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ABSTRACT 
The object of the present paper is to study the notions of minimal sg-closed set, maximal sg-open set, minimal sg-open 
set and maximal sg-closed set and their basic properties are studied. 
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1. INTRODUCTION: 
 
Norman Levine introduced the concept of generalized closed sets in topological spaces. After him many authors 
concentrated in this direction and defined more than 25 types of generalized closed sets. Nakaoka and Oda have 
introduced minimal open sets and maximal open sets, which are subclasses of open sets. A. Vadivel and K. 
Vairamanickam introduced minimal rgα-open sets and maximal rgα-open sets in topological spaces. S. 
Balasubramanian and P.A.S. Vyjayanthi introduced minimal v-open sets and maximal v-open sets; minimal v-closed 
sets and maximal v-closed sets in topological spaces. Recently S. Balasubramanian introduced minimal vg-open sets 
and maximal vg-open sets; minimal vg-closed sets and maximal vg-closed sets in topological spaces. Inspired with 
these developments we further study a new type of closed and open sets namely minimal sg-closed sets, maximal sg-
open sets, minimal sg-open sets and maximal sg-closed sets. Throughout the paper a space X means a topological 
space (X, τ). The class of sg-closed sets is denoted by SGC(X).  For any subset A of X its complement, interior, closure, 
sg-interior, sg-closure are denoted respectively by the symbols Ac, Ao, A–, sg(A)0 and sg(A) –. 
 
2. PRELIMINARIES: 
 
Definition 2.1:  A⊂ X is called                         
(i)   closed [resp: semi closed; v-closed] if its complement if open[resp:semi open; v-open].                 
(ii)  rα-open [v-open] if ∃ U∈ αO(X)[RO(X)] such that U⊂ A⊂ αcl(U)[ U⊂ A⊂cl(U)].                   
(iii) semi-θ-open if it is the union of semi-regular sets and its complement is semi-θ-closed.                                            
(iv)  r-closed[α-closed; pre-closed; β−closed] if A = cl(Ao)[(cl(Ao))o ⊆ A; cl(Ao) ⊆ A; cl((cl(A))o)⊆ A].                     
(v) g-closed [rg-closed] if cl A⊆ U whenever A⊆ U and U is open[r-open] in X.                      
(vi)  sg-closed [gs-closed] if scl(A) ⊆ U whenever A⊆ U and U is semi-open{open} in X.                             
(vii) rgα-closed if αcl(A) ⊆ U whenever A⊆ U and U is rα-open in X.                              
(viii)  vg-closed if vcl(A) ⊆ U whenever A⊆ U and U is v-open in X.      
 
Definition 2.02: Let A⊂X. 
(i)   A point x∈A is the sg-interior point of A iff ∃ G∈SGO(X, τ) such that x∈G⊂A. 
(ii)  A point Xx∈ is said to be an sg-limit point of A iff for each U∈SGO(X), U∩(A∼{x}) ≠ φ. 
(iii) A point x∈A is said to be sg-isolated point of A if ∃ U∈SGO(X) such that U∩A = {x}. 
 
Definition 2.03: Let A⊂ X.   
(i)  Then A is said to be sg-discrete if each point of A is sg-isolated point of A.  The set of all sg-isolated points of A is    
      denoted by Isg(A). 
(ii)  For any A⊂ X, the intersection of all sg-closed sets containing A is called the sg-closure of A and is denoted by    
       sg(A)–. 
(iii) For any A⊂ X, A ∼ sg(A)0 is said to be sg-border or sg-boundary of A and is denoted by Bsg(A). 
(iv) For any A⊂ X, sg[sg(X∼A)–]0 is said to be the sg-exterior A⊂X and is denoted by sg(A)e. 
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Definition 2.04: The set of all sg-interior points A is said to be sg-interior of A and is denoted by sg(A)0. 
 
Theorem 2.01: (i) Let A⊆Y⊆X and Y is regularly open subspace of X then A∈SGO(Y, τ/Y) iff Y is sg-open in X 
(ii) Let Y⊆X and A is a sg-neighborhood of x in Y.  Then A is sg-neighborhood of x in Y iff Y is sg-open in X. 
 
Theorem 2.02: Arbitrary intersection of sg-closed sets is sg-closed. More Precisely, Let {Ai: i ∈  I} be a collection of 
sg-closed sets, then ∩i∈ IAi is again sg-closed.  
 
