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ABSTRACT 
The thermal instability of a couple-stress fluid acted upon by uniform vertical rotation and heated from below in a porous 
medium is investigated. Following the linearized stability theory and normal mode analysis, the paper through 
mathematical analysis of the governing equations of couple-stress fluid convection with a uniform vertical rotation in 
porous medium, for the case of rigid boundaries shows that the complex growth rate σ  of oscillatory perturbations, 
neutral or unstable for all wave numbers, must lie inside a semi-circle  
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in the right half of a complex σ -plane, where AT  is the Taylor number, lP  is the dimensionless medium permeability of 
the porous medium and F is the couple-stress parameter, which prescribes the upper limits to the complex growth rate of 
arbitrary oscillatory motions of growing amplitude in a rotatory couple-stress fluid in porous medium heated from below. 
Further, It is established that the existence of oscillatory motions of growing amplitude in the present configuration, 

depends crucially upon the magnitude of the non-dimensional number ( )24
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no such motions are possible, and in particular PES is valid.                                
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1.  INTRODUCTION 
 
Stability of a dynamical system is closest to real life, in the sense that realization of a dynamical system depends upon its 
stability. Right from the conceptualizations of turbulence, instability of fluid flows is being regarded at its root. A detailed 
account of the theoretical and experimental study of the onset of thermal instability (Bénard Convection) in Newtonian 
fluids, under varying assumptions of hydrodynamics and hydromagnetics, has been given by Chandrasekhar [7] and the 
Boussinesq approximation has been used throughout, which states that the density changes are disregarded in all other terms 
in the equation of motion, except in the external force term. The formation and derivation of the basic equations of a layer 
of fluid heated from below in a porous medium, using the Boussinesq approximation, has been given in a treatise by Joseph 
[9] When a fluid permeates through an isotropic and homogeneous porous medium, the gross effect is represented by 
Darcy’s law. The study of layer of fluid heated from below in porous media is motivated both theoretically and by its 
practical applications in engineering. Among the applications in engineering disciplines one can name the food processing 
industry, the chemical processing industry, solidification, and the centrifugal casting of metals. The development of 
geothermal power resources has increased general interest in the properties of convection in a porous medium. Stommel and 
Fedorov [22] and Linden [13] have remarked that the length scales characteristic of double-diffusive convecting layers in 
the ocean may be sufficiently large so that the Earth’s rotation might be important in their formation. Moreover, the rotation 
of the Earth distorts the boundaries of a hexagonal convection cell in a fluid through porous medium, and this distortion 
plays an important role in the extraction of energy in geothermal regions. The forced convection in a fluid saturated porous 
medium channel has been studied by Nield et al [15]. An extensive and updated account of convection in porous media has 
been given by Nield and Bejan [14]. 
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The effect of a magnetic field on the stability of such a flow is of interest in geophysics, particularly in the study of the 
earth’s core, where the earth’s mantle, which consist of conducting fluid, behaves like a porous medium that can become 
conductively unstable as result of differential diffusion. Another application of the results of flow through a porous medium  
in the presence of magnetic field is in the study of the stability of convective geothermal flow. A good account of the effect 
of rotation and magnetic field on the layer of fluid heated from below has been given in a treatise by Chandrasekhar [7].  
 
MHD finds vital applications in MHD generators, MHD flow-meters and pumps for pumping liquid metals in metallurgy, 
geophysics, MHD couplers and bearings, and physiological processes such magnetic therapy. With the growing importance 
of non-Newtonian fluids in modern technology and industries, investigations of such fluids are desirable. The presence of 
small amounts of additives in a lubricant can improve bearing performance by increasing the lubricant viscosity and thus 
producing an increase in the load capacity. These additives in a lubricant also reduce the coefficient of friction and increase 
the temperature range in which the bearing can operate. 
 
