International Journal of Mathematical Archive-3(6), 2012, 2234-2239 | MA Available online through www.ijma.info | ISSN 2229 - 5046

ON LEFT DERIVATIONS OF d-ALGEBRAS

¹N. Kandaraj * & ²M. Chandramouleeswaran**

¹Department of Mathematics, Saiva Bhanu Kshatriya College, Aruppukottai-626101, India ²Department of Mathematics, Saiva Bhanu Kshatriya College, Aruppukottai-626101, India

(Received on: 14-05-12; Accepted on: 31-05-12)

ABSTRACT

In this paper we investigate some properties of left derivations of d—algebras.

Keywords: d—algebra, left derivation.

Subject Classification AMS (2000): 06F35, 03G25, 06D99, 03B47.

1. INTRODUCTION

Y. Imai ([1], [2], [3]) and K.Isaki introduced two classes of abstract algebras: BCK algebras and BCI algebras. Q.P.Hu and X.Li introduced a broad class of abstract algebras: BCH algebras. ([4], [5]) J.Neggers and H.S.Kim introduced the notion of d—algebras. [6].

Y.B. Jun and X.L.X in [7] applied the notion of derivation in ring and near ring theory to BCI algebras and they also introduced a new concept called a regular derivation in BCI algebras. They investigated some of its properties, defined a d-invariant ideal and gave conditions for an ideal to be d-invariant. In non-commutative rings, the notion of derivations is extended to d-derivations, left derivations and central derivations.

In [8] J. Zhan and Y.L. Liu introduced the notion of f—derivations of BCI algebras. In particular they studied the regular f—derivations in detail and gave a characterization of regular f—derivations and characterized p—semi simple BCI algebras using the notion of regular f—derivation.

In [9] H.A. Abujabal and Nora O.Alshehri introduced the notion of left derivations of BCI algebras and investigated regular left derivations in BCI algebras. Recently, we have [10] introduced the notion of derivations on a d-algebra. In this paper we introduced the notion of left derivations on d-algebras and they investigated regular left derivations.

2. PRELIMINARIES

Definition 2.1: A d-algebra is a non-empty set X with a constant 0 and a binary operation * satisfying the following axioms:

```
\begin{array}{l} 1. \ x*x = 0 \\ 2.0*x = 0 \\ 3.x*y = 0 \ \text{and} \ y*x = 0 \ \Rightarrow \ x = y. \end{array}
```

Definition 2.2: Let S be a non empty subset of a d-algebra X then, S is called d-sub algebra of X if $x*y \in S$ for all $x,y \in S$.

Definition2.3: Let X be a d-algebra and I be a subset of X then I is called d-ideal of X if it satisfies the following conditions:

```
\begin{array}{l} 1.\ 0 \in I \\ 2.x * y \in I \ \text{and} \ y \in I \ \Rightarrow \ x \in I \\ 3.\ x \in I \ \text{and} \ y \in X \ \Rightarrow \ x * y \in I. \end{array}
```

Corresponding author: M. Chandramouleeswaran**

²Department of Mathematics, Saiva Bhanu Kshatriya College, Aruppukottai-626101, India

Definition2.4: Let X be a d-algebra. A map $\theta: X \to X$ is a left -right derivation (briefly (l, r)-derivation) of X if it satisfies the identity $\theta(x*y) = (\theta(x)*y) \land (x*\theta(y))$ for all $x,y \in X$. If θ satisfies the identity $\theta(x*y) = (x*\theta(y)) \land (\theta(x)*y)$ for all $x,y \in X$, then θ is a right-left derivation (briefly (r, l)-derivation) of X. Moreover, if θ is both a (l, r)- and (r, l)-derivation, then θ is a derivation of X.

Definition 2.5: Let θ be a derivation of d-algebra X. An ideal I of X is said to be θ -invariant if $\theta(I) \subseteq I$ where $\theta(I) = \{\theta(x) \mid x \in I\}$.

Definition 2.6: A self map θ of a d-algebra X is said to be regular if $\theta(0) = 0$.

Definition 2.7: Let (X, *, 0) be a d-algebra and $x \in X$. Define $x * X = \{x * a \mid a \in X\}$. X is said to be edge d-algebra if for any $x \in X$, $x * X = \{x, 0\}$.

Lemma 2.8: Let (X, *, 0) be an edge d-algebra, then x * 0 = x for any $x \in X$.

