International Journal of Mathematical Archive-3(6), 2012, 2234-2239 MA Available online through <u>www.ijma.info</u> ISSN 2229 - 5046

ON LEFT DERIVATIONS OF *d***-ALGEBRAS**

¹N. Kandaraj * & ²M. Chandramouleeswaran**

¹Department of Mathematics, Saiva Bhanu Kshatriya College, Aruppukottai-626101, India ²Department of Mathematics, Saiva Bhanu Kshatriya College, Aruppukottai-626101, India

(Received on: 14-05-12; Accepted on: 31-05-12)

ABSTRACT

In this paper we investigate some properties of left derivations of dalgebras.

Keywords: *d*-algebra, left derivation.

Subject Classification AMS (2000): 06F35, 03G25, 06D99, 03B47.

1. INTRODUCTION

Y. Imai ([1], [2], [3]) and K.Isaki introduced two classes of abstract algebras: BCK algebras and BCI algebras. Q.P.Hu and X.Li introduced a broad class of abstract algebras: BCH algebras. ([4], [5]) J.Neggers and H.S.Kim introduced the notion of d-algebras. [6].

Y.B. Jun and X.L.X in [7] applied the notion of derivation in ring and near ring theory to BCI algebras and they also introduced a new concept called a regular derivation in BCI algebras. They investigated some of its properties, defined a d-invariant ideal and gave conditions for an ideal to be d-invariant. In non-commutative rings, the notion of derivations is extended to d-derivations, left derivations and central derivations.

In [8] J. Zhan and Y.L. Liu introduced the notion of f-derivations of BCI algebras. In particular they studied the regular f-derivations in detail and gave a characterization of regular f-derivations and characterized p-semi simple BCI algebras using the notion of regular f-derivation.

In [9] H.A. Abujabal and Nora O.Alshehri introduced the notion of left derivations of BCI algebras and investigated regular left derivations in BCI algebras. Recently, we have [10] introduced the notion of derivations on a d-algebra. In this paper we introduced the notion of left derivations on d-algebras and they investigated regular left derivations.

2. PRELIMINARIES

Definition 2.1: A d-algebra is a non-empty set X with a constant 0 and a binary operation * satisfying the following

axioms: 1. x * x = 02.0 * x = 03.x * y = 0 and $y * x = 0 \Rightarrow x = y$.

Definition 2.2: Let S be a non empty subset of a d-algebra X then, S is called d-sub algebra of X if $x * y \in S$ for all $x, y \in S$.

Definition2.3: Let X be a d-algebra and I be a subset of X then I is called d-ideal of X if it satisfies the following conditions:

 $\begin{array}{ll} 1. \ 0 \in I \\ 2.x * y \in I \ \text{and} \ y \in I \ \Rightarrow \ x \in I \\ 3. \ x \in I \ \text{and} \ y \in X \ \Rightarrow \ x * y \in I. \end{array}$

Corresponding author: M. Chandramouleeswaran** ²Department of Mathematics, Saiva Bhanu Kshatriya College, Aruppukottai-626101, India **Definition2.4:** Let X be a d-algebra. A map $\theta: X \to X$ is a left –right derivation (briefly (l, r)-derivation) of X if it satisfies the identity $\theta(x * y) = (\theta(x) * y) \land (x * \theta(y))$ for all $x, y \in X$. If θ satisfies the identity $\theta(x * y) = (x * \theta(y)) \land (\theta(x) * y)$ for all $x, y \in X$, then θ is a right-left derivation (briefly (r, l)-derivation) of X. Moreover, if θ is both a (l, r)- and (r, l)-derivation, then θ is a derivation of X.

Definition 2.5: Let θ be a derivation of d-algebra X. An ideal I of X is said to be θ -invariant if $\theta(I) \subseteq I$ where $\theta(I) = \{\theta(x) \mid x \in I\}.$

Definition 2.6: A self map θ of a d-algebra X is said to be regular if $\theta(0) = 0$.

Definition 2.7: Let (X, *, 0) be a d-algebra and $x \in X$. Define $x * X = \{x * a \mid a \in X\}$. X is said to be edge d-algebra if for any $x \in X, x * X = \{x, 0\}$.

Lemma 2.8: Let (X, *, 0) be an edge d-algebra, then x * 0 = x for any $x \in X$.

Lemma 2.9: If (X, *, 0) is an d-algebra, then the condition (x * (x * y)) * y = 0 for all $x, y \in X$ holds.

Lemma 2.10: If (X, *, 0) is an d-algebra, then (x * y) * z = (x * z) * y for all $x, y, z \in X$.