Note 2: Finite union and finite intersection of sg-closed sets is not sg-closed in general.    
 
Theorem 2.03: Let X = X1×X2. Let A1∈SGC(X1) and A2∈SGC(X2), then A1×A2∈SGC(X1×X2). 
 
3. Minimal sg-open Sets and Maximal sg-closed Sets: 
 
 We now introduce minimal sg-open sets and maximal sg-closed sets in topological spaces as follows.  
 
Definition 3.1: A proper nonempty sg-open subset U of X is said to be a minimal sg-open set if any sg-open set 
contained in U is φ or U. 
 
Remark 1: Every Minimal open set is a minimal sg-open set but converse is not true:  
 
Example 1: Let X = {a, b, c, d}; τ = {φ, {a}, {a, b, c}, X}. {a} is both Minimal open set and  Minimal sg-open set but 
{b}; {c} and {d} are Minimal sg-open but not Minimal open.  
 
Remark 2: From the above example and known results we have the following implications 
 
Theorem 3.1: 
(i) Let U be a minimal sg-open set and W be a sg-open set. Then U ∩ W = φ or U⊂  W. 
(ii) Let U and V be minimal sg-open sets. Then U ∩ V = φ or U = V. 
 
Proof:  
(i) Let U be a minimal sg-open set and W be a sg-open set. If U ∩ W = φ, then there is nothing to prove. 
 
If U ∩ W ≠ φ.  Then U ∩W ⊂U. Since U is a minimal sg-open set, we have U ∩ W = U. Therefore U ⊂  W. 
 
(ii) Let U and V be minimal sg-open sets. If U∩V ≠ φ, then U⊂  V and V⊂  U by (i). Therefore U = V.   
 
Theorem 3.2: Let U be a minimal sg-open set. If  x∈U, then U⊂W for any regular open neighborhood W of x.  
 
Proof: Let U be a minimal sg-open set and x be an element of U. Suppose ∃ a regular open neighborhood W of x such 
that U ⊄ W. Then U ∩ W is a sg-open set such that U ∩ W ⊂  U and U ∩ W ≠ φ. Since U is a minimal sg-open set, we 
have U∩ W = U. That is U ⊂  W, which is a contradiction for U ⊄ W. Therefore U⊂W for any regular open 
neighborhood W of x.    
 
Theorem 3.3: Let U be a minimal sg-open set. If  x∈U, then U⊂W for some sg-open set W containing x. 
 
Theorem 3.4: Let U be a minimal sg-open set. Then U = ∩{W: W∈SGO(X, x)} for any element x of U.  
 
Proof: By theorem[3.3] and U is sg-open set containing x, we have U⊂∩{ W: W∈SGO(X, x)}⊂U.  
 
Theorem 3.5: Let U be a nonempty sg-open set. Then the following three conditions are equivalent. 
(i) U is a minimal sg-open set 
(ii) U⊂ sg(S) – for any nonempty subset S of U 
(iii) sg(U) – = sg(S) – for any nonempty subset S of U.  
 
Proof: (i) ⇒ (ii) Let x∈U; U be minimal sg-open set and S(≠ φ)⊂U. By theorem[3.3], for any sg-open set W 
containing x, S⊂U⊂W ⇒ S⊂W. Now S = S∩U⊂ S∩W. Since S≠ φ, S∩W≠ φ. Since W is any sg-open set 
containing x, by theorem [5.03], x∈sg(S) –. That is x∈U ⇒ x∈sg(S) – ⇒ U⊂ sg(S) – for any nonempty subset S of U. 
 
(ii) ⇒ (iii) Let S be a nonempty subset of U. That is S⊂U ⇒ sg(S) –⊂ sg(U) – → (1). Again from (ii) U⊂ sg(S) – for 
any S(≠ φ)⊂U ⇒ sg(U) –⊂ sg(sg(S) –)– = sg(S) –. That is sg(U) –⊂ sg(S) – → (2). From (1) and (2), we have sg(U) – = 
sg(S) – for any nonempty subset S of U. 



