left(\beta_{2}\right)=\beta_{3}, A_{3}\left(\beta_{3}\right)=\beta_{4}, \ldots, A_{n-1}\left(\beta_{n-1}\right)=\beta_{n}, A_{n}\left(\beta_{n}\right)=\beta_{1}$

Now let assume now that $\beta_{1}^{1} \in X_{1}$ is another fixed point of $A_{n} A_{n-1} \ldots A_{2} A_{1}$, different from β_{1}.

Using (3.1), if we take $x^{1}=\beta_{1}, x^{2}=A_{1} \beta_{1}^{1}$, we get

$$
\begin{aligned}
d_{1}^{p}\left(\beta_{1}^{1}, \beta_{1}\right) & =d_{1}^{p}\left(A_{n} A_{n-1} \ldots A_{2} A_{1} \beta_{1}^{1}, A_{n} A_{n-1} \ldots A_{2} A_{1} \beta_{1}\right) \\
& \leq c \max M_{1}\left(\beta_{1}, A_{1} \beta_{1}^{1}\right)+F\left(\min M_{1}\left(\beta_{1}, A_{1} \beta_{1}^{1}\right)\right)
\end{aligned}
$$

Where, $M_{1}\left(\beta_{1}, A_{1} \beta_{1}^{1}\right)=\left\{d_{1}^{p}\left(\beta_{1}, A_{n} A_{n-1} \ldots A_{2} A_{1} \beta_{1}^{1}\right), d_{1}^{p}\left(\beta_{1}, A_{n} A_{n-1} \ldots A_{2} A_{1} \beta_{1}\right), d_{2}^{p}\left(A_{1} \beta_{1}^{1}, A_{1} \beta_{1}\right)\right\}$

$$
=\left\{d_{1}^{p}\left(\beta_{1}, \beta_{1}^{1}\right), d_{1}^{p}\left(\beta_{1}, \beta_{1}\right), d_{2}^{p}\left(A_{1} \beta_{1}^{1}, \beta_{2}\right)\right\}
$$

From which it follows

$$
\begin{equation*}
d_{1}^{p}\left(\beta_{1}^{1}, \beta_{1}\right) \leq c d_{2}^{p}\left(A_{1} \beta_{1}^{1}, \beta_{2}\right) \tag{3.13}
\end{equation*}
$$

Taking $x^{3}=\beta_{3}, x^{2}=A_{1} \beta_{1}^{1}$ in inequality (3.2) we obtain

$$
\begin{aligned}
d_{2}^{p}\left(\beta_{2}, A_{1} \beta_{1}^{1}\right) & =d_{2}^{p}\left(A_{1} A_{n} \ldots A_{4} A_{3} \beta_{3}, A_{1} A_{n} \ldots A_{3} A_{2} A_{1} \beta_{1}^{1}\right) \\
& \leq c \max M_{2}\left(A_{1} \beta_{1}^{1}, \beta_{3}\right)+F\left(\min M_{2}\left(A_{1} \beta_{1}^{1}, \beta_{3}\right)\right)
\end{aligned}
$$

Where, $M_{2}\left(A_{1} \beta_{1}^{1}, \beta_{3}\right)=\left\{d_{2}^{p}\left(A_{1} \beta_{1}^{1}, A_{1} A_{n} \ldots A_{3} \beta_{3}\right), d_{2}^{p}\left(A_{1} \beta_{1}^{1}, A_{1} A_{n} \ldots A_{2} A_{1} \beta_{1}^{1}\right), d_{3}^{p}\left(\beta_{3}, A_{2} A_{1} \beta_{1}^{1}\right)\right\}$

$$
\left.=d_{2}^{p}\left(A_{1} \beta_{1}^{1}, \beta_{2}\right), d_{2}^{p}\left(A_{1} \beta_{1}^{1}, A_{1} \beta_{1}^{1}\right), d_{3}^{p}\left(\beta_{3}, A_{2} A_{1} \beta_{1}^{1}\right)\right\}
$$

