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ABSTRACT 
This paper empowers some basic elementary properties of lattice algebra, lattice sigma algebra. Also it establishes 
that the countable intersection of lattice sigma algebras is again a lattice sigma algebra and the lattice sigma algebra 
generated by itself contains the collection of all unions of lattice measurable sets. Finally it ascertains some elementary 
properties of lattice measurable functions. 
 
 
1. INTRODUCTION 
 
The concept of lattice measurable functions was obtained by Anil kumar etrl (2011). The fundamentals of measure 
theoretical concepts were firstly described by Halmos (1974). Later on a detailed attempt has been made by Royden 
(1981). The concept of measure of a lattice has been effort by Szasz (1963). The perspective of the measure of a lattice 
has been attempted by G. Szasz (1963) and for signed lattice measure is originated by Tanaka (2009).  
 
Section 2, deals with the fundamentals of lattice sigma algebra, lattice measure on a lattice sigma algebra with 
reference to Tanaka (2009). Further the concepts of lattice measurable set, lattice measure space and lattice σ – finite 
measure were defined based on Anil kumar etrl (2011). Here some basic elementary properties of lattice algebra and 
lattice sigma algebra were proved. Also it has been established that the countable intersection of lattice sigma algebras 
is again a lattice sigma algebra and the lattice sigma algebra generated by itself contains the collection of all unions of 
lattice measurable sets. 
 
In section 3, the concepts of function lattice and lattice measurable function were initiated with allusion to Anil kumart 
etrl (2011). Here some elementary properties of lattice measurable functions have been established. 
 
2. PRILIMINARIES 
 
In this Paper, we shall consider the union and intersection notion of set theory as ∧  and  ∨ and we shall briefly review 
the well-known facts about lattice theory (Birkhoff [8]), propose an extension lattice, and investigate its properties.  
 
(L, ∧,∨) is called a lattice if it is enclosed under operations ∧ and ∨ and satisfies, for any elements x, y, z, in L: 
(L1) the commutative law: x ∧ y = y ∧ x and x ∨ y = y ∨ x. 
(L2) the associative law: x ∧ (y ∧ z) = (x ∧ y) ∧ z and x ∨ (y ∨ z) = (x ∨ y) ∨ z. 
(L3) the absorption law: x ∨ (y ∧ x) = x and x ∧  (y ∨ x) = x. 
 
Hereafter, the lattice (L, ∧, ∨) will often be written as L for simplicity. 
 
A mapping h from a lattice L to another lattice L is called a lattice-homomorphism, if it satisfiesh (x ∧ y) = h(x) ∧ h(y) 
and h (x ∨ y) = h (x) ∨ h (y), ∀ x, y ∈ L. 
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If h is a bijection, that is, h is one-to-one and onto, it is called a lattice isomorphism, and in this case, L1 is said to be 
lattice-isomorphic to L. 
 
A lattice (L, ∧,  ∨) is called distributive if, for any x, y, z, in L. 
 
(L4) the distributive law holds: 
 
x ∨ (y ∧ z) = (x ∨ y) ∧ (y ∨ z) and x ∧ (y ∨ z) = (x ∧ y) ∨ (y ∧ z). 
 
A lattice L is called complete if, for any subset A of L, L contains the supremum  ∨ A and the infimum ∧ A. If L is 
complete, then L itself includes the maximum and minimum elements which are often denoted by 1 and 0 or I and O 
respectively [8]. 
 
A distributive lattice is called a Boolean lattice if for any element x in L, there exists a unique complement xc such that 
x ∨ xc = 1  (L5) the law of excluded middle 
x ∧ xc = 0  (L6) the law of non-contradiction 
 
Let L be a lattice and c: L → L be an operator. Then € is called a lattice complement in L if the following conditions 
are satisfied. 
(L5) and (L6);     ∀ x ∈ L, x ∨ xc = 1 and x ∧ xc = 0, 
(L7) the law of contrapositive;   ∀ x, y ∈ L, x < y implies xc > yc, 
(L8) the law of double negation;   ∀ x ∈ L, (xc)c = x. 
 
