On wgra-Closed Sets in Topological Spaces

A. Jayalakshmi *1 & C. Janaki²

¹Asst.Professor, Dept of Mathematics, Sree Narayana Guru College, Coimbatore (TN), India ²Asst.Professor, Dept of Mathematics, L. R. G Govt. Arts College for Women, Tirupur (TN), India

(Received on: 30-05-12; Revised & Accepted on: 19-06-12)

ABSTRACT

In this paper, a new class of sets called wgra-closed set is introduced and their properties are studied. Moreover the notions of wgra-continuity and wgra-irresoluteness are introduced.

Mathematics Subject Classification: 54C10, 54A05.

Keywords: wgra-closed sets, wgra-open sets, wgra-continuous and wgra-irresolute.

1. Introduction

N. Levine [11] introduced generalized closed sets in general topology as a generalization of closed sets. Stone [21] introduced regular open sets. N. Levine [10,11], Cameron [5], Sundaram and Sheik john [20], Bhattacharyya and lahiri [4], Nagaveni [16], Palaniappan and Rao [18], Maki, Devi and Balachandran [12], J.K Park and J.H Park [19], S.S. Benchalli and R.S. Wali [3] introduced and investigated semi-open sets, generalized closed sets, weakly closed sets, semi generalized closed sets, weakly generalized closed sets, generalized pre-regular closed sets, generalized α -closed sets, α -generalized closed sets, mildly generalized closed sets and regular α -closed sets respectively. Regular α -open sets and regular generalized α -closed sets have been introduced and investigated by A. Vadivel and K. Vairamanickam [22]. In this paper, we define and study the properties of wgr α -closed sets.

Throughout this paper, space (X, τ) (or simply X) always means a topological space on which no separation axioms are assumed unless explicitly stated. For a subset A of a space X, cl(A), int(A) and A^c denote the closure of A,the interior of A and the complement of A in X respectively.

2. Preliminaries

Definition 2.1: A subset A of a space (X, τ) is called

- (i) regular open [21] if A = int(cl(A)) and regular closed if A = cl(int(A)).
- (ii) pre-open [14] if $A \subset int(cl(A))$ and pre-closed if $cl(int(A)) \subset A$.
- (iii) semi-open [10] if $A \subset cl(int(A))$ and semiclosed if $int(cl(A)) \subset A$.
- (iv) α -open [17] if $A \subset int(cl(int(A)))$ and α -closed if $cl(int(cl(A))) \subset A$.
- (v) semi-pre open [2, 7] if $A \subset cl(int(cl(A)))$ and a semi-preclosed if $int(cl(int(A))) \subset A$.
- (vi) regular α -open [22] if there is a regular open set U such that $U \subset A \subset \alpha cl(U)$.
- (vii) regular semi open [5]if there is a regular open set U such that $U \subset A \subset cl(U)$.

Definition 2.2: A subset A of a space (X, τ) is called

- (i) generalized closed set (briefly, g-closed) [11] if $cl(A) \subset U$ whenever $A \subset U$ and U is open in X.
- (ii) generalized α -closed set (briefly, $g\alpha$ -closed) [12] if α cl(A) \subset U whenever A \subset U and U is α -open in X.
- (iii) α -generalized closed set (briefly, α g-closed) [13] if α cl(A) \subset U whenever A \subset U and U is open in X.
- (iv) regular generalized closed set (briefly, rg-closed) [18] if $cl(A) \subset U$ whenever $A \subset U$ and U is regular open in X.
- (v) generalized pre -regular closed set (briefly, gpr-closed) [19] if $pcl(A) \subset U$ whenever $A \subset U$ and U is regular open in X.