Lemma 2.9: If (X, *, 0) is an d-algebra, then the condition (x * (x * y)) * y = 0 for all $x, y \in X$ holds.

Lemma 2.10: If (X, *, 0) is an d-algebra, then (x * y) * z = (x * z) * y for all $x, y, z \in X$.

Lemma 2.11: Let (X, *, 0) be an d-algebra then $y * (y * x) = x \quad \forall \ x, y \in X$.

3. LEFT DERIVATIONS

In this section we define the left derivations.

Definition 3.1: Let X be a d-algebra. By a left derivation of X we mean a self map θ of X satisfying

$$\theta(x * y) = (\theta(x) * y) \land (\theta(y) * x) \quad \forall \ x, y \in X.$$

Example 3.2: Let $X = \{0, 1, 2, 3\}$ be a d-algebra with Cayley table defined by

*	0	1	2	3
0	0	0	0	0
1	1	0	1	0
2	1	1	0	3
3	3	3	0	0

Define a map
$$\theta: X \to X$$
 by $\theta(x) = \left\{ \begin{array}{ll} 0 & if \ x=0,1,3 \\ 3 & if \ x=2 \end{array} \right.$

Then it is easily checked that θ is a left derivation of X.

Lemma 3.3: In any d-algebra X, the following properties hold for all $x, y, z \in X$.

- 1. x * (x * (x * y)) = x * y.
- $2. x * 0 = 0 \Rightarrow x = 0.$
- 3. ((x*z)*(y*z))*(x*y) = 0.
- 4. $x \le y \implies x * z \le y * z \text{ and } z * y \le z * x.$
- 5. ((x*y*(x*z))*(z*y) = 0.
- 6. (x*z)*(y*z) = x*y.
- 7. (x*0)*0 = x.
- 8. $x*a = x*b \Rightarrow a = b$.
- $9. a*x = b*x \Rightarrow a = b.$
- 10. $x * y = 0 \Rightarrow x = y$.

Definition 3.4: A left derivation θ of a d-algebra X is said to be regular if $\theta(0) = 0$.

Lemma 3.5: Every left derivation of a d-algebra with x * 0 = x is regular.

Proof: Now

$$\begin{array}{lll} \theta(0) & = & \theta(0*x) \\ & = & (\theta(0)*x) \wedge (\theta(x)*0) \\ & = & (\theta(0)*x) \wedge \theta(x) & (\because x*0=x) \\ & = & \theta(x)*(\theta(x)*(\theta(0)*x)) \\ \theta(0) & = & \theta(0)*x. \end{array}$$

If $\theta(0) = 0$, then nothing to prove. If $\theta(0) \neq 0$, then $\theta(0) * \theta(0) \neq 0 * \theta(0) \neq 0$.

This is contradiction to the condition, x * x = 0.

Hence $\theta(0) = 0$. Therefore, every left derivation of a d-algebra with x * 0 = x is regular.

Lemma 3.6: Let θ be a left derivation of a d-algebra X. Then for all $x, y \in X$ we have

- 1. $\theta(x) * x = \theta(y) * y.$
- $2. \quad \theta(x * y) = \theta(x) * y.$

Proof:

1. Let $x, y \in X$.

Similarly, $\theta(0) = \theta(y) * y \cdots (2)$.

From (1) and (2), $\theta(x) * x = \theta(y) * y$.

2. Let $x, y \in X$. Since θ be a left derivation of X.

$$\theta(x * y) = (\theta(x) * y) \wedge (\theta(y) * x)$$

$$= (\theta(y * x) * ((\theta(y) * x) * (\theta(x) * y))$$

$$= \theta(x) * y$$

Lemma 3.7: Let θ be a left derivation of a d-algebra X such that x*0=x. Then $\theta(x)=x$ if and only if θ is regular.

Proof: Let θ be a regular.

That is $\theta(0) = 0$.

$$\begin{array}{lll} Now \; \theta(0) & = & \theta(x*x) \\ & = & (\theta(x)*x) \wedge (\theta(x)*x) \\ & = & (\theta(x)*x)*((\theta(x)*x)*(\theta(x)*x)) \\ & = & (\theta(x)*x)*0 \\ & = & \theta(x)*x \\ & = & 0 \end{array}$$

which implies $\theta(x) = x$.

Conversely, assume $\theta(x) = x$. Then it is clear that $\theta(0) = 0$, thus proving that θ is regular.