Lattice Algebras  
 
Unless otherwise stated, X is the entire set and S is a lattice of any subsets of X. 
 
Definition 1: If S is a lattice and satisfies the following conditions, then it is called a lattice algebra. 
(i) For all h ∈ S, h

c
 ∈ S 

(ii) For all a, b ∈ S, a ∨ b ∈ S. 
 
Example 1: {∅, X} is a lattice algebra. 
 
Example 2: Let X = ℜ  and S = {E < ℜ  / E is finite or E

c
 is finite}. Here S is a lattice algebra. 

 
Result 1: If E1, E2 ∈ S then E1 ∧ E2 ∈ S. 
 
Proof:  If E1 ∈ S, by the definition 1,  E1

c ∈ S again E2 ∈ S, by definition 1, E2
c
 ∈ S. 

 
Now E1

c
, E2

c
 ∈ S, then E1

c ∨ E2
c
 ∈ S. This implies (E1 ∧ E2)

 c
 ∈ S. Hence E1 ∧ E2

 ∈ S. 
 
Result 2: If E1, E2 ∈ S then E1 – E2 ∈ S 
 
Proof:  Let E2 ∈ S by definition E2

c
 ∈ S  

 
Now E1, E2

c 
∈ S. Which implies E1 ∧ E2

c
∈ S (by result 1). 

 
Hence E1 – E2 ∈ S. 
 
Theorem 1: If S is lattice algebra of subsets of X then 
1. X∈S 
2. ∅∈S 

 
Proof:  1. Since S is nonempty, there exists A∈S.  
 
Hence  A

c
∈S. So X=A ∨ A

c
∈S. Clearly ∅ = X

c
∈S. 
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Theorem 2: Suppose that S is lattice algebra of subsets of X and that Ai∈S for each i in a finite index set I. 
1. 

Ii∈
∨ Ai∈S 

2. 
Ii∈

∧ Ai∈S 

 
Proof: We prove this theorem by using induction on the number of elements in I.  
 
Let x1, x2, …… xn ∈  S.  
 
Since x1, x2 ∈  S and S is a lattice, we have that x1 ∧ x2, x1 ∨ x2 ∈  S. 
 
Suppose the induction hypothesis that  
x1 ∧ x2 ∧ …….. xn-1, x1 ∨ x2 ∨ ……. ∨xn-1 ∈  S. 
 
Since x1 ∧ x2 ∧ ……. xn-1 ∈  S, xn ∈  S and S is a lattice,  
 
We have x1 ∧ x2 ……. ∧ xn-1 ∧ xn ∈  S.  
 
Since x1 ∨ x2 ∨ ……..∨xn-1 ∈  S, xn ∈  S and S is a lattice 
 
We have that x1 ∨ x2 ∨ ……..∨xn-1 ∨ xn ∈  S. 
 
It is clear that x1 ∧ x2 ……. .. ∧ xn is the inf{x1, x2, ……xn} and x1 ∨ x2 ∨ ….. xn is the sup{ x1, x2, …… xn}. 
 
This theorem is true for all positive integers n 
 
Therefore 

Ii∈
∨ Ai ∈ S and 

Ii∈
∧ Ai ∈ S. 

 
Lattice σ-Algebras:  
 
Unless otherwise stated, X is the entire set and S is a lattice of any subsets of X. 
 
Definition 2: [7] If a lattice S satisfies the following conditions, then it is called a lattice σ - algebra; 
(1) For all h ∈ S, h

c
 ∈ S. 

(2) For all hn ∈ S for n = 1, 2, 3 ....., then  
∞

=
∨

1n
 hn ∈ S. 

 
Example 3:  
1. { ∅, X} is a lattice σ -algebra.  
2. P(X) power set of X is a lattice σ –algebra. 
 
Example 4: [4] Let X = ℜ , S = {Lebesgue measurable subsets of ℜ } with usual ordering (≤). Here S is a lattice σ - 
algebra. 
 
Example 5: Suppose S = {all topologies on X}. Here S is a complete lattice but not σ –algebra 
.  
Example 6: Let X = ℜ  and S = {E < ℜ  / E is finite or Ec is finite}. Here S is lattice algebra but not lattice σ -algebra.  
 