A. Jayalakshmi *1 & C. Janaki²/ On wgrα-Closed Sets in Topological Spaces/ IJMA- 3(6), June-2012, Page: 2386-2392

- (vi) weakly generalized closed set (briefly, ωg -closed) [15,16] if $\operatorname{clint}(A) \subset U$ whenever $A \subset U$ and U is open in X.
- (vii) weakly closed sets (briefly, ω -closed) [1,3] if $cl(A) \subset U$ whenever $A \subset U$ and U is semi open in X.
- (viii) semi weakly generalized closed set (briefly, s ω g-closed) [16] if cl(int(A)) \subset U whenever A \subset U and U is semi-open in X.
- (ix) regular weakly generalized closed set (briefly, $r\omega g$ -closed) [16] if $cl(int(A)) \subset U$ whenever $A \subset U$ and U is regular open in X.
- (x) regular generalized α -closed set (briefly, rg α -closed) [22] if α cl(A) \subset U whenever A \subset U and U is regular α open n X
- (xi) Semi-generalized closed (briefly, sg-closed) [4,6,8] if $scl(A) \subset U$ whenever $A \subset U$ and U is semi-open in X.
- (xii) regular ω -closed (briefly, $r\omega$ -closed) [3] if $cl(A) \subset U$ whenever $A \subset U$ and U is regular semi open in X.
- (xiii) mildly generalized closed sets (briefly, mildly g-closed) [19] if $cl(int(A)) \subset U$, whenever $A \subset U$ and U is g-open in X.

Definitions 2.3: A map $f:(X, \tau) \rightarrow (Y, \sigma)$ is said to be

- (i) continuous [9] if $f^1(V)$ is closed in X, for every closed set V in Y.
- (ii) ω -continuous [16] if $f^{-1}(V)$ is ω -closed in X, for every closed set V in Y.
- (iii) α -continuous [3] if $f^1(V)$ is α -closed in X, for every closed set V in Y.
- (iv) ga-continuous [12] if $f^1(V)$ is ga-closed in X, for every closed set V in Y.
- (v) $rg\alpha$ -continuous [22] if $f^{-1}(V)$ is $rg\alpha$ -closed in X, for every closed set V in Y.
- (vi) sog-continuous [3] if $f^{-1}(V)$ is sog-closed in X, for every closed set V in Y.
- (vii) r ω g-continuous [3] if $f^1(V)$ is r ω g-closed in X, for every closed set V in Y.

3. $wgr\alpha$ -closed sets in topological spaces

Definition 3.1: A subset A of a space (X, τ) is called $wgr\alpha$ -closed if $cl(int(A)) \subset U$ whenever $A \subset U$ and U is regular α -open in (X, τ) .

The complement of the wgr α -closed set is wgr α -open set.

We denote the set of all wgr α -closed sets in (X, τ) by WGR α C(X) and wgr α -open sets in (X, τ) by WGR α O(X)

Theorem 3.2:

- 1.Every ω-closed set is wgrα-closed
- 2.Every α-closed set is wgrα-closed
- 3. Every $g\alpha$ -closed set is $wgr\alpha$ -closed
- 4. Every $rg\alpha$ -closed set is $wgr\alpha$ -closed
- 5.Every sωg-closed set is wgrα-closed 6.Every wgrα-closed set is rωg- closed
- **Proof:** straight forward.

Remark 3.3: Converse of the above need not be true as shown in the following examples.

Example 3.4: Consider $X = \{a, b, c, d, e\}$ and $\tau = \{X, \phi, \{a\}, \{d\}, \{e\}, \{a, d\}, \{d, e\}, \{a, e\}, \{a, d, e\}\}$ Let $A = \{b\}$. A is wgr α -closed, but it is not ω -closed.

Example 3.5: Consider $X = \{a, b, c, d, e\}$ and $\tau = \{X, \phi, \{a\}, \{d\}, \{e\}, \{a, d\}, \{d, e\}, \{a, e\}, \{a, d, e\}\}$ Let $A = \{a, d, e\}$. A is wgr α -closed, but it is not α -closed.

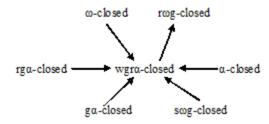
Example 3.6: Consider $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Let $A = \{a, b, d\}$. A is wgr α -closed, but it is not g α -closed.

Example 3.7: Consider $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{a\}, \{c, d\}, \{a, c, d\}\}$. Let $A = \{c\}$. A is $wgr\alpha$ -closed, but it is not $rg\alpha$ -closed.

Example 3.8: Consider $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Let $A = \{a, b, c\}$. A is wgr α -closed, but it is not s ω g-closed.

Example 3.9: Consider $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Let $A = \{b, c\}$. A is rwg-closed, but it is not wgra-closed.

Remark 3.10: The above discussions are summarized in the following diagram.



Remark 3.11: Union of two wgrα-closed sets need not be wgrα- closed.

Example 3.12: Let $X=\{a, b, c, d\}, \tau=\{X, \phi, \{a\}, \{c, d\}, \{a, c, d\}\}$. $A=\{c\}$ and $B=\{d\}$ are $wgr\alpha$ - closed sets. But $A \bigcup B$ is not $wgr\alpha$ -closed.

Remark 3.13: Intersection of two wgrα-closed sets need not be wgrα-closed.