S. Balasubramanian*1, C. Sandhya2 and P. Aruna Swathi Vyjayanthi3/ On sg-closed sets/ IJMA- 3(6), June-2012, Page: 2187-2193 

© 2012, IJMA. All Rights Reserved                                                                                                                                                   2189 

 
(iii) ⇒ (i) From (3) we have sg(U) – = sg(S) – for any nonempty subset S of U. Suppose U is not a minimal sg-open set.  
 
Then ∃ a nonempty sg-open set V such that V ⊂  U and V ≠ U. Now ∃ an element a in U such that a∉V ⇒ a∈Vc. That 
is sg({a})–⊂ sg(Vc)– = Vc, as Vc is sg-closed set in X. It follows that sg({a})– ≠ sg(U)–. This is a contradiction for 
sg({a})– = sg(U) – for any {a}(≠ φ)⊂U. Therefore U is a minimal sg-open set.   
 
Theorem 3.6: Let V be a nonempty finite sg-open set. Then ∃ at least one (finite) minimal sg-open set U such that U⊂
V. 
 
Proof: Let V be a nonempty finite sg-open set. If V is a minimal sg-open set, we may set U = V. If V is not a minimal 
sg-open set, then ∃ (finite) sg-open set V1 such that φ ≠ V1⊂V. If V1 is a minimal sg-open set, we may set U = V1. If 
V1 is not a minimal sg-open set, then ∃ (finite) sg-open set V2 such that φ ≠ V2 ⊂  V1. Continuing this process, we have 
a sequence of sg-open sets V ⊃ V1 ⊃ V2 ⊃ V3⊃ ..... ⊃ Vk ⊃ ...... Since V is a finite set, this process repeats only finitely. 
Then finally we get a minimal sg-open set U = Vn for some positive integer n.   
  
 [A topological space X is said to be locally finite space if each of its elements is contained in a finite open set.]  
 
Corollary 3.1: Let X be a locally finite space and V be a nonempty sg-open set. Then ∃ at least one (finite) minimal sg-
open set U such that U ⊂  V.  
 
Proof: Let X be a locally finite space and V be a nonempty sg-open set. Let x in V. Since X is locally finite space, we 
have a finite open set Vx such that x in Vx. Then V∩Vx is a finite sg-open set. By Theorem 3.6 ∃ at least one (finite) 
minimal sg-open set U such that U ⊂  V∩Vx. That is U⊂V∩Vx⊂V. Hence ∃ at least one (finite) minimal sg-open set 
U such that U⊂V.    
 
Corollary 3.2: Let V be a finite minimal open set. Then ∃ at least one (finite) minimal sg-open set U such that U⊂V.  
 
Proof: Let V be a finite minimal open set. Then V is a nonempty finite sg-open set. By Theorem 3.6, ∃ at least one 
(finite) minimal sg-open set U such that U⊂V.     
 
Theorem 3.7: Let U; Uλ be minimal sg-open sets for any element λ∈Γ. If U⊂∪λ∈ΓUλ, then ∃ an element λ ∈Γ such 
that U = Uλ.  
 
Proof: Let U ⊂∪λ∈ΓUλ. Then U ∩(∪λ∈ΓUλ) = U. That is ∪λ∈Γ(U ∩ Uλ) = U. Also by theorem[3.1] (ii), U ∩ Uλ = φ or 
U = Uλ for any λ∈Γ. It follows that ∃ an element λ∈Γ such that U = Uλ.      
 
Theorem 3.8: Let U; Uλ be minimal sg-open sets for any λ∈Γ. If U = Uλ for any λ∈Γ, then (∪λ∈ΓUλ) ∩ U = φ.  
 
Proof: Suppose that (∪λ∈ΓUλ) ∩ U≠ φ. That is ∪λ∈Γ(Uλ ∩ U) ≠ φ. Then ∃ an element λ∈Γ such that U ∩ Uλ ≠ φ. By 
theorem 3.1(ii), we have U = Uλ, which contradicts the fact that U ≠ Uλ for any λ∈Γ. Hence (∪λ∈ΓUλ)∩U = φ.     
 
We now introduce maximal sg-closed sets in topological spaces as follows. 
 
Definition 3.2: A proper nonempty sg-closed F⊂X is said to be maximal sg-closed set if any sg-closed set containing 
F is either X or F.  
 