Note 1: Lattice σ-algebra of subsets of X is closed under countable unions and intersections.  
 
Definition 3: If m:  S →  R ∨  { ∞ } satisfies the following properties, then m is called a lattice measure on the lattice 
σ -algebra S. 
 
(1) m (∅) = m(0) = 0. 
(2) for all h, g ∈S such that m(h), m(g) > 0; h < g ⇒ m(h) < m(g). 
(3) for all h, g∈S: m(h ∨ g) + m(h ∧ g) = m(h) + m(g). 

(4) If h
n
∈S, n ∈ N such that h

1
 < h

2
 < ... < h

n
 < ...., then m( 

∞

=
∨

1n
 h

n
) = lim m(h

n
). 
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Let m

1
 and m

2
 be lattice measures define on the same lattice σ -algebra S. If one of them is finite, the set function m (E) 

= m
1
(E) - m

2
(E), E ∈S is well defined and countably additive on S. However, it is necessarily nonnegative; it is called 

a signed lattice measure. 
 
Example 7: Let X be any set S = P(X) be the class of all sub sets of X. Define for any A ∈  S, m(A) = + ∞  if A is 
infinite = |A| if A is finite. Where |A| is the number of elements in A. Then m is a countable additive set function 
defined on S and hence m is a lattice measure on S. 
 
Definition 4: [1] The ordered pair (X, S) is said to be lattice measurable space. 
 
Example 8: X = ℜ ,  S = {All Lebesgue measurable sub sets of ℜ }, (ℜ , S) is a lattice measurable space. 
 
Definition 5: [1] A set A is said to be lattice measurable set or lattice measurable if A belongs to S. 
 
Example 9: [5] The interval (a, ∞ ) is a lattice measurable under usual ordering. 
 
Example 10: [6] [0, 1] < ℜ  is lattice measurable under usual ordering.  
 
Example 11: [5] Every Borel lattice is a lattice measurable. 
 
Theorem 3: If Ai ∈ S for each i in a countable index set I, then 

Ii∈
∧ Ai ∈ S. 

 
Proof: We prove this theorem by using theorem 2.  If Ai ∈ S for i ∈ I then SAc

i ∈ for i ∈ I. 
 
Therefore 

Ii∈
∨ SAc

i ∈ and hence 
Ii∈

∧ Ai =(
Ii∈

∨ c
iA )

c S∈ . 

 
Theorem 4: Suppose that S is a set and that S is a finite lattice algebra of subsets of X. Then S is also a lattice σ-
algebra. 
 
Proof: We prove this theorem by using theorem 2. 
 
We just add a lot of empty sets, that is  
 
A1 ∨  A2 = A1 ∨  A2 ∨  ∅ ∨  ∅ ∨ ………. 
 
Now we have an infinite sub sets.   
 
Note 2: However, there are lattice algebras that are not lattice σ-algebras.  
 
Theorem 5: The collection of finite and co-finite subsets of N defined below is a lattice algebra of subsets of N, but not 
a lattice σ-algebra: 
 
F= {A ⊆ N:A is finite or Ac is finite} 
 
Proof: Naturally N ∈ F since N

c = ∅ is finite. If A ∈ F then A
c ∈ F by the symmetry of the definition lattice algebra. 

Suppose that A, B ∈ F. If A and B are both finite then A ∨ B is finite. If A
c
 or B

c
 is finite, then (A ∨ B)

 c 
=A

c
∧ B

c
 is 

finite. In either case, A ∨ B ∈ F. Thus F is a lattice algebra of subsets of N. 
 
Let An={2n} for n ∈ N. Then An is finite, and hence An ∈ F for each n ∈ N.  
 

Let E=
∞

=
∨

0 n 
An Note that E and E

c
 are infinite, so E ∉ F. Thus F is not a lattice σ-algebra. 