Lemma 2.11: Let (X, *, 0) be an d-algebra then $y * (y * x) = x \quad \forall x, y \in X$.

3. LEFT DERIVATIONS

In this section we define the left derivations.

Definition 3.1: Let X be a d-algebra. By a left derivation of X we mean a self map θ of X satisfying

$$\theta(x * y) = (\theta(x) * y) \land (\theta(y) * x) \quad \forall x, y \in X.$$

Example 3.2: Let $X = \{0, 1, 2, 3\}$ be a *d*-algebra with Cayley table defined by

*	0	1	2	3
0	0	0	0	0
1	1	0	1	0
2	1	1	0	3
3	3	3	0	0

Define a map $\theta: X \to X$ by $\theta(x) = \begin{cases} 0 & if \ x = 0, 1, 3 \\ 3 & if \ x = 2 \end{cases}$

Then it is easily checked that θ is a left derivation of X.

Lemma 3.3: In any d-algebra X, the following properties hold for all $x, y, z \in X$.

1. $x \ast (x \ast (x \ast y)) = x \ast y.$ $x * 0 = 0 \quad \Rightarrow \quad x = 0.$ 2. ((x * z) * (y * z)) * (x * y) = 0.3. $x \le y \Rightarrow x * z \le y * z \text{ and } z * y \le z * x.$ 4. 5. ((x * y * (x * z)) * (z * y) = 0.(x*z)*(y*z) = x*y.6. (x * 0) * 0 = x.7. 8. $x * a = x * b \implies a = b.$ $a * x = b * x \implies a = b.$ 9. 10. $x * y = 0 \implies x = y.$

Definition 3.4: A left derivation θ of a d-algebra X is said to be regular if $\theta(0) = 0$.

Lemma 3.5: Every left derivation of a d-algebra with x * 0 = x is regular.

Proof: Now

$$\begin{array}{rcl} \theta(0) &=& \theta(0 \ast x) \\ &=& (\theta(0) \ast x) \land (\theta(x) \ast 0) \\ &=& (\theta(0) \ast x) \land \theta(x) & (\because \ x \ast 0 = x) \\ &=& \theta(x) \ast (\theta(x) \ast (\theta(0) \ast x)) \\ \theta(0) &=& \theta(0) \ast x. \end{array}$$

If $\theta(0) = 0$, then nothing to prove. If $\theta(0) \neq 0$, then $\theta(0) * \theta(0) \neq 0 * \theta(0) \neq 0$.

This is contradiction to the condition, x * x = 0.

Hence $\theta(0) = 0$. Therefore, every left derivation of a d-algebra with x * 0 = x is regular.

Lemma 3.6: Let θ be a left derivation of a d-algebra X. Then for all $x, y \in X$ we have

- 1. $\theta(x) * x = \theta(y) * y$.
- 2. $\theta(x * y) = \theta(x) * y.$

Proof:

1. Let $x, y \in X$.

$$\begin{aligned} \theta(0) &= \theta(x * x) \\ &= (\theta(x) * x) \land (\theta(x) * x) \\ &= (\theta(x) * x) * ((\theta(x) * x) * (\theta(x) * x)) \\ &= (\theta(x) * x) * 0 \\ &= \theta(x) * x \quad \dots \dots (1). \end{aligned}$$

Similarly, $\theta(0) = \theta(y) * y \quad \cdots \quad (2).$

From (1) and (2), $\theta(x) * x = \theta(y) * y$.

2. Let $x, y \in X$. Since θ be a left derivation of X.

$$\begin{array}{lll} \theta(x*y) &=& (\theta(x)*y) \wedge (\theta(y)*x) \\ &=& (\theta(y*x)*((\theta(y)*x)*(\theta(x)*y)) \\ &=& \theta(x)*y \end{array}$$

Lemma 3.7: Let θ be a left derivation of a d-algebra X such that x * 0 = x. Then $\theta(x) = x$ if and only if θ is regular.

Proof: Let θ be a regular.

That is
$$\theta(0) = 0$$
.

$$Now \ \theta(0) = \theta(x * x)$$

$$= (\theta(x) * x) \land (\theta(x) * x)$$

$$= (\theta(x) * x) * ((\theta(x) * x) * (\theta(x) * x))$$

$$= (\theta(x) * x) * 0$$

$$= \theta(x) * x$$

$$= 0$$

which implies $\theta(x) = x$.

© 2012, IJMA. All Rights Reserved

Conversely, assume $\theta(x) = x$. Then it is clear that $\theta(0) = 0$. thus proving that θ is regular.