Remark 3: Every Maximal closed set is maximal sg-closed set but not conversely 
 
Example 2: In Example 1, {b, c, d} is Maximal closed and Maximal sg-closed but {a, b, c}, {a, b, d} and {a, c, d} are 
Maximal sg-closed but not Maximal closed.   
 
Remark 4: From the known results and by the above example we have the following implications: 
 
Theorem 3.9: A proper nonempty subset F of X is maximal sg-closed set iff X-F is a minimal sg-open set. 
 
Proof: Let F be a maximal sg-closed set. Suppose X-F is not a minimal sg-open set. Then ∃ sg-open set U ≠ X-F such 
that φ ≠ U ⊂  X-F. That is F ⊂  X-U and X-U is a sg-closed set which is a contradiction for F is a minimal sg-open set. 
 
Conversely let X-F be a minimal sg-open set. Suppose F is not a maximal sg-closed set. Then ∃ sg-closed set E ≠ F 
such that F⊂  E ≠ X. That is φ ≠ X-E ⊂  X-F and X-E is a sg-open set which is a contradiction for X-F is a minimal sg-
open set. Therefore F is a maximal sg-closed set.   
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Theorem 3.10:  
(i) Let F be a maximal sg-closed set and W be a sg-closed set. Then F∪W = X or W⊂ F. 
(ii) Let F and S be maximal sg-closed sets. Then F ∪ S = X or F = S. 
 
Proof: (i) Let F be a maximal sg-closed set and W be a sg-closed set. If F∪ W = X, then there is nothing to prove.  
 
Suppose F ∪ W ≠ X. Then F ⊂  F ∪ W. Therefore F∪W = F ⇒ W⊂ F. 
 
(ii) Let F and S be maximal sg-closed sets. If  F∪S ≠ X, then we have F⊂S and S⊂ F by (i). Therefore F = S.  
 
Theorem 3.11: Let F be a maximal sg-closed set. If x is an element of F, then for any sg-closed set S containing x, F ∪ 
S = X or S ⊂  F. 
 
Proof: Let F be a maximal sg-closed set and x is an element of F. Suppose ∃ sg-closed set S containing x such that F ∪ 
S ≠ X. Then F ⊂  F ∪ S and F ∪ S is a sg-closed set, as the finite union of sg-closed sets is a sg-closed set. Since F is a 
sg-closed set, we have F ∪ S = F. Therefore S ⊂  F.    
 
Theorem 3.12: Let Fα, Fβ, Fδ be maximal sg-closed sets such that Fα ≠ Fβ. If Fα ∩ Fβ ⊂  Fδ, then either Fα = Fδ or Fβ = 
Fδ 
 
Proof: Given that Fα ∩ Fβ ⊂  Fδ. If Fα = Fδ then there is nothing to prove.  
 
If Fα ≠ Fδ then we have to prove Fβ = Fδ . Now Fβ ∩ Fδ = Fβ ∩ (Fδ ∩ X) = Fβ ∩ (Fδ ∩ (Fα ∪ Fβ)(by thm. 3.10 (ii)) = Fβ 
∩ ((Fδ ∩ Fα) ∪ (Fδ ∩ Fβ)) = (Fβ ∩ Fδ ∩ Fα) ∪ (Fβ ∩ Fδ ∩ Fβ) = (Fα ∩ Fβ) ∪ (Fδ ∩ Fβ) (by Fα ∩ Fβ ⊂  Fδ) = (Fα ∪ Fδ) 
∩ Fβ = X ∩ Fβ (Since Fα and Fδ are maximal sg-closed sets by theorem[3.10](ii), Fα ∪ Fδ = X) = Fβ. That is Fβ ∩ Fδ = 
Fβ ⇒ Fβ ⊂  Fδ  Since Fβ and Fδ are maximal sg-closed sets, we have Fβ = Fδ Therefore Fβ = Fδ  
 
Theorem 3.13: Let Fα, Fβ and Fδ be different maximal sg-closed sets to each other. Then (Fα ∩ Fβ) ⊄ (Fα ∩ Fδ). 
 