Darcy’s law governs the flow of a Newtonian fluid through an isotropic and homogeneous porous medium. However, to be 
mathematically compatible and physically consistent with the Navier-Stokes equations, Brinkman [5] heuristically proposed 

the introduction of the term 
→
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main effect is through the Darcian term; Brinkman term contributes very little effect for flow through a porous medium. 
Therefore, Darcy’s law is proposed heuristically to govern the flow of this non-Newtonian couple-stress fluid through 
porous medium. A number of theories of the micro continuum have been postulated and applied (Stokes[21]; Lai et al[11]; 
Walicka[24]). The theory due to Stokes [21] allows for polar effects such as the presence of couple stresses and body 
couples. Stokes’s [21] theory has been applied to the study of some simple lubrication problems (see e.g. Sinha et al[20]; 
Bujurke and Jayaraman [6]; Lin[12]). According to the theory of Stokes[21], couple-stresses are found to appear in 
noticeable magnitudes in fluids with very large molecules. Since the long chain hyaluronic acid molecules are found as 
additives in synovial fluid, Walicki and Walicka[25] modeled synovial fluid as couple stress fluid in human joints. The 
study is motivated by a model of synovial fluid. The synovial fluid is natural lubricant of joints of the vertebrates. The 
detailed description of the joints lubrication has very important practical implications; practically all diseases of joints are 
caused by or connected with a malfunction of the lubrication. The external efficiency of the physiological joint lubrication 
is caused by more mechanisms. The synovial fluid is caused by the content of the hyaluronic acid, a fluid of high viscosity, 
near to a gel. A layer of such fluid heated from below in a porous medium under the action of magnetic field and rotation 
may find applications in physiological processes. MHD finds applications in physiological processes such as magnetic 
therapy; rotation and heating may find applications in physiotherapy. The use of magnetic field is being made for the 
clinical purposes in detection and cure of certain diseases with the help of magnetic field devices. 
 
Sharma and Thakur [18] have studied the thermal convection in couple-stress fluid in porous medium in hydromagnetics. 
Sharma and Sharma [19] have studied the couple-stress fluid heated from below in porous medium. Kumar and Kumar [10] 
have studied the combined effect of dust particles, magnetic field and rotation on couple-stress fluid heated from below and 
for the case of stationary convection, found that dust particles have destabilizing effect on the system, where as the rotation 
is found to have stabilizing effect on the system, however couple-stress and magnetic field are found to have both 
stabilizing and destabilizing effects under certain conditions. Sunil et al [23] have studied the global stability for thermal 
convection in a couple-stress fluid heated from below and found couple-stress fluids are thermally more stable than the 
ordinary viscous fluids. 
 
Pellow and Southwell [16] proved the validity of PES for the classical Rayleigh-Bénard convection problem. Banerjee 
et al [3] gave a new scheme for combining the governing equations of thermohaline convection, which is shown to lead 
to the bounds for the complex growth rate of the arbitrary oscillatory perturbations, neutral or unstable for all 
combinations of dynamically rigid or free boundaries and, Banerjee and Banerjee [1] established a criterion on 
characterization of non-oscillatory motions in hydrodynamics which was further extended by Gupta et al. [8]. However 
no such result existed for non-Newtonian fluid configurations, in general and for couple-stress fluid configurations, in 
particular. Banyal [4] have characterized the non-oscillatory motions in couple-stress fluid.  
 
Keeping in mind the importance of non-Newtonian fluids, the present paper is an attempt to prescribe the upper limits to the 
complex growth rate of arbitrary oscillatory motions of growing amplitude, in a layer of incompressible couple-stress fluid 
in porous medium heated from below in the presence of uniform vertical rotation opposite to force field of gravity, when the 
bounding surfaces are of infinite horizontal extension, at the top and bottom of the fluid are rigid.  
 
2. FORMULATION OF THE PROBLEM AND PERTURBATION EQUATIONS 
 
Here we consider an infinite, horizontal, incompressible couple-stress fluid layer, of thickness d, heated from below so that, 
the temperature and density at the bottom surface z = 0 are 0T  and 0ρ  and at the upper surface z = d are dT  and dρ   
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respectively, and that a uniform adverse temperature gradient 
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
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dz
dTβ  is maintained. The fluid is acted upon by a 

uniform vertical rotation ( )ΩΩ
→

,0,0 . This fluid layer is flowing through an isotropic and homogeneous porous medium of 

porosityε  and of medium permeability 1k . 
 

