
International Journal of Mathematical Archive-3(5), 2012, 2070-2082 
 Available online through www.ijma.info ISSN 2229 – 5046 

International Journal of Mathematical Archive- 3 (5), May – 2012                                                                                                          2070 

 
THERMAL RADIATION AND ROTATION EFFECT ON AN UNSTEADY MHD MIXED 

CONVECTION FLOW THROUGH A POROUS MEDIUM WITH HALL CURRENT 
  

S. Sivaiah1*,   K. Anitha2 and S. Venkataramana3 

 

1Department of Engineering Mathematics, GITAM University, Hyderabad Campus,  
Hyderabad-502329   A.P., India 

2&3Department of Mathematics, Sri Venkateswara University, Tirupati, A.P, India 
 

(Received on: 29-04-12; Revised & Accepted on: 19-05-12) 
________________________________________________________________________________________________ 

ABSTRACT 
The effect of thermal radiation and rotation on an unsteady magnetohydrodynamic mixed convection flow through a 
porous medium with hall current has been studied. The similarity solutions were obtained using suitable 
transformations and the resulting similarity partial differential equations were solved by using Galerkin finite element 
method.. A uniform magnetic field is applied in the direction normal to the planes of the plates. The entire system rotates 
about an axis normal to the planes of the plates with uniform angular velocityΩ . The temperature of one of the plates 
varies periodically and the temperature difference of the plates is high enough to induce radiative heat transfer. The 
effects of various parameters on the velocity profiles, the skin friction, temperature field, rate of heat transfer in terms of 
their amplitude and phase angles are shown graphically.  
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1. INTRODUCTION 
 
The study of flow in rotating porous media is motivated by its practical applications in geophysics and engineering. 
Among the applications of rotating flow in porous media to engineering disciplines, one can find the food processing 
industry, chemical process industry, centrifugation filtration processes and rotating machinery. Also the hydrodynamic 
rotating flow of electrically conducting viscous incompressible fluids has gained considerable attention because of its 
numerous applications in physics and engineering. In geophysics, it is applied to measure and study the positions and 
velocities with respect to a fixed frame of reference on the surface of earth, which rotate with respect to an inertial 
frame in the presence of its magnetic field. The subject of geophysical dynamics now – a – days has become an 
important branch of fluid dynamics due to the increasing interest to study environment. In astrophysics, it is applied to 
study the stellar and solar structure, inter planetary and inter stellar matter, solar storms etc. In engineering, it finds its 
application in MHD generators, ion propulsion, MHD bearings, MHD pumps MHD boundary layer control of reentry 
vehicles etc. Several scholars viz. Crammer and Pai [5], Ferraro and plumpton [6], Shercliff [17] have studied such 
flows because of their varied importance. MHD channel or duct flows are important from its practical point of view. 
Chang and Lundgren [3] have studied a hydromagnetic flow in a duct. Yen and Chang [22] analyzed the effect of wall 
electrical conductance on the magnetohydrodynamic Couette flow. From the technological point of view and due to 
practical applications, free convective flow and heat transfer problems are always important. This process of heat 
transfer is encountered in cooling of nuclear reactors, providing heat sinks in turbine blades and aeronautics. Ostrach 
[13] studied the combined effects of natural and forced convection laminar flow and heat transfer of fluids with and 
without heat sources in channels with linearly varying wall temperature. Jain and Gupta [8] studied three dimensional 
free convection Couette flow with transpiration cooling.  
 
There are numerous important engineering and geophysical applications of the channel flows through porous medium, 
for example in the fields of agricultural engineering for channel irrigation and to study the underground water 
resources, in petroleum technology to study the movement of natural gas, oil and water through the oil 
channels/reservoirs. Transient natural convection between two vertical walls with a porous material having variable 
porosity has been studied by Paul et al. [14]. Sahin [16] investigated the three – dimensional free convective channel 
flow through porous medium. 
 