Proof: Let (Fα ∩ Fβ) ⊂  (Fα ∩ Fδ) ⇒ (Fα ∩ Fβ) ∪ (Fδ ∩ Fβ) ⊂  (Fα ∩ Fδ) ∪ (Fδ ∩ Fβ) ⇒ (Fα ∪ Fδ) ∩ Fβ ⊂  Fδ ∩ (Fα 
∪ Fβ). Since by theorem 3.10(ii), Fα ∪ Fδ = X and Fα ∪ Fβ = X ⇒ X ∩ Fβ ⊂  Fδ ∩ X ⇒ Fβ ⊂  Fδ From the definition 
of maximal sg-closed set it follows that Fβ = Fδ, which is a contradiction to the fact that Fα, Fβ and Fδ are different to 
each other. Therefore (Fα ∩ Fβ) ⊄ (Fα ∩ Fδ).   
 
Theorem 3.14: Let F be a maximal sg-closed set and x be an element of F. Then F = ∪ {S: S is a sg-closed set 
containing x such that F ∪ S ≠ X}. 
 
Proof: By theorem 3.12 and fact that F is a sg-closed set containing x, we have F⊂∪{S: S is a sg-closed set 
containing x such that F ∪ S ≠ X} – F. Therefore we have the result. 
 
Theorem 3.15: Let F be a proper nonempty cofinite sg-closed set. Then ∃ (cofinite) maximal sg-closed set E such that 
F ⊂  E. 
 
Proof: If F is maximal sg-closed set, we may set E = F. If F is not a maximal sg-closed set, then ∃ (cofinite) sg-closed 
set F1 such that F⊂F1 ≠ X. If F1 is a maximal sg-closed set, we may set E = F1. If F1 is not a maximal sg-closed set, 
then ∃ a (cofinite) sg-closed set F2 such that F⊂ F1⊂F2 ≠ X. Continuing this process, we have a sequence of sg-closed, 
F ⊂  F1⊂ F2⊂  ... ⊂ Fk⊂  .... Since F is a cofinite set, this process repeats only finitely. Then, finally we get a 
maximal sg-closed set E = En for some positive integer n.   
 
Theorem 3.16: Let F be a maximal sg-closed set. If x is an element of X-F. Then X-F ⊂  E for any sg-closed set E 
containing x. 
 
Proof: Let F be a maximal sg-closed set and x in X-F. E ⊄ F for any sg-closed set E containing x. Then E ∪ F = X by 
theorem 3.10(ii). Therefore X-F ⊂  E.  
 
4. Minimal sg-Closed set and Maximal sg-open set: 
 
 We now introduce minimal sg-closed sets and maximal sg-open sets in topological spaces as follows.  
 
Definition 4.1: A proper nonempty sg-closed subset F of X is said to be a minimal sg-closed set if any sg-closed set 
contained in F is φ or F. 
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Remark 5: Every Minimal closed set is minimal sg-closed set but not conversely: 
 
Example 3: Let X = {a, b, c, d}; τ = {φ, {b}, {a, b}, {b, c}, {a, b, c}, X}. {d} is both Minimal closed set and  Minimal 
sg-closed set but {a}, {b} and {c} are Minimal sg-closed but not Minimal closed.  
 
Definition 4.2: A proper nonempty sg-open U⊂X is said to be a maximal sg-open set if any sg-open set containing U 
is either X or U.  
 
Remark 6: Every Maximal open set is maximal sg-open set but not conversely. 
 
Example 4: In Example 3. {a, b, c} is Maximal open set and maximal sg-open set but {a, b, d}, {a, c, d} and {b, c, d} 
are Maximal sg-open but not maximal open.  
 
Theorem 4.1: A proper nonempty subset U of X is maximal sg-open set iff X-U is a minimal sg-closed set. 
 
Proof: Let U be a maximal sg-open set. Suppose X-U is not a minimal sg-closed set. Then ∃ sg-closed set V ≠ X-U 
such that φ ≠ V ⊂  X-U. That is U⊂  X-V and X-V is a sg-open set which is a contradiction for U is a minimal sg-
closed set. Conversely let X-U be a minimal sg-closed set. Suppose U is not a maximal sg-open set. Then ∃ sg-open set 
E ≠ U such that U ⊂  E ≠ X. That is φ ≠ X-E ⊂  X-U and X-E is a sg-closed set which is a contradiction for X-U is a 
minimal sg-closed set. Therefore U is a maximal sg-closed set. 
 
Lemma 4.1: 
(i) Let U be a minimal sg-closed set and W be a sg- closed set. Then U ∩ W = φ or U subset W. 
(ii) Let U and V be minimal sg- closed sets. Then U ∩ V = φ or U = V. 
 