Let ρ , p, T, and ( )wvuq ,,
→

 denote respectively the  fluid density, pressure, temperature and filter velocity of the fluid, 
respectively Then the momentum balance, mass balance, and energy balance equation of couple-stress fluid through porous 
medium, governing the flow of couple-stress fluid in the presence of uniform vertical rotation are (Stokes [ ]21 ; Joseph [ ]9 ; 

Chandrasekhar [ ]7 ) are given by 
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ρεε , is a constant, while sρ , sc and 0ρ , vc , stands for the density and heat capacity of the 

solid (porous matrix) material and the fluid, respectively,  ε  is the medium porosity and ),,( zyxr
→
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The equation of state is 
 
                             ( )[ ]00 1 TT −−= αρρ ,                                                                                                                           (4) 

Where the suffix zero refer to the values at the reference level z = 0. Here ( )gg −
→

,0,0  is acceleration due to gravity and α  
is the coefficient of thermal expansion. In writing the equation (1), we made use of the Boussinesq approximation, which 
states that the density variations are ignored in all terms in the equation of motion except the external force term. The 

kinematic viscosityν  , couple-stress viscosity
'µ , thermal diffusivity κ  and the coefficient of thermal expansion α  are 

all assumed to be constants. 
 
The basic motionless solution is 

            ( )0,0,0=
→

q  , )1(0 zαβρρ += ,   p=p(z),   0TzT +−= β ,                                                                          (5)                                                                                                                                                       
 
Here we use the linearized stability theory and the normal mode analysis method. Assume small perturbations around the 

basic solution, and letδρ , pδ , θ  and ( )wvuq ,,
→

 denote respectively the perturbations in density ρ , pressure p, 

temperature T and velocity )0,0,0(
→

q  respectively. The change in densityδρ , caused mainly by the perturbation θ  in 
temperature, is given by 
 
         ( )[ ] θαρρθαρδρρ 000 1 −=−+−=+ TT , i.e.   θαρδρ 0−= .                                                                    (6)       
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Then the linearized perturbation equations of the couple-stress fluid reduces to  
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3. NORMAL MODE ANALYSIS                                
 
Analyzing the disturbances into two-dimensional waves, and considering disturbances characterized by a particular wave 
number, we assume that the Perturbation quantities are of the form 
 
     [ ] ( ) ( ) ( )[ ]zZzzWw ,,,, Θ=ςθ exp ( )ntyikxik yx ++ ,                                                                                              (10)                                                                               
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Using (10), equations (7)-(9), within the framework of Boussinesq approximations, in the non-dimensional form transform 
to 
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Where we have introduced new coordinates ( )',',' zyx  = (x/d, y/d, z/d) in new units of length and '/ dzdD = . For 

convenience, the dashes are dropped hereafter. Also we have substituted ,,
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We now consider the case where both the boundaries are rigid and are maintained at constant temperature, and then the 
perturbations in the temperature are zero at the boundaries. The appropriate boundary conditions with respect to which 
equations (11)-(13), must possess a solution are 
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     W = DW = 0, 0=Θ  and Z=0 at z = 0 and z = 1.                                                                                                            (14)                                           
 
Equations (11)-(13), along with boundary conditions (14), pose an eigenvalue problem for σ  and we wish to 
characterize iσ , when 0≥rσ . 
 
4. MATHEMATICAL ANALYSIS 
 
We prove the following theorems: 
 
Theorem: If  R 〉 0 , F 〉 0, 〉AT 0, 0〉lP , 0〉ε  0≥rσ  and 0≠iσ  then the necessary condition for the existence of non-

trivial solution  ( )ZW ,,Θ  of  equations  (16), (17) and (18) together with boundary conditions (19)  is that 
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Proof: Multiplying equation (11) by  ∗W  (the complex conjugate of W) throughout and integrating the resulting equation 
over the vertical range of z, we get 
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Taking complex conjugate on both sides of equation (13), we get 
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Therefore, using (16), we get  
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Also taking complex conjugate on both sides of equation (12), we get 
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Therefore, using (18), we get  
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Substituting (17) and (19) in the right hand side of equation (15), we get 
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Integrating the terms on both sides of equation (25) for an appropriate number of times by making use of the appropriate 
boundary conditions (19), along with (17), we get  
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now equating imaginary parts on both sides of equation (21), and cancelling )0(≠iσ  throughout from imaginary part, we 
get 
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We first note that since W  and Z  satisfy  )1(0)0( WW ==  and )1(0)0( ZZ ==  in addition to satisfying to 

governing equations and hence we have from the Rayleigh-Ritz inequality[ ]17  
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Further, for )1(0)0( WW ==  and )1(0)0( ZZ == , Banerjee et al. [ ]2   have show that 
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Further, multiplying equation (12) and its complex conjugate (18), and integrating by parts each term on both sides of the 
resulting equation for an appropriate number of times and making use of boundary condition on Z , namely 
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Now F 〉  0, 0〉lP 0〉ε  and 0≥rσ , therefore the equation (26) gives, 
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And on utilizing the inequalities (24) and (25), inequality (27) gives 
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Now R 〉  0 , 0〉lP , 0〉ε  and 〉AT  0, utilizing the inequalities (28), the equation (22) gives,  
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and therefore , we must have 
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Hence, if 

                 0≥rσ  and 0≠iσ , then 
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And this completes the proof of the theorem. 
 