Theorem 3.8: Let θ be a left derivation of a d-algebra X. Then θ is regular if and only if every ideal of X is θ -invariant.

Proof: Let θ be a regular left derivation of a d-algebra X.

Then by lemma 3.7, $\theta(x) = x$ for all $x \in X$.

Let $y \in \theta(A)$, where A is an ideal of X.

Then
$$y = \theta(x)$$
 for some $x \in A$.
Thus $y * x = \theta(x) * x$
 $= x * x$
 $= 0 \in A$

Then $y \in A$ and $\theta(A) \subset A$.

Therefore A is θ -invariant.

Conversely, let every ideal of X be θ -invariant.

That is $\theta(A) \subset A$. Then $\theta(\{0\}) \subset \{0\}$. Hence $\theta(0) = 0$. Therefore θ is regular.

Theorem 3.9: Let X be a d-algebra. A self map θ of X is left derivation if and only if it is derivation.

Proof: Assume that θ is a left derivation of a d-algebra X.

$$\theta(x * y) = \theta(x) * y = (x * \theta(y)) * ((x * \theta(y)) * (\theta(x) * y)).$$

 $\theta(x * y) = (\theta(x) * y) \land (x * \theta(y)) \qquad \cdots \cdots (1).$

$$\begin{aligned} \theta(x * y) &= \theta(x) * y \\ &= (x * \theta(y)) \\ &= (\theta(x) * y) * ((\theta(x) * y) * (x * \theta(y)) \\ &= (x * \theta(y)) \land (\theta(x) * y) \qquad \dots \dots (2). \end{aligned}$$

From (1) and (2), θ is a derivation of X.

Conversely, let θ be a derivation of X. So it is a (l, r) – derivation of X.

$$Now \ \theta(x * y) = (\theta(x) * y) \land (x * \theta(y))$$

= $(x * \theta(y)) * ((x * \theta(y)) * (\theta(x) * y))$
= $\theta(x) * y$
= $(\theta(y) * x) * ((\theta(y) * x) * (\theta(x) * y))$
= $(\theta(x) * y) \land (\theta(y) * x).$

Hence θ is a left derivation of X.

Definition 3.10: Let X be a d-algebra and θ_1, θ_2 be two self maps of X. We have $\theta_1 \circ \theta_2 : X \to X$ as $(\theta_1 \circ \theta_2)(x) = \theta_1(\theta_2(x)) \ \forall \ x \in X.$

Lemma 3.11: Let (X, *, 0) be a d-algebra. Let θ_1 and θ_2 be two left derivations of X, then $\theta_1 \circ \theta_2$ is also a left derivation of X.

Proof:

$$\begin{aligned} (\theta_1 \circ \theta_2)(x * y) &= \theta_1(\theta_2(x * y)) \\ &= \theta_1((\theta_2(x) * y) \land (\theta_2(y) * x)) \\ &= \theta_1[(\theta_2(y) * x) * [(\theta_2(y) * x) * \theta_2(x) * y)] \\ &= (\theta_1(\theta_2(x)) * y) \land \theta_1(\theta_2(y)) * x \\ &= ((\theta_1 \circ \theta_2)(x) * y) \land ((\theta_1 \circ \theta_2)(y) * x) \end{aligned}$$

Hence $\theta_1 \circ \theta_2$ is a left derivation of X.

It can be easily proved that

Theorem 3.12: Let (X, *, 0) be a d-algebra and θ_1, θ_2 are left derivations of X. Then $\theta_1 \circ \theta_2 = \theta_2 \circ \theta_1$.

Definition 3.13: Let X be a d-algebra and θ_1, θ_2 be two self maps of X. We define $\theta_1 \cdot \theta_2 : X \to X$ as $(\theta_1 \cdot \theta_2)(x) = \theta_1(x) \cdot \theta_2(x) \quad \forall x \in X.$

Theorem 3.14: Let (X, *, 0) be a d-algebra and θ_1, θ_2 are left derivations of X. Then $\theta_1 \cdot \theta_2 = \theta_2 \cdot \theta_1$.

Proof: Let X be a d-algebra and θ_1, θ_2 are left derivations of X.

$$Now (\theta_1 \cdot \theta_2)(x * y) = \theta_1(x * y) \cdot \theta_2(x * y)$$

= $[(\theta_1(x) * y) \land (\theta_1(y) * x)] \cdot \theta_2(x * y)$
= 0 on simplification $\cdots \cdots (1)$.
Similarly $(\theta_2 \cdot \theta_1)(x * y) = \theta_2(x * y) \cdot \theta_1(x * y)$
= $0 \cdots \cdots (2)$.