Proof: (i) Let U be a minimal sg-closed set and W be a sg-closed set. If U ∩ W = φ, then there is nothing to prove.  
 
If U ∩ W ≠ φ.  Then U ∩W ⊂U. Since U is a minimal sg-closed set, we have U ∩ W = U. Therefore U ⊂  W. 
 
(ii) Let U and V be minimal sg-closed sets. If U∩V ≠ φ, then U⊂  V and V⊂  U by (i). Therefore U = V.   
 
Theorem 4.2: Let U be a minimal sg-closed set. If x∈U, then U⊂W for any regular open neighborhood W of x.  
 
Proof: Let U be a minimal sg-closed set and x be an element of U. Suppose ∃ an regular open neighborhood W of x 
such that U ⊄ W. Then U ∩ W is a sg-closed set such that U ∩ W ⊂  U and U ∩ W ≠ φ. Since U is a minimal sg-
closed set, we have U∩ W = U. That is U ⊂  W, which is a contradiction for U ⊄ W. Therefore U⊂W for any regular 
open neighborhood W of x.    
 
Theorem 4.3: Let U be a minimal sg-closed set. If x∈U, then U⊂W for some sg-closed set W containing x. 
 
Theorem 4.4: Let U be a minimal sg-closed set. Then U = ∩{W: W∈SGO(X, x)} for any element x of U.  
 
Proof: By theorem[4.3] and U is sg-closed set containing x, we have U⊂∩{ W: W∈SGO(X, x)}⊂U.  
 
Theorem 4.5: Let U be a nonempty sg-closed set. Then the following three conditions are equivalent. 
(i) U is a minimal sg-closed set 
(ii) U⊂ sg(S) – for any nonempty subset S of U 
(iii) sg(U) – = sg(S) – for any nonempty subset S of U.  
 
Proof: (i) ⇒ (ii) Let x∈U; U be minimal sg-closed set and S(≠ φ)⊂U. By theorem[4.3], for any sg-closed set W 
containing x, S⊂U⊂W ⇒ S⊂W. Now S = S∩U⊂S∩W. Since S≠ φ, S∩W ≠ φ. Since W is any sg-closed set 
containing x, by theorem [4.3], x∈sg(S) –. That is x∈U ⇒ x∈ sg(S) – ⇒ U ⊂  sg(S) –  for any nonempty subset S of U. 
 
(ii) ⇒ (iii) Let S be a nonempty subset of U. That is S⊂U ⇒ sg(S) –⊂ sg(U) – → (1). Again from (ii) U⊂ sg(S) – for 
any S(≠ φ)⊂U ⇒ sg(U) – ⊂ sg(sg(S) –)–  = sg(S) –. That is sg(U) –⊂ sg(S) – → (2). From (1) and (2), we have sg(U) – = 
sg(S) – for any nonempty subset S of U. 
 
(iii) ⇒ (i) From (3) we have sg(U) – = sg(S) – for any nonempty subset S of U. Suppose U is not a minimal sg-closed 
set. Then ∃ a nonempty sg-closed set V such that V ⊂  U and V ≠ U. Now ∃ an element a in U such that a∉V ⇒ a∈Vc. 
That is sg({a})–⊂ sg(Vc)– = Vc, as Vc is sg-closed set in X. It follows that sg({a})– ≠ sg(U)–. This is a contradiction for 
sg({a})– = sg(U) – for any {a}(≠ φ)⊂U. Therefore U is a minimal sg-closed set.   
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Theorem 4.6: Let V be a nonempty finite sg-closed set. Then ∃ at least one (finite) minimal sg-closed set U such that 
U⊂V. 
 
Proof: Let V be a nonempty finite sg-closed set. If V is a minimal sg-closed set, we may set U = V. If V is not a 
minimal sg-closed set, then ∃ (finite) sg-closed set V1 such that φ ≠ V1⊂V. If V1 is a minimal sg-closed set, we may 
set U = V1. If V1 is not a minimal sg-closed set, then ∃ (finite) sg-closed set V2 such that φ ≠ V2 ⊂  V1. Continuing this 
process, we have a sequence of sg-closed sets V ⊃ V1 ⊃ V2 ⊃ V3⊃ ..... ⊃ Vk ⊃ ...... Since V is a finite set, this process 
repeats only finitely. Then finally we get a minimal sg-closed set U = Vn for some positive integer n.   
  