In the context of existence of instability in ‘oscillatory modes’ and that of ‘overstability’ in the present configuration, we 
can state prove a theorem as follow:- 
 
Theorem 2: The necessary condition for the existence of instability in ‘oscillatory modes’ and that of ‘overstability’ in a 
couple-stress fluid in a porous medium heated from below, in the presence of uniform vertical rotation is that the Taylor 
number AT , the couple-stress parameter of the fluid F and the medium permeability lP , must satisfy the 

inequality 2

24 )(

l
A P

FT π
〉 , when both the bounding surfaces are rigid 

 
Proof: The inequality (31) for 0≥rσ  and 0≠iσ , can be written as 
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24
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l
Air P

FT πεσσ , 

 
we necessarily have, 
 

2

24 )(

l
A P

FT π
〉 , 

 
which completes the proof. 
 
 
Presented otherwise from the point of view of existence of instability as stationary convection, the above theorem can be put 
in the form as follow:- 
 
Theorem 3: The sufficient condition for the validity of the ‘exchange principle’ and the onset of instability as a non-
oscillatory motions of non-growing amplitude in a couple-stress fluid in a porous medium heated from below, in the 

presence of uniform vertical rotation is that, 2

24 )(

l
A P

FT π
≤ , where AT  is the Taylor number, lP is the medium 

permeability and F is the couple-stress parameter, when both the bounding surface are rigid. Or The onset of instability in a 
couple-stress fluid in a porous medium heated from below, in the presence of uniform vertical rotation, cannot manifest 
itself as oscillatory motions of growing amplitude if the Taylor number AT , the medium permeability lP  and the couple-

stress parameter F, satisfy the inequality 2

24 )(

l
A P

FT π
≤ , when both the bounding surfaces are rigid. 

5. CONCLUSIONS 
 
The inequality (31) for 0≥rσ  and 0≠iσ , can be written as 
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
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The essential content of the theorem, from the point of view of linear stability theory is that for the configuration of couple-
stress fluid of infinite horizontal extension heated form below, having top and bottom bounding surfaces rigid, in the 
presence of uniform vertical rotation parallel to the force field of gravity, the complex growth rate of an arbitrary oscillatory 
motions of growing amplitude, must lie inside a semi-circle in the right half of the rσ iσ  - plane whose centre is at the 

origin and radius is 2

24 )(

l
A P

FT πε − , where AT  is the Taylor number, lP  is the dimensionless medium permeability of 

the porous medium, ε  is the porosity and F is the couple-stress parameter. 
Further, it follows from inequality (31) that a sufficient condition for the validity of the ‘principle of exchange of stabilities’ 

in rotatory couple-stress fluid convection is that 2

24 )(

l
A P

FT π
≤ . It is therefore clear that the existence of oscillatory 

motions of growing amplitude in the present configuration, depends crucially upon the magnitude of the non-dimensional 

number ( )24

2

F
PT lA

π
, in the sense so long as ( ) 10 24

2

≤〈
F
PT lA

π
, no such motions are possible, and in particular PES is valid.  

 
REFERENCES 
 
[1] Banerjee, M. B., and Banerjee, B. 1984, A characterization of non-oscillatory motions in magnetohydronamics. Ind. J. 
Pure & Appl Maths., 15(4): 377-382 
 
[2] Banerjee, M.B., Gupta, J.R. and Prakash, J. 1992, On thermohaline convection of Veronis type, J. Math. Anal. Appl., 
Vol.179, No. 2, pp. 327-334.  
 
[3] Banerjee, M.B., Katoch, D.C., Dube,G.S. and Banerjee, K., 1981, Bounds for growth rate of perturbation in 
thermohaline convection. Proc. R. Soc. A, 378, 301-04 
 
[4] Banyal, A.S., 2011, The necessary condition for the onset of stationary convection in couple-stress fluid, Int. J. of 
Fluid Mech. Research, Vol. 38, No.5, pp. 450-457. 
 