In recent years, the effects of transversely applied magnetic field on the flows of electrically conducting viscous fluids 
have been discussed widely owing to their astrophysics, geophysical and engineering applications. Attia and Kotb [2] 
studied MHD flow between two parallel plates with heat transfer. When the strength of the magnetic field is strong, one 
cannot neglect the effects of Hall current. The rotating flow of an electrically conducting fluid in the presence of a  
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magnetic field is encountered in geophysical and cosmical fluid dynamics. It is also important in the solar physics 
involved in the sunspot development. Soundalgekar [21] studied the Hall effects in MHD Couette flow with heat 
transfer. Mazumder et al [9, 10] have studied the effects of Hall current on MHD Ekman layer flow and heat transfer 
over porous plate and on free and forced convective hydromagnetic flow through a channel. Hall effects on unsteady 
MHD free and forced convection flow in a porous rotating channel has been investigated by Sivaprasad et al. [20] 
Singh and Kumar [18] studied the combined effects of Hall current and rotation on free convection MHD flow in a 
porous channel. Ghosh et al. [7] studied the Hall effects on MHD flow in a rotating system with heat transfer 
characteristics. 
 
Radiative convective flows have gained attention of many researchers in recent years. Radiation plays a vital role in 
many engineering, environment and industrial processes e.g. heating and cooling chambers, fossil fuel combustion 
energy processes astrophysical flows and space vehicle re – entry. Raptis [15] studied the radiation and free convection 
flow through a porous medium. Alagoa et al [1] analyzed the effects of radiation on free convective MHD flow through 
a porous medium between infinite parallel plates in the presence of time – dependent suction. Mebine [11] studied the 
radiation effects on MHD Couette flow with heat transfer between two parallel plates. Singh and Kumar [19] have 
studied radiation effects on the exact solution of free convective oscillatory flow through porous medium in a rotating 
vertical porous channel.  
 
The MHD free convective flow in a rotating channel filled with porous medium has been studied in the present paper. 
The transverse magnetic field applied is strong enough so that the Hall currents are induced. The temperature difference 
between the walls of channel is sufficiently high to radiate the heat.  

 
 

Figure 1. Schematic diagram of the physical problem 
 
2. BASIC EQUATIONS: 
 
The equations governing the unsteady free convective flow of an incompressible, viscous and electrically conducting 
fluid in a rotating vertical channel filled with porous medium in the presence of magnetic field are: 
 
Equation of Continuity:  
 

0=Vdiv                                                                                                                                                                        (1) 
 
Momentum Equation: 
 

( ) 2.V V V V p J B V V g T
t K

µρ µ β
 ∂ ′+Ω× + ∇ = −∇ + × + ∇ − + ′ ′∂                                                                 

(2)
                                                                     

 
Energy Equation: 
 

( ) qTkTV
t
TCP ∇−′∇=



 ′∇+

′∂
′∂ 2.ρ

                                                                                                                      
(3)
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Kirchhoff’s First Law: 
 

0=Jdiv                                                                                                                                                                          (4)                                                                                                                          
 
General Ohm’s Law: 

( ) 







∇+×+=×+ e

e

ee p
e

BVEBJ
B

J
η

σ
τω 1

0                                                                                                        
(5)

                                                                                 
 

 
Gauss’s Law of Magnetism: 
 

0=Bdiv                                                                                                                                                                           
(6)  
 
Where  V  is the velocity vector, Ω the angular velocity of  the fluid, p the pressure, ρ the density, B the 
magnetic induction vector, J  the current density, µ  the coefficient of viscosity, t′ the time, g  the acceleration due 

to gravity, β the coefficient of volume expansion, K ′ is the permeability of the porous medium, PC the specific heat 

at constant pressure, T ′  the  temperature, oT  the reference temperature that of the left plate, k  the thermal 

conductivity, q  the radiative heat, σ  the electrical conductivity, oB  the strength of the applied magnetic field, e  the 

electron charge, cω  the electron frequency, cτ the electron collision time, cp  the electron pressure, E the electric 

field and cη  is the number density of electron. 
 