Corollary 4.1: Let X be a locally finite space and V be a nonempty sg-closed set. Then ∃ at least one (finite) minimal 
sg-closed set U such that U ⊂  V.  
 
Proof: Let X be a locally finite space and V be a nonempty sg-closed set. Let x in V. Since X is locally finite space, we 
have a finite open set Vx such that x in Vx. Then V∩Vx is a finite sg-closed set. By Theorem 4.6 ∃ at least one (finite) 
minimal sg-closed set U such that U ⊂  V∩Vx. That is U⊂V∩Vx⊂V. Hence ∃ at least one (finite) minimal sg-closed 
set U such that U⊂V.    
 
Corollary 4.2: Let V be a finite minimal open set. Then ∃ at least one (finite) minimal sg-closed set U such that U⊂V.  
 
Proof: Let V be a finite minimal open set. Then V is a nonempty finite sg-closed set. By Theorem 4.6, ∃ at least one 
(finite) minimal sg-closed set U such that U⊂V.     
 
Theorem 4.7: Let U; Uλ be minimal sg-closed sets for any element λ∈Γ. If U⊂∪λ∈ΓUλ, then ∃ an element λ ∈Γ such 
that U = Uλ.  
 
Proof: Let U ⊂∪λ∈ΓUλ. Then U ∩(∪λ∈ΓUλ) = U. That is ∪λ∈Γ(U ∩ Uλ) = U. Also by lemma[4.1] (ii), U ∩ Uλ = φ or 
U = Uλ for any λ∈Γ. It follows that ∃ an element λ∈Γ such that U = Uλ.      
 
Theorem 4.8: Let U; Uλ be minimal sg-closed sets for any λ∈Γ. If U = Uλ for any λ∈Γ, then (∪λ∈ΓUλ) ∩ U =  φ.  
 
Proof: Suppose that (∪λ∈ΓUλ) ∩ U≠ φ. That is ∪λ∈Γ(Uλ ∩ U) ≠ φ. Then ∃ an element λ∈Γ such that U ∩ Uλ ≠ φ. By 
lemma [4.1](ii), we have U = Uλ, which contradicts the fact that U ≠ Uλ for any λ∈Γ. Hence (∪λ∈ΓUλ)∩U = φ.     
 
Theorem 4.9: A proper nonempty subset F of X is maximal sg-open set iff X-F is a minimal sg-closed set. 
 
Proof: Let F be a maximal sg-open set. Suppose X-F is not a minimal sg-open set. Then ∃ sg-open set U ≠ X-F such 
that φ ≠ U ⊂  X-F. That is F ⊂  X-U and X-U is a sg-open set which is a contradiction for F is a minimal sg-closed set. 
 
Conversely let X-F be a minimal sg-open set. Suppose F is not a maximal sg-open set. Then ∃ sg-open set E ≠ F such 
that F ⊂  E ≠ X. That is φ ≠ X-E ⊂  X-F and X-E is a sg-open set which is a contradiction for X-F is a minimal sg-
closed set. Therefore F is a maximal sg-open set.   
 
Theorem 4.10:  
(i) Let F be a maximal sg-open set and W be a sg-open set. Then F∪W = X or W⊂ F. 
(ii) Let F and S be maximal sg-open sets. Then F ∪ S = X or F = S. 
 
Proof: (i) Let F be a maximal sg-open set and W be a sg-open set. If F∪ W = X, then there is nothing to prove. 
Suppose F ∪ W ≠ X. Then F ⊂  F ∪ W. Therefore F∪W = F ⇒ W⊂ F. 
(ii) Let F and S be maximal sg-open sets. If F∪S ≠ X, then we have F⊂ S and S⊂ F by (i). Therefore F = S.  
 
Theorem 4.11: Let F be a maximal sg-open set. If x is an element of F, then for any sg-open set S containing x, F ∪ S 
= X or S ⊂  F. 
 
Proof: Let F be a maximal sg-open set and x is an element of F. Suppose ∃ sg-open set S containing x such that F ∪ S 
≠ X. Then F ⊂  F ∪ S and F ∪ S is a sg-open set, as the finite union of sg-open sets is a sg-open set. Since F is a sg-
open set, we have F ∪ S = F. Therefore S ⊂  F.    
 