[5] Brinkman, H.C., 1949, problems of fluid flow through swarms of particles and through macromolecules in solution, 
research (London, Vol. 2, p.190.  
 
[6] Bujurke, N.M., and Jayaraman, G., 1982, The influence of couple-stresses in squeeze films Int. J. Mech Sci. Vol. 24, 
pp.369-376. 
 
[7] Chandrasekhar, S., 1981, Hydrodynamic and Hydromagnetic Stability, Dover Publications, New York. 
 
[8] Gupta, J.R., Sood, S.K., and Bhardwaj, U.D., 1986, On the characterization of nonoscillatory motions in rotatory 
hydromagnetic thermohaline convection, Indian J. pure appl. Math.17 (1) pp 100-10. 
 
[9] Joseph, D.D., 1976, Stability of fluid motions, vol.II, Springer-Verlag, berlin. 
 
[10] Kumar, V. and Kumar, S., 2011, On a couple-stress fluid heated from below in hydromagnetics,  Appl. Appl. Math, 
Vol. 05(10), pp. 1529-1542 
 
[11] Lai, W.M., Kuei, S.C., and Mow, V.C., 1978, Rheological equtions for synovial fluids, J. of Biomemechanical eng., 
vol.100, pp. 169-186. 
 
[12] Lin, J.R., 1996, Couple-stress effect on the squeeze film characteristics of hemispherical bearing with reference 
tosynovial joints, Appl. Mech. engg., vol. 1, pp.317-332. 
 
[13] Linden, P.F. 1974, Salt fingers in a steady shear flow, Geophys. Fluid Dynamics, v.6, pp.1-27 
 
[14] Nield, D.A., and Bejan, A., 1999, Convection in porous medium, Springer and Verlag, Newyark,. 
 
[15] Nield, D.A., and Junqueira, S.L.M. and Lage,J.L.,1996, forced convection in a fluid saturated porous medium ahannel 
with isothermal or isoflux boundaries, J. fluid Mech., vol.322,  pp. 201-214. 
 
 



Ajaib S. Banyal*/ Bounds for the Growth Rate of a Perturbation in a Couple-Stress Fluid in the Presence of Rotation in a Porous 
Medium/ IJMA- 3(5), May-2012, Page: 2020-2028 

© 2012, IJMA. All Rights Reserved                                                                                                                                                   2028   

 
[16] Pellow, A., and Southwell, R.V., 1940, On the maintained convective motion in a fluid heated from below. Proc. Roy. 
Soc. London A, 176, 312-43.  
 
[17] Schultz, M.H., 1973, Spline Analysis, Prentice Hall, Englewood Cliffs, New Jersy. 
 
[18] Sharma, R.C. and Thakur, K. D., 2000, Couple stress-fluids heated from below in hydromagnetics, Czech. J. Phys., 
Vol. 50, pp. 753-58. 
 
[19] Sharma, R.C. and Sharma S., 2001, On couple-stress fluid heated from below in porous medium, Indian J. Phys, Vol. 
75B, pp.59-61. 
 
[20] Sinha, P., Singh, C., and Prasad, K.R., 2001, Couple-stresses in journal bearing lubricantsand the effect of convection, 
Wear, vol.67, pp. 15-24. 
 
[21] Stokes, V.K., 1966, Couple-stress in fluids, Phys. Fluids, Vol. 9, pp.1709-15. 
 
[22] Stommel, H., and Fedorov, K.N., 1967, Small scale structure in temperature and salinity near Timor and Mindano, 
Tellus, vol. 19, pp. 306-325 
 
[23] Sunil, Devi, R. and Mahajan, A., 2011, Global stability for thermal convection in a couple stress fluid, Int. comm. 
Heat and Mass Transfer, 38, pp. 938-942. 
 
[24] Walicka, A., Micropolar flow in a slot between rotating surfaces of revolution, Zielona Gora, TU Press, 1994. 
 
[25] Walicki, E. and Walicka, A., 1999,Inertial effect in the squeeze film of couple-stress fluids in  biological bearings, Int. 
J. Appl. Mech. Engg., Vol. 4,  
 
 

Source of support: Nil, Conflict of interest: None Declared 
 
 


	[20] Sinha, P., Singh, C., and Prasad, K.R., 2001, Couple-stresses in journal bearing lubricantsand the effect of convection, Wear, vol.67, pp. 15-24.