Then,

$$
\begin{equation*}
d_{2}^{p}\left(\beta_{2}, A_{1} \beta_{1}^{1}\right) \leq c d_{3}^{p}\left(\beta_{3}, A_{2} A_{1} \beta_{1}^{1}\right) \tag{3.14}
\end{equation*}
$$

Continuously like above, using (3.4), we get

$$
\begin{equation*}
d_{n}^{p}\left(A_{n-1} A_{n-2} \ldots A_{2} A_{1} \beta_{1}^{1}, \beta_{n}\right) \leq c d_{1}^{p}\left(\beta_{1}^{1}, \beta_{1}\right) \tag{3.15}
\end{equation*}
$$

By using (3.13), (3.14) and (3.15)
$d_{1}^{p}\left(\beta_{1}^{1}, \beta_{1}\right) \leq c d_{2}^{p}\left(A_{1} \beta_{1}^{1}, \beta_{2}\right) \leq c^{2} d_{3}^{p}\left(\beta_{3}, A_{2} A_{1} \beta_{1}^{1}\right) \leq . . \leq c^{n-1} d_{n}^{p}\left(A_{n-1} A_{n-2} \ldots A_{2} A_{1} \beta_{1}^{1}, \beta_{n}\right) \leq c^{n} d_{1}^{p}\left(\beta_{1}^{1}, \beta_{1}\right)$ $\Leftrightarrow d_{1}^{p}\left(\beta_{1}^{1}, \beta_{1}\right) \leq c^{n} d_{1}^{p}\left(\beta_{1}^{1}, \beta_{1}\right)$ where $0 \leq c<1$.

It follows that $\beta_{1}^{1}=\beta_{1}$.
Thus we proved β_{1} is the fixed point of $A_{n} A_{n-1} \ldots A_{2} A_{1}$.
In the same way, it can be shown that $A_{1} A_{n} \ldots A_{3} A_{2}$ has a unique fixed point $\beta_{2} \in X_{2}, A_{2} A_{1} \ldots A_{4} A_{3}$ has a unique fixed point $\beta_{3} \in X_{3}$ and so on $A_{n-1} A_{n-2} \ldots A_{1} A_{n}$ has a unique fixed point $\beta_{n} \in X_{n}$.

Corollary3.2: if we take $n=3$, then we obtain [1] proved by Luljeta kikina.
Corollary3.3: if we take $n=2$,then we obtain [2] proved by S.Č.Nešić.
Corollary3.4: if we take $n=3, p=2$ and $F(t)=0$ for all t belongs to R^{+}, then we obtain a gerernalization of theorem 2[5], extended to three metric spaces.

REFERENCES

[1] L.Kikina, Fixed point theorem in three metric spaces, Int.Journal of math.analysis. ,Vol. 3 (2009), no.13, 619-626.
[2] S.Č.Nešić, A fixed point theorem in two metric spaces, Bull. Math. Soc. Sci.Math. Roumanie (N.S.).,Vol. 44(2001), no.92, 253-257.
[3] B. Fisher, Fixed points theorem on two metric spaces, Glasnik Mat., Vol. 16 (1981) no.36, 333-337.
[4] R. K. Jain, H. K. Sahu, and B. Fisher, Related fixed point theorems for three metric spaces, Novi Sad J. Math., Vol. 26 (1996), no. 1,11-17.
[5] V. Popa, Fixed points on two metric spaces, Zb. Rad, Prirod, Mat. Fak (N.S.)Ser. Mat.,Vol. 21 (1991), 83-93.
[6] Vishal Gupta, Ashima Kanwar and S.B. Singh, "A Fixed Point Theorem For n-Mapping on n-Metric Spaces" International journal of Emerging Trends in Engineering and Development, Vol.1, Issue 2, p.p.257-268, 2012.
[7] Vishal Gupta, Ashima Kanwar and R.K. Saini, "Related Fixed Point Theorem on n Metric Spaces", International Journal of Mathematical Archive Vol.3 , No. 3, pp. 902-908, 2012, ISSN: 2229 - 5046.

Source of support: Nil, Conflict of interest: None Declared

[^0]: * Corresponding author: Vishal Gupta*

 Department of mathematics, Maharishi Markandeshwar University, Mullana, Ambala, Haryana, India