Example 3.14: Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{c, d\}, \{a, c, d\}\}.$ A= $\{a, b\}$ and B= $\{a, d\}$ are $wgr\alpha$ -closed. But $A \cap B$ is not $wgr\alpha$ -closed.

Remark 3.15: The following example shows that $wgr\alpha$ -closed sets are independent of mildly g-closed sets, generalized closed sets, ω g-closed sets, semi closed sets, ω g-closed sets, ag-closed sets and $r\omega$ -closed sets.

Example 3.16: Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Then

- (i) wgr α -closed sets in (X, τ) are $\{X, \varphi, \{c\}, \{d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$
- (ii) mildly g-closed sets in (X, τ) are $\{X, \phi, \{d\}, \{c, d\}, \{a, d\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}, \{a, c, d\}\}$
- (iii) generalized closed sets in (X, τ) are $\{X, \varphi, \{d\}, \{c, d\}, \{a, d\}, \{b, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$
- (iv) ωg -closed sets in (X, τ) are $\{X, \phi, \{c\}, \{d\}, \{c, d\}, \{a, d\}, \{b, d\}, \{a, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$
- (v) semi-closed sets in (X, τ) are $\{X, \phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, c\}, \{b, c\}, \{a, c, d\}, \{b, c, d\}\}$
- (vi) αg -closed sets in (X, τ) are $\{X, \varphi, \{c\}, \{d\}, \{c, d\}, \{a, d\}, \{b, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$
- (vii) sg-closed sets in (X, τ) are $\{X, \varphi, \{a\}, \{b\}, \{c\}, \{d\}, \{c, d\}, \{b, c\}, \{a, d\}, \{b, d\}, \{a, c\}, \{a, c, d\}, \{b, c, d\}\}$
- (viii) r ω -closed sets in (X, τ) are $\{X, \varphi, \{d\}, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$

Theorem 3.17: Let A be wgr α -closed in (X, τ) , then cl(int(A))—A does not contain any non-empty regular α -open set.

Proof: Let F be a non-empty regular- α open set such that $F \subset cl(int(A)) - A$. Then $F \subset X - A \Longrightarrow A \subset X - F$, X - F is regular α -open. Since A is $wgr\alpha$ -closed, $cl(int(A)) \subset X - F$. Therefore $F \subset cl(int(A)) \cap X - cl(int(A))$, which implies $F = \varphi$, which is a contradiction. Hence cl(int(A)) - A does not contain any non-empty regular α -open set.

Remark 3.18: Converse of the above theorem need not be true as shown in the following example.

Example 3.19: Let $X = \{a, b, c, d, e\}$, $\tau = \{X, \phi, \{a\}, \{d\}, \{e\}, \{a, d\}, \{a, e\}, \{d, e\}, \{a, d, e\}\}$. Let $A = \{a, b\}$. cl(int(A)) $-A = \{c\}$, which is not regular α -open. But $A = \{a, b\}$ is not wgr α -closed.

Corollary 3.20: A subset A of X is $wgr\alpha$ -closed set in X, then cl(int(A))-A does not contain any non-empty regular open set in X, but not conversely.

Proof: Follows from theorem 3.17 and the fact that every regular open set is regular α -open.

Example 3.21: Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a\}, \{c, d\}, \{a, c, d\}\}$. Let $A = \{a\}$. cl(int(A)) $-A = \{b\}$, which is not regular open set. But A is not wgra-closed.

Corollary 3.22: A subset A of X is $wgr\alpha$ -closed set in X, then cl(int(A))-A does not contain any non-empty regular closed set in X, but not conversely.

Proof: Follows from theorem 3.17 and the fact that every regular open set is regular α -open.

Example 3.23: Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a\}, \{c, d\}, \{a, c, d\}\}$. Let $A = \{c, d\}$, $cl(int(A)) - A = \{b\}$, which is not regular closed. But A is not wgr α -closed.

Theorem 3.24: For an element $x \in X$, then the set $X - \{x\}$ is $wgr\alpha$ -closed or regular α -open.

Proof: Suppose $X - \{x\}$ is not regular α -open set. Then X is the only regular α -open set containing $X - \{x\} \Rightarrow$ $cl(int(\{X - \{x\}\})) \subset X$. Therefore $X - \{x\}$ is $wgr\alpha$ -closed.

Theorem 3.25: A is wgr α -closed subset of X such that $A \subset B \subset cl(int(A))$, then B is wgr α -closed set in X.