3. MATHEMATICAL FORMULATION: 
 
Consider an unsteady magnetohydrodynamic free convective flow of an electrically conducting, viscous, 
incompressible fluid through a porous medium bounded between two insulated infinite vertical plates in the presence of 
Hall current and thermal radiation. The plates are at a distance d  apart. A Cartesian coordinate system with x′ – axis 
oriented vertically upward along the centerline of the channel introduced. The z′  – axis is taken perpendicular to the 
planes of the plates and is the axis of rotation and the entire system rotates about this axis with uniform angular velocity  
Ω′ . The schematic diagram of the physical problem is shown in Figure 1. Since the plates of the channel are of infinite 
extent, all the physical quantities depend only on z′ and t′only. The temperature tTw ′′′ ωcos  of the right plate at 

2/dz =′  is considered to be varying periodically with time and the temperature 0==′ oTT of the left plate at 

2/dz =′  is taken to be zero. Let ( )wvu ′′′ ,, be the components of velocity in the directions ( )zyx ′′′ ,,  
respectively. Since the plates are non – porous, therefore equation of continuity (1) on integration gives 0=′w . A 

strong transverse magnetic field of uniform strength 0B  is applied along the z′  – axis. So, the equation (6) for the 

magnetic field ( )zyx BBBB ′′′= ,,  gives 0BBz =′ (constant). 
 

If ( )zyx JJJ ′′′ ,,  are the components of electric current density J then equation of conservation of electric charge in 
equation (4) gives =′zJ  constant. For non – conducting plates  
 

0=′zJ                                                                                                                                                                             (7)                                                                                                                       
 
At the plates and hence zero everywhere in the fluid. Under the usual assumptions that the electron pressure (for a 
weakly ionized gas), the thermoelectric pressure, ion slip and the external electric field arising due to polarization of 
charges are negligible. It is assumed that no applied and polarization voltage exists. This corresponds to the case where 

no energy is being added or extracted from the fluid by electrical means (Meyer [12]) i.e., electrical field 0=E  
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Therefore, the equation (5) takes the form: 
 

( ) ( )BVBJ
B

J ee


×=×+ σ
τω

0

                                                                                                                                       (8) 

 
After using equation (7), equation (8) in component form becomes: 
 

vBJJ xeey ′=′+′ 0στω                                                                                                                                                   (9) 
 

uBJJ xeey ′−=′−′ 0στω                                                                                                                                               (10) 
 

Solving equations (9) and (10) for xJ ′  and yJ ′ , we get   
 

( )( )vum
m
BJ x ′+′

+
=′ 2

0

1
σ

 
 and   ( )( )uvm

m
BJ y ′−′

+
=′ 2

0

1
σ

 

 

Where eem τω=   is the Hall parameter. Under the foregoing assumptions and reference temperature 0=oT , Equation 
(2) in Cartesian components reduces to: 
 

( )( ) Tgu
K

uvm
m

Bv
z
u

x
p

t
u ′+′

′
−′−′

+
+′Ω′+

′∂
′∂

+
′∂
′∂

−=
′∂
′∂ βυ

ρ
σ

υ
ρ 2

2
0

2

2

1
21

                                                       (11) 

 

( )( ) u
K

vum
m

Bu
z
v

y
p

t
v ′

′
−′+′

+
−′Ω′−

′∂
′∂

+
′∂
′∂

−=
′∂
′∂ υ

ρ
σ

υ
ρ 2

2
0

2

2

1
21

                                                                         (12) 

 
And equation (3) becomes: 
 

z
q

z
Tk

t
TCP ′∂

∂
−

′∂
′∂

=
′∂
′∂

2

2

ρ                                                                                                                                            (13) 

 
The boundary conditions for the flow problem are: 
 










=′′′′=′=′=′

−=′=′=′=′

2
cos,0

2
0

dzattTTvu

dzatTvu

w ω
                                                                                                              (14) 

 

Where wT ′  is the mean temperature of the plate at 2/dz =′  and ω′  is the frequency of oscillation. 

Following Cogley el al [4]. the last term in the energy equation (13), )(4 0
2 TT

z
q

−′=
′∂

∂ α stands for radiative heat 

flux modifies to: 
 

T
z
q ′=
′∂

∂ 24α                                                                                                                                                                   (15) 

In view of the reference temperature 00 =T , where α  is the mean radiation absorption coefficient. 
 