Theorem 4.12: Let Fα, Fβ, Fδ be maximal sg-open sets such that Fα ≠ Fβ. If Fα ∩ Fβ ⊂  Fδ, then either Fα = Fδ or Fβ = 
Fδ 
 
Proof: Given that Fα ∩ Fβ ⊂  Fδ. If Fα = Fδ then there is nothing to prove.  
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If Fα ≠ Fδ then we have to prove Fβ = Fδ . Now Fβ ∩ Fδ = Fβ ∩ (Fδ ∩ X) = Fβ ∩ (Fδ ∩ (Fα ∪ Fβ)(by thm. 4.10 (ii)) = Fβ 
∩ ((Fδ ∩ Fα) ∪ (Fδ ∩ Fβ)) = (Fβ ∩ Fδ ∩ Fα) ∪ (Fβ ∩ Fδ ∩ Fβ)= (Fα ∩ Fβ) ∪ (Fδ ∩ Fβ) (by Fα ∩ Fβ ⊂  Fδ) = (Fα ∪ Fδ) ∩ 
Fβ = X ∩ Fβ (Since Fα and Fδ are maximal sg-open sets by theorem[4.10](ii), Fα ∪ Fδ = X) = Fβ. That is Fβ ∩ Fδ = Fβ ⇒ 
Fβ ⊂  Fδ  Since Fβ and Fδ are maximal sg-open sets, we have Fβ = Fδ Therefore Fβ = Fδ  
 
Theorem 4.13: Let Fα, Fβ and Fδ be different maximal sg-open sets to each other. Then (Fα ∩ Fβ) ⊄ (Fα ∩ Fδ). 
 
Proof: Let (Fα ∩ Fβ) ⊂  (Fα ∩ Fδ) ⇒ (Fα ∩ Fβ) ∪ (Fδ ∩ Fβ) ⊂  (Fα ∩ Fδ) ∪ (Fδ ∩ Fβ) ⇒ (Fα ∪ Fδ) ∩ Fβ ⊂  Fδ ∩ (Fα 
∪ Fβ). Since by theorem 4.10(ii), Fα ∪ Fδ = X and Fα ∪ Fβ = X ⇒ X ∩ Fβ ⊂  Fδ ∩ X ⇒ Fβ ⊂  Fδ From the definition 
of maximal sg-open set it follows that Fβ = Fδ, which is a contradiction to the fact that Fα, Fβ and Fδ are different to 
each other. Therefore (Fα ∩ Fβ) ⊄ (Fα ∩ Fδ).   
 
Theorem 4.14: Let F be a maximal sg-open set and x be an element of F. Then F = ∪ {S: S is a sg-open set containing 
x such that F ∪ S ≠ X}. 
 
Proof: By theorem 4.12 and fact that F is a sg-open set containing x, we have F⊂∪{S: S is a sg-open set containing x 
such that F ∪ S ≠ X} – F. Therefore we have the result.   
 
Theorem 4.15: Let F be a proper nonempty cofinite sg-open set. Then ∃ (cofinite) maximal sg-open set E such that F 
⊂  E. 
 
Proof: If F is maximal sg-open set, we may set E = F. If F is not a maximal sg-open set, then ∃ (cofinite) sg-open set F1 
such that F⊂ F1 ≠ X. If F1 is a maximal sg-open set, we may set E = F1. If F1 is not a maximal sg-open set, then ∃ a 
(cofinite) sg-open set F2 such that F⊂ F1⊂ F2 ≠ X. Continuing this process, we have a sequence of sg-open, F ⊂  F1⊂
F2⊂  ... ⊂Fk⊂  .... Since F is a cofinite set, this process repeats only finitely. Then, finally we get a maximal sg-open 
set E = En for some positive integer n.   
 
Theorem 4.16: Let F be a maximal sg-open set. If x is an element of X-F. Then X-F ⊂  E for any sg-open set E 
containing x. 
 
Proof: Let F be a maximal sg-open set and x in X-F. E ⊄ F for any sg-open set E containing x. Then E ∪ F = X by 
theorem 4.10(ii). Therefore X-F ⊂  E.  
 
Conclusion 
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