 
Note 3: P(X) denotes the collection of all subsets of X, called the power set of X. Trivially, P(X) is the largest lattice σ-
algebra of X, at the other extreme, the smallest lattice σ-algebra of X is the collection {∅, X}. 
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Theorem 6: Suppose that Si is a lattice σ-algebras of subsets of X for each i in a nonempty index set I. Then S=
Ii∈

∧ Si 

also a lattice σ-algebra of subsets of X. 
 
Proof: Let A ∈ S then A ∈ Si for each i ∈ I and hence A

c ∈ Si for each i ∈ I. Therefore A
c ∈ S. Suppose that Aj ∈ S for 

each j in a countable index set J. Then Aj ∈ Si for each i ∈ I and j ∈ J and therefore 
Jj∈

∨ Aj ∈ Si for each i ∈ I. It follows 

that 
Jj∈

∨ Aj ∈ S. 

 
Note 4: Suppose that B is a collection of subsets of X, in general B will not be a lattice σ-algebra. The lattice σ-algebra 
generated by B is the intersection of all lattice σ-algebras that contains B, it is denoted by σ (B) = ∧ {S: S is a lattice σ-

algebra of subsets of X and B⊆S} 
 
Note 5: The collection of lattice σ-algebras in the intersection is non empty, since P(X) is in the collection. 
 
Theorem 7: If A is a subset of X then σ {A} = {∅, A, A

c
, X} 

 
Proof: Let us consider the collection of subsets A= {Ai: i ∈ I} is a partition of X, if Ai ∧  Aj = ∅ for i, j ∈ I with i ≠ j, 
and 

Ii∈
∨ Ai = X. 

 
Theorem 8: Suppose that A={Ai : i ∈ I} is a countable partition of X. Then σ(A) is the collection of all unions of sets 
in A. That is, σ(A)={ 

Jj∈
∨ Aj : J⊆I }. 

 
Proof: Let S={ 

Jj∈
∨ Aj : J⊆I }. Clearly X ∈ S (since X =

Ii∈
∨ Ai).  

 
Suppose that B ∈ S. Then B =

Jj∈
∨ Aj for some J⊆I. But then Bc=

cJj∈
∨ Aj, so B

c ∈ S. 

 
Again suppose that Bk ∈ S for k ∈ K where K is a countable index set. Then for each k ∈ K there exists Jk ⊆ I such that 
Bk =

kJj∈
∨ Aj. But then 

Kk∈
∨ Bk =

Kk∈
∨

kJj∈
∨ Aj =

Jj∈
∨ Aj where J=

Kk∈
∨ Jk. Hence 

Kk∈
∨ Bk ∈ S. Therefore S is a lattice σ-algebra 

of subsets of X. Trivially, A⊆S. If T is a lattice σ-algebra of subsets of X and A ⊆ T, then clearly 
Jj∈

∨ Aj ∈ T for every J 

⊆ I. Hence S ⊆ T. 
 
If Ai ≠ ∅ for i ∈ I then the unions in σ(A) are distinct. That is, if J, K ⊆ I and J ≠ K then 

Jj∈
∨ Aj≠

Kk∈
∨ Ak. In particular, if 

there are n nonempty sets in A, then there are 2n subsets of I and hence 2n sets in σ(A). 
 
3. Lattice Measurable Functions 
 
Definition 6: [2] A function lattice is a collection 1S  of extended real valued functions defined on a set S which is a 
lattice with respect to usual partial ordering on functions. That is if f,g ∈  1S  then f ∨  g ∈  1S , f ∧  g ∈  1S . 
 
Example 12: Let f: ℜ  → ℜ  the set of all real valued functions defined on ℜ . Then ℜ  under usual ordering is a 
function lattice.  
 
Definition 7: If f and g are extended real valued lattice measurable functions defined on 1S , then f ∨  g, f ∧  g are 
defined by  
 
(f ∨  g)(x) = max {f(x), g(x)} and  
(f ∧  g)(x) = min{f(x), g(x)} for any x ∈  S.  
 