Proof: If A is wgr α -closed subset of X such that $A \subseteq B \subseteq cl(int(A))$. Let U be regular α -open set of X such that $B \subseteq U$, then $A \subseteq U$. Since A is wgr α -closed, $cl(int(A)) \subseteq U$. Now $cl(int(B)) \subseteq cl(int(cl(int(A)))) = cl(int(A)) \subseteq U$. Thus B is wgr α -closed set in X.

Remark 3.26: Converse of the above theorem need not be true.

Example 3.27: Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. Here $A = \{a\}$, $B = \{a, c\}$ with $A \subset B \subset cl(int(A))$, B is wgraclosed in X, but A is not wgra-closed in X.

Theorem 3.28: If A is wgrα-closed and regular open, then A is rg-closed.

Proof: Let $A \subset U$ and U be regular open. By hypothesis, $cl(A) \subset U$. Therefore A is rg-closed.

Theorem 3.29: Let A be wgr α -closed in (X, τ) , then A is regular closed set iff cl(int(A)) –A is regular α -open.

Proof: Suppose A is regular closed in X. Then cl(int(A)) = A and so $cl(int(A)) - A = \phi$, which is regular α -open in X. Conversely, Suppose cl(int(A)) - A is a regular α -open in X. Then $cl(int(A)) - A = \phi$. Hence A is regular closed set in X.

4. wgrα-open sets

Theorem 4.1: A subset A of a topological space X is $wgr\alpha$ -open iff $F \subset int(cl(A))$, whenever F is regular α -open and $F \subset A$.

Proof: Assume A is wgr α - open, A^c is wgr α - closed. Let F be a regular α -open set in X contained in A. F^c is a regular α -open set in X containing A^c .Since A^c is wgr α -closed, cl(int(A^c) \subset F^c .Therefore F \subset int(cl(A)).

Conversely, let $F \subset \text{int}(cl(A))$, whenever $F \subset A$ and F is regular α -open in X. Let G be a regular α -open set containing A^c , then $G^c \subset \text{int}(cl(A))$. Thus $cl(\text{int}(A^c)) \subset G \Rightarrow A^c$ is $wgr\alpha$ -closed $\Rightarrow A$ is $wgr\alpha$ -open.

Theorem 4.2: If $A \subset X$ is $wgr\alpha$ -closed, then cl(int(A))-A is $wgr\alpha$ -open.

Proof: Let A be $wgr\alpha$ -closed and F be regular α -open. $F \subset cl(int(A)) - A$, then $int(cl((cl(int(A)) - A))) = \phi$. Thus $F \subset int(cl((cl(int(A)) - A)))$. Therefore cl(int(A)) - A is $wgr\alpha$ -open.

Remark 4.3: Converse of the above theorem need not be true as shown in the following example.

Example 4.4: Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Let $A = \{a, c\}$. cl(int(A)) $\neg A = \{d\}$ is wgraopen. But A is not wgra-closed.

Theorem 4.5: If $int(cl(A)) \subset B \subset A$ and A is $wgr\alpha$ -open, then B is $wgr\alpha$ -open.

Proof: Let $int(cl(A)) \subset B \subset A$. Thus $X-A \subset X-B \subset cl(int(X-A))$. Since X-A is $wgr\alpha$ -closed, by theorem 3.25, X-B is $wgr\alpha$ -closed.

Theorem 4.6: If A is both regular open and wgr α -closed then it is clopen.

Proof: straight forward.

5. wgrα-continuous and irresolute mappings.

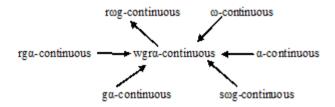
Definition 5.1: A map $f:(X, \tau) \to (Y, \sigma)$ is said to be wgr α -continuous if $f^{-1}(V)$ is wgr α -closed in X, for every closed set V in Y.

Example 5.2: Let $X=\{a, b\}, \tau=\{X, \phi, \{a\}, \{b\}\} \text{ and } \sigma=\{X, \phi, \{a\}\}\}$. Define $f:(X,\tau) \to (X, \sigma)$ by f(a)=b and f(b)=a. Since every subset of (X, τ) is $wgr\alpha$ -closed, f is $wgr\alpha$ -continuous.

Definition 5.3: A map $f:(X, \tau) \to (Y, \sigma)$ is said to be wgra-irresolute if $f^1(V)$ is wgra-closed in X, for every wgra-closed set V in Y.