From (1) and (2), $(\theta_1 \cdot \theta_2)(x * y) = (\theta_2 \cdot \theta_1)(x * y)$.

Putting y = 0 we get for all $x \in X$.

$$(\theta_1 \cdot \theta_2)(x) = (\theta_2 \cdot \theta_1)(x)$$
. Hence $\theta_1 \cdot \theta_2 = \theta_2 \cdot \theta_1$

Notation: Der(X) denote the set of all left derivations on X.

Definition 3.15: Let $\theta_1, \theta_2 \in \text{Der}(X)$. Define the binary operation \wedge as

$$(\theta_1 \wedge \theta_2)(x) = \theta_1(x) \wedge \theta_2(x)$$

It is easy to prove that

Lemma 3.16: Let X be a d-algebra and θ_1, θ_2 are left derivations of X. Then $\theta_1 \wedge \theta_2$ is also a left derivation of X. **Lemma 3.17:** Let X be a d-algebra. If $\theta_1, \theta_2, \theta_3 \in \text{Der}(X)$. Then

$$\theta_1 \wedge (\theta_2 \wedge \theta_3) = (\theta_1 \wedge \theta_2) \wedge \theta_3.$$

Proof: Let X be a d-algebra and $\theta_1, \theta_2, \theta_3$ are left derivations of X.

$$Now ((\theta_1 \land \theta_2) \land \theta_3)(x * y) = (\theta_1 \land \theta_2)(x * y) \land \theta_3(x * y)$$

$$= \theta_3(x * y) * (\theta_3(x * y) * (\theta_1 \land \theta_2)(x * y))$$

$$= (\theta_1 \land \theta_2)(x * y)$$

$$= (\theta_2(x) * y) * ((\theta_2(x) * y) * (\theta_1(x) * y))$$

$$= \theta_1(x) * y \qquad \dots \dots (1).$$

Also consider the following

$$\begin{aligned} \theta_1 \wedge (\theta_2 \wedge \theta_3)(x * y) &= \theta_1(x * y) \wedge (\theta_2 \wedge \theta_3)(x * y) \\ &= \theta_1(x * y) \wedge [\theta_2(x) * y) \wedge \theta_3(x * y)] \\ &= \theta_1(x * y) \wedge [\theta_3(x * y) * ((\theta_3(x * y)) * (\theta_2(x * y)))] \\ &= \theta_1(x) * y \qquad \dots \dots (2). \end{aligned}$$

This implies that $(\theta_1 \land (\theta_2 \land \theta_3))(x * y) = ((\theta_1 \land \theta_2) \land \theta_3)(x * y).$

Put y = 0, we have

 $(\theta_1 \land (\theta_2 \land \theta_3))(x) = ((\theta_1 \land \theta_2) \land \theta_3)(x).$ $\Rightarrow \theta_1 \land (\theta_2 \land \theta_3) = (\theta_1 \land \theta_2) \land \theta_3.$

From the above two lemmas we obtain the following.

Theorem 3.18 (Der (X), \wedge) is a semi group.

REFERENCES

[1] Imai y. and Iseki K: On axiom systems of Propositional calculi, XIV, Proc. Japan Acad. Ser A, Math Sci., 42 (1966),19-22.

[2] Iseki k: An algebra related with a propositional calculi, Proc. Japan Acad. Ser A Math. Sci., 42(1966), 26-29.

[3] Iseki K and Tanaka S: An introduction to theory of BCK-algebras., Math. Japo. 23(1978) 1-26.

[4] Hu, Q.P., and Li, X: On BCH-algebras, Math. Seminar Notes, Kobe univ., 11 (1983), 313 -320.

[5] Hu, Q.P., and Li, X: ON proper BCH-algebras, Math. Japan 30(1985) 659-669.

[6] Neggers, J. and Kim, H.S: On d-algebras, Math. Slovaca, Co., 49(1999) 19-26.

[7] Jun, Y.B. and Xin, X.L.: On derivations of BCI-algebras, Inform. Sci., 159 (2004), 167 -176.

[8] J. Zhan and Y. L. Liu: On derivations of BCI-algebras, Internet.J.Math. Math. Sci, 11 (2005), 1675-1684.

[9] **H. A. Abujabal and O. A. Nora:** On left derivations of BCI-algebras, *Soochow journal of mathematics* volume 33, **3** July (2007), 435-444.

[10] **M. Chandramouleeswaran and N. Kandaraj**: Derivations on d-algebras, *International Journal of Mathematical Sciences and applications*, Volume 1, Number1, January (2011), 231-237.

Source of support: Nil, Conflict of interest: None Declared