Theorem 3.8: Let θ be a left derivation of a d-algebra X. Then θ is regular if and only if every ideal of X is θ -invariant.

Proof: Let θ be a regular left derivation of a d-algebra X.

Then by lemma $3.7, \theta(x) = x$ for all $x \in X$.

Let $y \in \theta(A)$, where A is an ideal of X.

Then $y = \theta(x)$ for some $x \in A$.

Thus
$$y * x = \theta(x) * x$$

= $x * x$
= $0 \in A$

Then $y \in A$ and $\theta(A) \subset A$.

Therefore A is θ —invariant.

Conversely, let every ideal of X be θ —invariant.

That is $\theta(A) \subset A$. Then $\theta(\{0\}) \subset \{0\}$. Hence $\theta(0) = 0$. Therefore θ is regular.

Theorem 3.9: Let X be a d-algebra. A self map θ of X is left derivation if and only if it is derivation.

Proof: Assume that θ is a left derivation of a d-algebra X.

$$\theta(x * y) = \theta(x) * y = (x * \theta(y)) * ((x * \theta(y)) * (\theta(x) * y)).$$

$$\theta(x * y) = (\theta(x) * y) \land (x * \theta(y)) \qquad \cdots \cdots (1).$$

$$\theta(x * y) = \theta(x) * y$$

$$= (x * \theta(y))$$

$$= (\theta(x) * y) * ((\theta(x) * y) * (x * \theta(y))$$

$$= (x * \theta(y)) \land (\theta(x) * y) \qquad \cdots \cdots (2).$$

From (1) and (2), θ is a derivation of X.

Conversely, let θ be a derivation of X. So it is a (l, r) – derivation of X.

$$Now \ \theta(x*y) = (\theta(x)*y) \land (x*\theta(y))$$

$$= (x*\theta(y))*((x*\theta(y))*(\theta(x)*y))$$

$$= \theta(x)*y$$

$$= (\theta(y)*x)*((\theta(y)*x)*(\theta(x)*y))$$

$$= (\theta(x)*y) \land (\theta(y)*x).$$

Hence θ is a left derivation of X.

Definition 3.10: Let X be a d-algebra and θ_1, θ_2 be two self maps of X. We have $\theta_1 \circ \theta_2 : X \to X$ as $(\theta_1 \circ \theta_2)(x) = \theta_1(\theta_2(x)) \ \forall \ x \in X$.

Lemma 3.11: Let (X, *, 0) be a d-algebra. Let θ_1 and θ_2 be two left derivations of X, then $\theta_1 \circ \theta_2$ is also a left derivation of X.

Proof:

$$(\theta_{1} \circ \theta_{2})(x * y) = \theta_{1}(\theta_{2}(x * y))$$

$$= \theta_{1}((\theta_{2}(x) * y) \wedge (\theta_{2}(y) * x))$$

$$= \theta_{1}[(\theta_{2}(y) * x) * [(\theta_{2}(y) * x) * \theta_{2}(x) * y)]$$

$$= (\theta_{1}(\theta_{2}(x)) * y) \wedge \theta_{1}(\theta_{2}(y)) * x$$

$$= ((\theta_{1} \circ \theta_{2})(x) * y) \wedge ((\theta_{1} \circ \theta_{2})(y) * x)$$

Hence $\theta_1 \circ \theta_2$ is a left derivation of X.

It can be easily proved that

Theorem 3.12: Let (X, *, 0) be a d-algebra and θ_1, θ_2 are left derivations of X. Then $\theta_1 \circ \theta_2 = \theta_2 \circ \theta_1$.

Definition 3.13: Let X be a d-algebra and θ_1, θ_2 be two self maps of X. We define $\theta_1 \cdot \theta_2 : X \to X$ as $(\theta_1 \cdot \theta_2)(x) = \theta_1(x) \cdot \theta_2(x) \quad \forall \ x \in X$.

Theorem 3.14: Let (X, *, 0) be a d-algebra and θ_1, θ_2 are left derivations of X. Then $\theta_1 \cdot \theta_2 = \theta_2 \cdot \theta_1$.