Introducing the following non dimensional quantities 
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2

2 22

2 2

, , , , , , , , , Re ,

2, , , , ,

w

w oP

z x y u v T t U d p Udx y u V T t p
d d d U U T d U U v

g d T BC dUd K dK Gr Pe M N
v d vU k U k

ωη ω
ρ

β σ υρ α
ρ

′ ′ ′ ′ ′ ′ ′ ′ ′ = = = = = = = = = = ′ 


′′ ′Ω Ω = = = = = = 

            (16)                                                      

 
Using non – dimensional quantities from (16), the equations (11), (12) and (13) reduces to: 
 

( )
( )

2

2 2

1 2 1
Re Re Re ReRe 1

M mv uu p u Grv u T
t x Kmη

−∂ ∂ ∂ Ω
= − + + + − +

∂ ∂ ∂ +                                                                       (17) 
 

 
( )
( )

2

2 2

1 2 1
Re Re ReRe 1

M mu vv p v u v
t y Kmη

+∂ ∂ ∂ Ω
= − + − − −

∂ ∂ ∂ +                                                                                    (18) 
 

Pe
TNT

Pet
T 2

2

21
−

∂
∂

=
∂
∂

η
                                                                                                                                                    (19) 

 
Where U  is the mean axial velocity. 
 
The corresponding transformed boundary conditions are: 










====

−====

2
1cos,0

2
10

ηω

η

attTvu

atTvu
                                                                                                                                  (20) 

 
For the oscillatory internal flow, we shall assume that the fluid flows only under the influence of a non dimensional 

pressure gradient oscillating in the direction of x′  – axis only which is of the form tP
x
p ωcos=
∂
∂

− . 

 
4. METHOD OF SOLUTION: 
 
By applying Galerkin finite element method for equation (17) over the element )(e , ( )kj ηηη ≤≤  is 
 

2 ( ) ( )
( )

2 Re 0
k

j

e e
e T u uN Bu P d

t

η

η

η
η

  ∂ ∂ − − + =  ∂ ∂   
∫                                                                          (21)    

Where  
21

,1,Re2
m

MA
K

ABGrT
x
pvAmvP

+
=+=+

∂
∂

−Ω+=   

 
Integrating the first term in equation (21) by parts one obtains 
 

0Re )(
)(

)(
)()()(

)( =




















−+

∂
∂

+
∂
∂

∂
∂

−







∂
∂

∫ η
ηηη

η

η

η

η

dPBu
t

uNuNuN
k

j

k

j

e
e

Te
eTee

Te                                                   (22)  

 
Neglecting the first term in equation (22), one gets: 
 

0Re )(
)(

)(
)()(

=




















−+

∂
∂

+
∂
∂

∂
∂

∫ η
ηη

η

η

dPBu
t

uNuNk

j

e
e

Te
eTe
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Let 
)()()( eee Nu φ=  be the linear piecewise approximation solution over the element ( )e , ( )kj ηηη ≤≤  , where 

[ ],)(
kj

e NNN =
 

[ ]Tkj
e uu=)(φ and ,

jk

k
jN

ηη
ηη

−
−

=
jk

j
kN

ηη
ηη
−

−
= are the basis functions. One obtains: 

ηηηη
η

η

η

η

η

η

η

η

d
N
N

Pd
u
u

NNNN

NNNN
Bd

u

u
NNNN

NNNN
d

u
u

NNNN

NNNN k

j

k

j

k

j

k

j k

j

k

j

kkkj

kjjj

k

j

kkkj

kjjj

k

j

kkkj

kjjj

∫∫∫∫ 







=

































+












































+


































•

•

Re
''''

''''

Simplifying we get 









=















+























+
















−

−
•

•

1
1

221
12

621
12

6
Re

11
111

2)(

P
u
uB

u

u
u
u

l k

j

k

j

k

j

e
  

where prime and dot denotes differentiation w.r.t η  and time t  respectively. Assembling the element equations for two 
consecutive elements ( )ii ηηη ≤≤−1

and ( )1+≤≤ ii ηηη  following is obtained:    
















=
































+




































+

































−
−−

−

+

−

+

•

•

−

•

+

−

1
2
1

2
210
141
012

6
210
141
012

6
Re

110
121
011

1

1

1

1

1

1

1

)( 2

P

u
u
u

B

u

u

u

u
u
u

l
i

i

i

i

i

i

i

i

i

e
                        (23)  