Example 5.4: Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a, b\}\}$ and $\sigma = \{X, \phi, \{a, b\}, \{c\}\}$. Define $f : (X, \tau) \rightarrow (X, \sigma)$ by f(a) = c, f(c) = a and f(b) = b. $f : s wgr \alpha$ -irresolute.

The above results are summarized in the following diagram.



Remark 5.5: Every wgr α -irresolute function is wgr α -continuous, but not conversely.

Example 5.6: Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{X, \phi, \{a\}\}$. Define f: $(X, \tau) \rightarrow (X, \sigma)$ by f(a) = a, f(b) = b and f(c) = c. Here f is $wgr\alpha$ -continuous, but not $wgr\alpha$ -irresolute.

Theorem 5.7:

- 1. Every ω -continuous is $wgr\alpha$ -continuous
- 2. Every gα-continuous is wgrα-continuous
- 3. Every α -continuous is wgr α -continuous
- 4. Every sωg-continuous is wgrα-continuous
- 5. Every $rg\alpha$ -continuous is $wgr\alpha$ -continuous
- 6.Every wgrα-continuous is rωg- continuous

Proof: straight forward.

Remark 5.8: Converse of the above need not be true.

Example 5.9: Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ and $\sigma = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$ Define $f : (X, \tau) \rightarrow (X, \sigma)$ by f(a) = b, f(b) = c, f(c) = d, f(d) = a. f is wgr α -continuous, but it is not ω -continuous.

Example 5.10: Let $X = \{a, b, c, d, e\}, \tau = \{X, \phi, \{a\}, \{d\}, \{e\}, \{a, d\}, \{a, e\}, \{d, e\}\}\}$ and $\sigma = \{X, \phi, \{c\}, \{c, d\}\}\}$. Define $f:(X, \tau) \rightarrow (X, \sigma)$ by f(a) = b, f(b) = c, f(c) = d, f(c) = a. f is wgrα-continuous, but it is not gα-continuous.

Example 5.11: Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}\}$ and $\sigma = \{X, \phi, \{c\}, \{b, c\}\}\}$. Define $f:(X, \tau) \rightarrow (X, \sigma)$ by f(a) = a, f(b) = b, f(c) = c. f is $wgr\alpha$ -continuous, but it is not α -continuous.

Example 5.12: Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \text{ and } \sigma = \{X, \phi, \{d\}, \{a, c, d\}\}$ Define $f : (X, \tau) \rightarrow (X, \sigma)$ by f(a) = a, f(b) = c, f(c) = b, f(d) = d. f(a, b, c) = d and f(a, b) =

Example 5.13: Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{c, d\}, \{a, c, d\}\}\}$ and $\sigma = \{X, \phi, \{a, d\}, \{a, b, d\}\}\}$. Define $f:(X, \tau) \rightarrow (X, \sigma)$ by f(a) = b, f(b) = a, f(c) = c, f(d) = d. f is $wgr\alpha$ -continuous, but it is not $rg\alpha$ -continuous.

Example 5.14: Let $x = \{a, b, c, d\}$, $\tau = \{\phi, x, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ and $\sigma = \{\phi, x, \{a, c\}, \{a, c, d\}\}$. Define $f:(X, \tau) \to (X, \sigma)$ by f(a), f(b)=c, f(c)=b, f(d)=d. f is reg-continuous, but it is not $\omega gr\alpha$ -continuous.

Remark 5.15: The composition of two ω gr α -continuous functions need not be ω gr α -continuous.

Example 5.16: Let X={a, b, c}, τ ={X, φ,{a},{b},{a, b}}, σ ={X, φ,{a},{a, b}} and η = {X, φ,{a},{a, c},{a, b}}. Define f:(X, τ) \rightarrow (X, σ) by f(a)=b, f(b)=a, f(c)=c. Define g:(X, σ) \rightarrow (X, η) by g(a)=a, g(b)=c, g(c)=b, f and g are ωgrα-continuous, but g∘f is not ωgrα-continuous.