Proof: Let X be a d-algebra and θ_1, θ_2 are left derivations of X.

$$Now (\theta_1 \cdot \theta_2)(x * y) = \theta_1(x * y) \cdot \theta_2(x * y)$$

$$= [(\theta_1(x) * y) \wedge (\theta_1(y) * x)] \cdot \theta_2(x * y)$$

$$= 0 \quad on \ simplification \quad \cdots (1).$$

$$Similarly (\theta_2 \cdot \theta_1)(x * y) = \theta_2(x * y) \cdot \theta_1(x * y)$$

$$= 0 \quad \cdots (2).$$

From (1) and (2), $(\theta_1 \cdot \theta_2)(x * y) = (\theta_2 \cdot \theta_1)(x * y)$.

Putting y = 0 we get for all $x \in X$,

$$(\theta_1 \cdot \theta_2)(x) = (\theta_2 \cdot \theta_1)(x)$$
. Hence $\theta_1 \cdot \theta_2 = \theta_2 \cdot \theta_1$

Notation: Der(X) denote the set of all left derivations on X.

Definition 3.15: Let $\theta_1, \theta_2 \in Der(X)$. Define the binary operation \wedge as

$$(\theta_1 \wedge \theta_2)(x) = \theta_1(x) \wedge \theta_2(x).$$

It is easy to prove that

Lemma 3.16: Let X be a d-algebra and θ_1, θ_2 are left derivations of X. Then $\theta_1 \wedge \theta_2$ is also a left derivation of X.

Lemma 3.17: Let X be a d-algebra. If $\theta_1, \theta_2, \theta_3 \in Der(X)$. Then

$$\theta_1 \wedge (\theta_2 \wedge \theta_3) = (\theta_1 \wedge \theta_2) \wedge \theta_3.$$

Proof: Let X be a d-algebra and $\theta_1, \theta_2, \theta_3$ are left derivations of X.

Now
$$((\theta_1 \land \theta_2) \land \theta_3)(x * y) = (\theta_1 \land \theta_2)(x * y) \land \theta_3(x * y)$$

 $= \theta_3(x * y) * (\theta_3(x * y) * (\theta_1 \land \theta_2)(x * y))$
 $= (\theta_1 \land \theta_2)(x * y)$
 $= (\theta_2(x) * y) * ((\theta_2(x) * y) * (\theta_1(x) * y))$
 $= \theta_1(x) * y \qquad \cdots (1).$

Also consider the following

This implies that $(\theta_1 \wedge (\theta_2 \wedge \theta_3))(x * y) = ((\theta_1 \wedge \theta_2) \wedge \theta_3)(x * y)$.

Put y = 0, we have

$$(\theta_1 \wedge (\theta_2 \wedge \theta_3))(x) = ((\theta_1 \wedge \theta_2) \wedge \theta_3)(x).$$

$$\Rightarrow \theta_1 \wedge (\theta_2 \wedge \theta_3) = (\theta_1 \wedge \theta_2) \wedge \theta_3.$$

From the above two lemmas we obtain the following.

Theorem 3.18 (Der (X), \wedge) is a semi group.

REFERENCES

- [1] **Imai y. and Iseki K:** On axiom systems of Propositional calculi, *XIV, Proc. Japan Acad. Ser A, Math Sci.*, **42** (1966),19-22.
- [2] Iseki k: An algebra related with a propositional calculi, Proc. Japan Acad. Ser A Math. Sci., 42(1966), 26-29.
- [3] Iseki K and Tanaka S: An introduction to theory of BCK-algebras., Math. Japo. 23(1978) 1-26.
- [4] Hu, Q.P., and Li, X: On BCH-algebras, Math. Seminar Notes, Kobe univ., 11 (1983), 313-320.
- [5] Hu, Q.P., and Li, X: ON proper BCH-algebras, Math. Japan 30(1985) 659-669.
- [6] Neggers, J. and Kim, H.S: On d-algebras, Math. Slovaca, Co., 49(1999) 19-26.
- [7] Jun, Y.B. and Xin, X.L.: On derivations of BCI-algebras, Inform. Sci., 159 (2004), 167-176.
- [8] J. Zhan and Y. L. Liu: On derivations of BCI-algebras, Internet.J.Math. Math. Sci, 11 (2005), 1675-1684.
- [9] **H. A. Abujabal and O. A. Nora:** On left derivations of BCI-algebras, *Soochow journal of mathematics* volume 33, **3** July (2007), 435-444.
- [10] **M. Chandramouleeswaran and N. Kandaraj**: Derivations on d-algebras, *International Journal of Mathematical Sciences and applications*, Volume 1, Number1, January (2011), 231-237.

Source of support: Nil, Conflict of interest: None Declared