Now put row corresponding to the node i  to zero, from equation (23) the difference schemes with hl e =)( is: 
 

  [ ] [ ] PuuuBuuuuuu
h iiiiiiiii =+++














+++−+− +−+

••

−

•

+− 1111112 4
6

4
6

Re21
                                                (24)  

 
Applying the trapezoidal rule, following system of equations in Crank – Nicholson method are obtained: 
 

PkuAuAuAuAuAuA n
i

n
i

n
i

n
i

n
i

n
i 1216514

1
13

1
2

1
11 +++=++ +−

+
+

++
−                                                                               (25) 

 
 Applying similar procedure to equations (18) and (19) the following equations are obtained:  
 

QkvBvBvBvBvBvB n
i

n
i

n
i

n
i

n
i

n
i 1216514

1
13

1
2

1
11 +++=++ +−

+
+

++
−                                                                            (26)    

     
n

i
n

i
n

i
n

i
n

i
n

i TCTCTCTCTCTC 16514
1

13
1

2
1

11 +−
+

+
++

− ++=++                                                                                        (27)  
 
Where ,6Re21 BkrA +−= ,412Re82 BkrA ++= ,6Re23 BkrA +−= ,6Re24 BkrA −+=  

,412Re85 BkrA −−= ,6Re26 BkrA −+= ,6Re21 BkrB +−= ,412Re82 BkrB ++=  

,6Re23 BkrB +−= ,6Re24 BkrB −+= ,412Re85 BkrB −−= ,6Re26 BkrB −+=  

,62 2
1 kNrPeC +−= ,4128 2

2 kNrPeC ++= ,62 2
3 kNrPeC +−=  

,62 2
4 kNrPeC −+= ,4128 2

5 kNrPeC −−= ,62 2
6 kNrPeC −+=  

,Re2 j
i

j
i

j
i GrT

x
pvAmvP +
∂
∂

−Ω+= ;Re2
y
puAmuQ j

i
j

i ∂
∂

+Ω+=                                                

Here 
2h

kr = and kh, are mesh sizes along η  – direction and time – direction respectively.   Index i refers to space 

and j  refers to the time.  In equations (25), (26) and (27) taking ni )1(1=  and using boundary conditions (20), then 
the following system of equations are obtained: 
 

3)1(1== iBXA iii                                                       (28)   
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Where '
iA s are matrices of order η   and iX , '

iB s are column matrices having η  – components. The solutions of 
above system of equations are obtained by using Thomas algorithm for velocity, temperature and concentration. Also, 
numerical solutions for these equations are obtained by C – programme. In order to prove the convergence and 
stability of Galerkin finite element method, the same C – programme was run with smaller values of h  and k  and no 
significant change was observed in the values of vu,  and T . Hence the Galerkin finite element method is stable and 
convergent. 
 
5. SKIN FRICTION AND RATE OF HEAT TRANSFER: 

 
We now calculate from the velocity field the skin friction. It is given in non – dimensional form as 
 

0
1

=








=

ηη
τ

d
du   and 

0
2

=








=

ηη
τ

d
dv                      (29) 

 

Heat transfer coefficient ( )Nu  at the plate is  
 

0=








−=

ηηd
dTNu                                                                                                                                                          (30) 

 
6. RESULTS AND DISCUSSIONS: 
 
In order to study the effect of different parameters appearing in the flow problem, we have carried out numerical 
calculations for the velocity field, temperature field, skin friction, and rate of heat transfer. To assess the effects of each 
parameter for small and large rotations, two values of the rotation parameter Ω (= 5 and 10) are considered. 
 
Figure 2 shows the variation of velocity profiles under the influence of the rotation parameterΩ . The velocity decreases 
when Ω is increased. Figure 3 shows the variation of with Reynolds number Re . It is evident from figure 3 that the 
increasing value of Re  leads to increase of velocity. It is interesting to note that for large rotation the maximum of 
velocity no longer occurs at the centre of the channel but shifted towards the walls. 
 