Theorem 5.17: Let $f:(X, \tau) \to (Y, \sigma)$ and $g:(Y, \sigma) \to (Z, \eta)$ be any two maps . Then

- (i) g∘f is wgrα-continuous, if g is continuous and f is wgrα-continuous
- (ii) g∘f is wgrα-irresolute, if g is wgrα-irresolute and f is wgrα-irresolute
- (iii) g∘f is wgrα-continuous, if g is wgrα-continuous and f is wgrα-irresolute

Proof

- (i) Let V be any closed set in (Z, η) . Then $g^{-1}(V)$ is closed in (Y, σ) , since g is continuous. By hypothesis, $f^{-1}(g^{-1}(V))$ is wgr α -closed in (X, τ) . Hence $g \circ f$ is wgr α -continuous.
- (ii) Let V be wgra-closed set in (Z, η) . Since g is wgra-irresolute, $g^{-1}(V)$ is wgra-closed in (Y, σ) . As f is wgra-irresolute, $f^{-1}(g^{-1}(V))=(g\circ f)^{-1}(V)$ is wgra-closed in (X, τ) . Hence $g\circ f$ is wgra-irresolute.
- (iii) Let V be closed in (Z, η) . Since g is wgra-continuous, $g^{-1}(V)$ is wgra-closed in (Y, σ) . As f is wgra-irresolute, $f^{-1}(g^{-1}(V))=(g\circ f)^{-1}(V)$ is wgra-closed in (X, τ) . Hence $g\circ f$ is wgra-continuous.

References

- [1] Ahmad Al-Omari and Salmi Md Noorani, Regular generalized ω -closed sets, International ournal of Mathematics and Mathematical Sciences, Volume 2007, article(ID),16292.
- [2] D. Andrijevic, Semi-preopen sets, Mat. Vesnik 38(1986), 24-32.
- [3] S.S.Benchalli and R.S.Wali, On rw-closed sets in topological spaces, Bull. Malays. Math. Sci. Soc.(2) 30(2) (2007), 99-110
- [4] P. Bhattacharya and B.K. lahiri, Semi-generalized closed sets in topology, Indian J. Math. 29 (1987), 376-382.
- [5] D. E. Cameron, Properties of S-closed spaces, Proc. Amer Math. Soc. 72(1978), 581-586
- [6] G. Di Maio and Noiri, On S-closed spaces, Indian J. Pure Appl. Math. 18(3)(1987), 226-233.
- [7] J. Dontchev, On generalizing semi-preopen sets, Mem. Fac Sci. Kochi. Univ. Ser. A. Math. 16 1995), 35-48.
- [8] J. Dontchev and H.maki, On sg-closed sets semi-λ closed sets, Questions and Answers Gen. Topology, 15(1997), 253-266.
- [9] Y. Gnanambal, On generalized preregular closed sets in topological spaces, Indian j. pure App. Math.28 (1997), 351-360.
- [10] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer .Math. Monthly, 70(1963), 36-41.
- [11] N. Levine, Generalized Closed sets in topology, Rend. Circ. Mat. Palermo 19(1970), 89-96
- [12] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Sci. Kochi Univ. Ser. A. Math. 15(1994), 51-63.

A. Jayalakshmi *1 & C. Janaki²/ On wgrα-Closed Sets in Topological Spaces/ IJMA- 3(6), June-2012, Page: 2386-2392

- [13] H. Maki, R. Devi and K. Balachandran, Generalized α -closed sets in topology, Bull. Fukuoka Unv. Ed. Part-III 42(1993), 13-21.
- [14] A.S.Mashhour, M.E.Abd. El-Monsef and S. NEl-Deeb, On pre continuous mappings and weak pre-continuous mappings, proc. Math. Phys. Soc. Egypt 53(1982), 47-53.
- [15] C. Mukundhan and N. Nagaveni, A Weaker Form of a Generalized closed set, Int. J. Contemp. Math. Sciences, Vol. 6, 2011, no.20, 949-961.
- [16] N. Nagaveni, studies on generalizations of Homeomorphisms in topological spaces, Ph.D. Thesis, Bharathiar University, Coimbatore, 1999.
- [17] O.Njastad, On some classes of nearly open sets, Pacific J. Math. 15(1965), 961-970.
- [18] N.Palaniappan and K.C.Rao, Regular generalized closed sets, Kyungpook Math. J. 33 (1993), 211-219.
- [19] J. K. Park and J.H. Park, Mildly generalized closed sets, almost normal and mildly normal spaces, Chaos, Solitions and Fractals 20(2004), 1103-1111.
- [20] P. Sundaram and M. Sheik John, On w-closed sets in topology, Acta Ciencia Indica 4(2000), 389-392
- [21] M.Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc , 41(1937),374-481.
- [22] A. Vadivel and K. Vairamanickam, $rg\alpha$ -closed sets and $rg\alpha$ -open sets in topological spaces, Int. Journal of Math. Analysis, Vol.3, 2009, no.37, 1803-1819.

Source of support: Nil, Conflict of interest: None Declared