Note 6: If g(x) = 0 for all x, then 
(f ∨  0) (x) = f(x) if f(x) ≥ 0, 0 if f(x) < 0 and  
(f ∧  0)(x) = 0 if f(x) ≥ 0, f(x) if f(x) < 0.  
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Definition 8: [2] Lattice measurable function: An extended real value function f defined on a lattice measurable E is 
said to be lattice measurable function if the set {x∈E/f(x)> α} is lattice measurable for all real numbers α. 
 
Example 13:  
(1) Constant functions are lattice measurable functions. 
(2) If A is a lattice measurable function in ℜ , then Aχ  is lattice measurable function. 
(3) Continuous functions from ℜ  →  ℜ  are lattice measurable functions. 
(4) Any step function is lattice measurable function. 
 
Theorem 9: Suppose that R, S, and T are sets with lattice σ-algebras R, S, and T, respectively. If f: R→S is lattice  
measurable and g : S→T is lattice measurable, then g∘f : R→T is lattice measurable. 
 
Proof: If A ∈ T then g−1 (A) ∈ S since g is lattice measurable, and hence (g∘f) −1 (A) = f−1 [g−1 (A)] ∈ R since f is lattice 
measurable. If T is smallest possible lattice σ-algebra or if S is largest one, then any function from S into T is lattice 
measurable. 
 
Theorem 10: If T= {∅, T} or if a lattice σ-algebra S = P(S) then every lattice measurable function f: S→T is lattice 
measurable. 
 
Proof: Let us consider a lattice measurable function f: S→T. Suppose that T= {∅, T} and that S is an arbitrary lattice σ-
algebra on S. The f−1(T) = S ∈ S and f−1(∅) = ∅∈S so f is lattice measurable. Next suppose that S = P(S) and that T is an 
arbitrary lattice σ-algebra on T. Then trivially f−1 (A) ∈ S for every A ∈ T so again f is lattice measurable. 
 
Theorem 11: Suppose that f : S→T be a lattice measurable function , and T is a lattice σ-algebra of subsets of S. The 
collection σ(f) = {f−1(A)/A∈T} is a lattice σ-algebra of subsets of S, called the lattice σ-algebra generated by f. 
 
Proof: Let S ∈ σ(f) since T ∈ T and f−1(T)=S. If B ∈ σ(f) then B = f−1(A) for some A ∈ T. But then A

c ∈ T and hence  
B

c = f−1(A
c
) ∈ σ(f).  

 
Suppose that Bi ∈ σ(f) for i, in a countable index set I. Then for each i ∈ I there exists Ai ∈ T such that Bi = f−1(Ai). But 
then 

Ii∈
∨ Ai ∈ T and 

Ii∈
∨ Bi = f−1(

Ii∈
∨ Ai). Hence 

Ii∈
∨ Bi ∈ σ(f). 

 
The lattice σ-algebra generated by f is the smallest lattice σ-algebra on S that makes f measurable (relative to the given 
lattice σ-algebra on T). More generally, suppose that Ti is a set with lattice σ-algebra Ti for each i in a nonempty index 
set I, and that fi : S→Ti for each i∈I. The lattice σ-algebra generated by this collection of functions is 
 
σ{fi / i ∈ I}=σ{f−1(A) / i ∈ I, A ∈ Ti} 
 
Again, this is the smallest lattice  σ-algebra on S that makes fi measurable for each i∈I. 
 
Theorem 12: Suppose that S has lattice σ-algebras R and S with R⊆S, and that T has lattice σ-algebras U and T with 
U⊆T. If f:S→T is lattice measurable with respect to R and T, then f is lattice measureable with respect to S and U. 
 
Proof: If A∈U then A∈T. Hence f−1(A) ∈ R so f−1(A)∈S. 
 
CONCLUSION: 
 
This manuscript confirms some basic elementary properties of lattice algebras and lattice sigma algebras. Also it was 
established that the countable intersection of lattice sigma algebras is again lattice sigma algebra and the lattice sigma 
algebra generated by itself contains the collection of all unions of lattice measurable sets. It was proved that the 
composition of two lattice measurable functions is lattice measurable. It has been identified the concept of σ-algebra 
generated by lattice measurable function. Finally it confirms some elementary properties of lattice measurable 
functions.  
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