The variations of the velocity profiles with the Grashof number Gr  are shown in Figure 4. For small rotations )5( =Ω , 
the velocity increases with the increasing Grashof number. The maximum of the velocity profiles shifts towards right half 
of the channel due to the greater buoyancy force in this part of the channel due to the presence of hotter plate. For large 
rotation )10( =Ω , the Grashof number has opposite effect on the velocity profiles in the right half and the left half of the 
channel. In the right half there lies hot plate at 2/1=η  and heat is transferred from the hot plate to the fluid and 
consequently buoyancy force enhances the flow velocity further. In the left half of the channel, the transfer of heat takes 
place from the fluid to the cooler plate at .2/1=η Thus, the effect of Grashof number on the velocity is reversed i.e. 
velocity decreases with increasing Gr . It is evident from figure 5 that the velocity decreases with the increase of 
Hartmann number M   . This is because of the reason that effects of a transverse magnetic field on an electrically 
conducting fluid gives rise to a resistive type force (called Lorentz force) similar to drag force  and upon increasing the 
values of M  increases the drag force which has tendency to slow down the motion of the fluid. Figure 6 shows the 
variation of the velocity with Hall parameter m . The velocity increases with the increase of m  in the middle of the 
channel for small rotation )5( =Ω of the channel while for the large rotation )10( =Ω of the channel there is no 
significant effect of m  on velocity (Figure 6). 
 
The variation of the velocity profile with permeability of the porous medium K  is shown in Figure 7. It is observed from 
Figure 7 that in the rotating channel the velocity decreases with increasing K . It is expected physically also because the 
resistance posed by the porous medium to the decelerated flow due to rotation reduces with increasing permeability K  
which leads to decrease in the velocity. For )10( =Ω  velocity is much less than )5( =Ω . Figure 8 shows that with 
increasing Peclet number Pe  the velocity decreases. The variation of velocity profile with radiation parameter N  is 
shown in Figure 9. 
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In the left half of the channel, the effect of N  on the velocity is insignificant while in the right half of the channel velocity 
decrease with increase of N . It is evident from the Figure10 that the increasing pressure gradient P  leads to the increase 
of velocity. Figure11 shows the variation of the velocity with frequency of oscillationsω . The velocity decreases with the 
increase of frequency of oscillations ω (Figure 11).  
 
The temperature profile is shown in Figure 12. The temperature decreases with the increase of radiation parameter N , the 
Peclet number Pe  and the frequency of oscillations ω (Figure 12). It is interesting to note that the flow of heat is 
reversed with the increase of Peclet number .Pe  From table 1 we observed that the skin friction 1τ  decreases with 
increase of rotation parameter ,Ω  Peclet number Pe and Hartmann number .M The skin friction 1τ  increases with 
increase of Reynolds number Re,  Grashof number ,Gr  Hall parameter ,m  Permeability of the porous medium ,K  
Pressure gradient .P  From table 1 we observed that the  skin friction 2τ  decreases with increase of rotation parameter 

,Ω  Peclet number Pe and Hartmann number .M The skin friction 2τ  increases with increase of Reynolds number 

Re,  Grashof number ,Gr  Hall parameter ,m  Permeability of the porous medium ,K  Pressure gradient .P  From table 
2 we observed that the  rate of heat transfer decreases with increase of Peclet number Pe and Radiation parameter .N   

 
Table 1. Skin – friction coefficients ( )& 21 ττ  

 
Ω  Re  Gr  M  m  K  Pe  N  P  1τ  2τ  
5 1 1 1 1 1 0.71 1 5 1.769 -0.591 

10 1 1 1 1 1 0.71 1 5 2.310 -0.183 
5 0.5 1 1 1 1 0.71 1 5 0.930 -0.606 
5 1 3 1 1 1 0.71 1 5 1.941 -0.520 
5 1 1 2 1 1 0.71 1 5 1.602 -0.681 
5 1 1 1 3 1 0.71 1 5 1.907 -0.401 
5 1 1 1 1 0.5 0.71 1 5 1.712 -0.653 
5 1 1 1 1 1 7.0 1 5 1.755 -0.495 
5 1 1 1 1 1 0.71 5 5 1.701 -0.684 
5 1 1 1 1 1 0.71 1 10 3.501 -0.410 

 
Table 2. Rate of heat transfer 

 
Pe  N  Nu  
0.71 1.0 1.032 
7.0 1.0 0.987 
0.71 5.0 0.964 

 
 
7. CONCLUSIONS: 
 
This work investigated the effect of thermal radiation and rotation on an unsteady magnetohydrodynamic mixed 
convection flow through a porous medium with hall current has been studied. The governing equations are 
approximated to a system of linear partial differential equations by using Galerkin finite element method. The results 
are presented graphically and we can conclude that the flow field and the quantities of physical interest are significantly 
influenced by these parameters.  
1. The velocity increases as rotation parameter ,Ω  Reynolds number Re,  Grashof number ,Gr  Hall parameter m  

and Pressure gradient P  increases. However, the velocity was found to decreases as the Hartmann number ,M  
Permeability of the porous medium ,K  Peclet number ,Pe  Thermal radiation parameter N and Frequency of 
oscillation ω  are increases.  

2. The fluid temperature was found to decreases as the thermal radiation parameter N and Peclet number Pe  are 
increases.  

 
3. The skin friction 1τ  decreases with increase of rotation parameter ,Ω  Peclet number Pe  Thermal radiation 

parameter N and Hartmann number .M However, it increases with increase of Reynolds number Re,  Grashof 

number ,Gr  Hall parameter ,m  Permeability of the porous medium ,K Pressure gradient .P   
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4. The  skin friction 2τ  decreases with increase of rotation parameter ,Ω  Peclet number Pe  Thermal radiation 

parameter N and Hartmann number .M However it increases with increase of Reynolds number Re,  Grashof 
number ,Gr  Hall parameter ,m  Permeability of the porous medium ,K Pressure gradient .P  

5. The rate of heat transfer decreases with increase of Peclet number Pe  and Thermal radiation parameter .N   
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Figure 2. Variation of velocity profiles with Ω  for Re  = 1.0, Gr =1.0, M =1.0, m = 1.0, K = 1.0, Pe =0.71, N
=1.0, P =5.0, ω  =5.0 and t =1.0. 

 

 
Figure 3. Variation of velocity profiles with Re  for Gr =1.0, M =1.0, m = 1.0, K = 1.0, Pe =0.71, N =1.0, P

=5.0, ω  =5.0 and t =1.0. 

 
Figure 4. Variation of velocity profiles with Gr  for Re =1.0, M =1.0, m = 1.0, K = 1.0, Pe =0.71, N =1.0, P

=5.0, ω  = 5.0 and t =1.0. 
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Figure 5. Variation of velocity profiles with M for Re =1.0, Gr =1.0, m = 1.0, K = 1.0, Pe =0.71, N =1.0, P =5.0, 

ω  =5.0 and t =1.0. 
 

 
Figure 6. Variation of velocity profiles with m  for Re = 1.0, Gr = 1.0, M = 1.0, K = 1.0, Pe = 0.71, N = 1.0, P = 

5.0, ω  = 5.0 and t = 1.0. 

 
Figure 7. Variation of velocity profiles with K  for Re = 1.0, Gr = 1.0, M = 1.0, m = 1.0, Pe = 0.71, N = 1.0,  

P = 5.0, ω  = 5.0 and t = 1.0. 
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Figure 8. Variation of velocity profiles with Pe for Re = 1.0, Gr = 1.0, M = 1.0, m = 1.0, N = 1.0, K = 1.0, P = 

5.0, ω  = 5.0 and t = 1.0. 
 

 
Figure 9. Variation of velocity profiles with N  for Re = 1.0, Gr = 1.0, M = 1.0, m = 1.0, Pe = 0.71, K = 1.0, 

 P = 5.0, ω  = 5.0 and t = 1.0. 

 
Figure 10. Variation of velocity profiles with P  for Re = 1.0, Gr = 1.0, M = 1.0, m = 1.0, Pe = 0.71, K = 1.0,  

N = 1.0, ω  = 5.0 and t = 1.0. 
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Figure 11. Variation of velocity profiles with ω  for Re = 1.0, Gr = 1.0, M = 1.0,  m = 1.0, Pe = 0.71, K = 1.0,  
N = 1.0, P = 5.0 and t = 1.0. 

 
 

 
Figure 12. Variation of temperature profiles for t = 1.0. 
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